Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

ON THE STABILITY OF CONSERVATIVE DISCONTINUOUS GALERKIN/HERMITE SPECTRAL METHODS FOR THE VLASOV-POISSON SYSTEM

Abstract : We study a class of spatial discretizations for the Vlasov-Poisson system written as an hyperbolic system using Hermite polynomials. In particular, we focus on spectral methods and discontinuous Galerkin approximations. To obtain L 2 stability properties, we introduce a new L 2 weighted space, with a time dependent weight. For the Hermite spectral form of the Vlasov-Poisson system, we prove conservation of mass, momentum and total energy, as well as global stability for the weighted L 2 norm. These properties are then discussed for several spatial discretizations. Finally, numerical simulations are performed with the proposed DG/Hermite spectral method to highlight its stability and conservation features.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03259688
Contributeur : Marianne Bessemoulin-Chatard <>
Soumis le : jeudi 17 juin 2021 - 11:35:18
Dernière modification le : samedi 19 juin 2021 - 03:38:43

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03259688, version 2
  • ARXIV : 2106.07468

Citation

Marianne Bessemoulin-Chatard, Francis Filbet. ON THE STABILITY OF CONSERVATIVE DISCONTINUOUS GALERKIN/HERMITE SPECTRAL METHODS FOR THE VLASOV-POISSON SYSTEM. 2021. ⟨hal-03259688v2⟩

Partager

Métriques

Consultations de la notice

24

Téléchargements de fichiers

51