Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Birkhoff normal forms for Hamiltonian PDEs in their energy space

Abstract : We study the long time behavior of small solutions of semi-linear dispersive Hamiltonian partial differential equations on confined domains. Provided that the system enjoys a new non-resonance condition and a strong enough energy estimate, we prove that its low super-actions are almost preserved for very long times. Roughly speaking, it means that, to exchange energy, modes have to oscillate at the same frequency. Contrary to the previous existing results, we do not require the solutions to be especially smooth. They only have to live in the energy space. We apply our result to nonlinear Klein-Gordon equations in dimension d = 1 and nonlinear Schrödinger equations in dimension d ≤ 2.
Liste complète des métadonnées
Contributeur : Joackim Bernier <>
Soumis le : mardi 22 juin 2021 - 10:44:39
Dernière modification le : jeudi 24 juin 2021 - 03:38:32


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-03146064, version 2
  • ARXIV : 2102.09852



Joackim Bernier, Benoît Grébert. Birkhoff normal forms for Hamiltonian PDEs in their energy space. 2021. ⟨hal-03146064v2⟩



Consultations de la notice


Téléchargements de fichiers