Estimate of the pressure when its gradient is the divergence of a measure. Applications

Abstract : In this paper, a $W^{-1,N'}$ estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on ${\mathbb R}^N$ , or on a regular bounded open set of ${\mathbb R}^N$ . The proof is based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions which read as the divergence of a measure, and to prove an existence result for the stationary Navier-Stokes equation when the viscosity tensor is only in L 1.
Type de document :
Article dans une revue
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2011, 17 (4), pp.1066-1087. 〈10.1051/cocv/2010037〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00567605
Contributeur : Marie-Annick Guillemer <>
Soumis le : mercredi 6 décembre 2017 - 15:30:16
Dernière modification le : lundi 11 décembre 2017 - 09:38:33

Fichier

cocv1011.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Marc Briane, Juan Casado-Diaz. Estimate of the pressure when its gradient is the divergence of a measure. Applications. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2011, 17 (4), pp.1066-1087. 〈10.1051/cocv/2010037〉. 〈hal-00567605〉

Partager

Métriques

Consultations de la notice

230

Téléchargements de fichiers

3