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Abstract 

Ultrafiltration polyethersulfone membranes were modified covalently by chemical reduction 

of aryl diazonium salts. Functionalizations were performed with four aryl diazonium salts 

bearing different functional groups (4-benzyltriphenylphosphonium diazonium, 4-nitrophenyl 

diazonium, 4-benzonitrile diazonium and 4-phenylacetic acid diazonium) so as to demonstrate 

the versatility of the method. The efficiency of the different functionalizations was checked 

with various characterization techniques. Attenuated Total Reflectance Fourier Transform 

Infra Red spectroscopy revealed the presence of 4-nitrophenyl, 4-benzonitrile and 4-

phenylacetic acid groups at the surface of the different modified membranes but no 

characteristic vibration band was detected on the surface of the membrane modified with 4-

benzyltriphenylphosphonium diazonium. The presence of 4-benzyltriphenylphosphonium, 

however, could be demonstrated by both Energy Dispersive X-ray spectroscopy (detection of 

the Kα ray of phosphorous at 2.015 keV) and streaming current measurements (shift of the 

membrane isoelectric point). Finally, dead-end filtration of an antibiotic (tylosin) was carried 

out with the unmodified membrane and the membrane modified by 4-benzyltriphenyl-

phosphonium diazonium. Experiments revealed that the transport properties of the grafted 

membrane were significantly modified, with a significant increase in rejection mainly due to 

electrostatic repulsions between the surface of the modified membrane and tylosin. 
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 1. Introduction 

 

The widespread technological and economical importance of membrane processes in various 

fields such as food industry, desalination, fuel cells, water treatment and chemistry, has been 

the driving force for the development of a large array of materials. These are very often 

composite membranes that rely on different polymers and additives. They are designed as 

multi-layer materials whose part that rules the separation (called the active layer) represents 

only a very small fraction of the total thickness of the membrane. Because of economical 

stakes, the detailed composition of commercial membranes is generally not provided and is 

protected by patents so that one can not rely entirely on their commercial chemical formulae. 

Among the large variety of membranes, polyethersulfone-based membranes are a widely 

spread class of membranes that have found large scale applications such as fractionation and 

purification of proteins in the dairy industry. 

 

In order to confer or tune specific properties of membranes such as molecular weight cut-offs 

(MWCO), surface hydrophilicity/hydrophobicity, surface charge density or antifouling 

properties, various routes of membrane modification technique have been used such as 

coating, blending, chemical grafting or a combination of these methods [1, 2]. Among 

recently proposed approaches, Razi et al. reported the functionalization of a polyethersulfone 

(PES) membrane with zwitterionic monomers by photografting. After surface modification, 

they noted an improvement of the antibiofouling efficiency [3]. The same kind of UV grafting 

procedure has been applied by Abuhabib et al. who modified two commercial nanofiltration 

membranes by combining two monomers: acrylic acid and ethylenediamine dihydrochloride. 

Using this treatment, they noted an improvement for salt rejection and fouling resistance [4]. 

Another example of surface modification has been reported by Rajesh et al. who described 

TiO2 nanoparticles impregnated PES membranes. The efficiency of the modified membrane 

in the separation of mixture solutions of divalent salt and surfactant were found to be 

improved significantly [5]. 

 

The chemical reduction of aryl diazonium salts has been rarely applied to membrane 

modification although polymer modification by aryl diazonium salts reduction has been 

known for some time [6]. To our knowledge only one study has reported modification of a 

cation exchange membrane using this technique [7]. Surface modification with aryl 

diazonium salt reduction is a versatile method since it allows the introduction of a large 
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diversity of chemical groups at the surface so that many interfacial properties may be altered 

or tuned. 

 

Modification of membrane surfaces is interesting not only for changing or optimizing some 

specific interfacial properties but it has also the potential to contribute to the deciphering of 

the membrane composition and to the knowledge of its physico-chemical properties through 

the analysis of changes brought about by the modification in terms of filtration performances, 

hydrophilicity/hydrophobicity, surface charge, etc. 

 

The aim of this work is to demonstrate the feasibility of modifying PES filtration membranes 

by a simple and versatile method leading to robust grafting through covalent bonds. The 

versatility of the method was demonstrated by using aryl diazonium salts bearing different 

functional groups. The parent aryl-amines, namely 4-aminobenzyltriphenylphosphonium (1-

NH2), 4-nitroaniline (2-NH2), 4-aminobenzonitrile (3-NH2) and 4-aminophenylacetic acid (4-

NH2) were used for the in situ generation of 4-benzyltriphenylphosphonium diazonium (1-

N2
+
), 4-nitrophenyl diazonium (2-N2

+
), 4-benzonitrile diazonium (3-N2

+
) and 4-phenylacetic 

acid diazonium (4-N2
+
) salts, respectively. These chemical groups were selected to illustrate 

the versatility of the method since they possess different hydrophilic/hydrophobic features as 

well as different charge properties (uncharged, negatively or positively charged). Several 

characterization techniques were implemented to put in evidence the efficiency of membrane 

functionalizations. Finally, the impact of the chemical modification on transport properties 

was highlighted by comparing the experimental rejection of an antibacterial agent (tylosin) by 

the PES membrane before and after modification by 1-N2
+
. 

 

2. Materials and Methods 

 

2.1 Chemicals and membrane modification procedure 

 

4-Nitroaniline (Fluka), 4-aminobenzonitrile (Acros Organics), 98% 4-aminophenylacetic acid, 

98% (Acros Organics), sodium nitrite 97% and hypophosphorous acid (H3PO2, 50wt% in 

water, Aldrich) were used as received. (4-Aminobenzyl)-triphenylphosphonium bromide, was 

obtained by the reduction of the commercial (4-nitrobenzyl)-triphenylphosphonium bromide 

[8, 9]. 
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Tylosin tartrate (Sigma) was dissolved in water to perform ultrafiltration experiments. A 0.1 

M HCl solution was used to adjust the pH.  

Ultrafiltration PES membranes (HFK-131, Koch Membrane Systems) with a Molecular 

Weight Cut-Off (MWCO) in the range 5-10 kD were used. According to manufacturer 

specifications, the maximum operating pressure of HFK-131 membranes is 9.7 bar, their 

operating temperature range is 5-55°C and the range of allowable pH for continuous 

operations is 2-10. 

HFK-131 membranes were first washed using ultra pure water (milli-Q quality) and were 

sonicated (2 x 20 minutes) in order to remove preservatives [10].  

PES membranes were modified covalently using the chemical reduction of aryl diazonium 

salts [11-13]. The following experimental procedure was used. Aryl diazonium salts were 

generated in situ in acid media (0.1 M HCl) containing 50 mM of the starting aryl amine and 

followed by addition of sodium nitrite at 100 mM [11,12] (the chemical structures of the 

various aryl diazonium salts are shown in Fig. 1a). Immediately after that, the chemical 

reductant (H3PO2) was also added in the solution (10 mL) in order to reduce the in situ 

generated aryl diazonium salt and form the corresponding aryl radical.Then, PES membranes 

samples (roughly 10 x 10 cm) were dipped in the reactive solution and left to react overnight. 

The proposed mechanism of grafting [6,7] onto the PES membrane (Fig. 1b-d) proceeds 

through radical attack on the polymer unsaturations, preferentially on the more electron rich 

carbon sites of the polarized phenyl rings (para-substituted with electron-donating ethers and 

electron-withdrawing sulfones). After modification, membranes were rinsed using ultra pure 

water and sonicated for 2 x 20 minutes in order to remove absorbed or loosely bound material 

from their surfaces (like polyphenylene oligomers). The advantages of this modification 

method are its ease of implementation, its versatility in terms of chemical functionalities and 

its strong and solvent resistant covalent grafting.  

 

2.2 Attenuated Total Reflectance-Fourier Transform Infra Red Spectroscopy (ATR- FTIR) 

 

IR spectra were recorded on a Brüker Optics Vertex 70 spectrometer using a diamond crystal 

ATR (Pike) and a liquid N2-cooled Mercury-Cadmium-Telluride (MCT) detector. All spectra 

(100 scans at 4 cm
−1

 resolution) were recorded at 25 ± 1°C.  
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2.3 Energy Dispersive X-ray Spectroscopy (EDX)  

 

EDX experiments (JEOL JSM 6400, OXFORD detector, INCA system) were conducted 

before and after modification and sonication in order to confirm the presence of 1-N2
+
 on the 

modified membrane (since 1-N2
+
 was not detectable by ATR-FTIR; see below).  

 

2.4 Streaming current measurements  

 

Surface charge properties have a significant influence on membrane performances (rejection 

of charged solutes, fouling, etc.) and electrokinetic measurements are attractive methods of 

surface charge characterization of both polymeric [14, 15] and ceramic [16] membrane 

materials. 

 

In this work, we employed the tangential streaming current method to characterize the 

electrokinetic charge density of unmodified and modified PES membranes. When an 

electrolyte solution is forced through a channel formed by two macroscopic surfaces facing 

each other, the fluid moves tangentially to the channel walls, pulling the ions towards the low-

pressure side. In the case of charged materials, the electrical double layers that develop in the 

vicinity of the solid surfaces contain an excess of counterions that balance the surface charge. 

The convective transport of the excess of (hydrodynamically mobile) counterions in the 

direction of the liquid flow can be detected by measuring the electrical current (called the 

streaming current) between two up- and downstream positions via non-polarizable electrodes 

by an electrometer of sufficiently low internal resistance to make the back (conduction) 

current through the channel negligible [17]. 

 

Experiments were performed according to the following procedure. Two identical rectangular 

membrane samples were attached to the surfaces of the cell by means of double-sided 

adhesive tape. The cell used in this work was designed by CAD Instruments: it allows 

adjusting the channel height (i.e. the distance of separation between the membrane samples) 

with two micrometric screws. The channel height was determined from the cell hydraulic 

permeability using the Hagen-Poiseuille equation [18]. All experiments were performed with 

a channel height of 105  5 m. Streaming current measurements were performed at 20 ± 2 

°C with a ZetaCad electrokinetic analyzer (CAD Instruments). 
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0.001 M KCl solutions at various pH were used. A 0.1 M HCl solution was used to adjust pH. 

The electrolyte solution was forced through the slit channel formed by the membrane samples 

using nitrogen gas. A differential pressure sensor was used to measure the pressure drop 

across the channel. 

 

Prior to measurements, the solution was circulated through the channel for ca. 1 hour to allow 

for the sample equilibration. Streaming current was further measured by a pair of Ag/AgCl 

electrodes, the equilibration process being monitored experimentally via the time dependence 

of the streaming current. After equilibration, the streaming current was measured and 

recorded for increasing pressure pulses ranging from 0 to 500 mbar, the flow direction being 

changed periodically. An example of experimental data is shown in Fig. 2 where the signs + 

and − for the pressure difference are associated with the different flow directions. 

 

2.5 Ultrafiltration experiments  

 

Dead-end filtration experiments were carried out with a stainless steel stirred cell. A circular 

membrane sample with an effective surface area of 43 cm
2
 was placed on the base of the cell 

which was filled with 300 mL of solution. The solution was stirred at 200 rpm via a motorized 

stirring bar so as to limit concentration polarization. The stirred cell was pressurized with 

nitrogen gas and was equipped with a pressure relief valve. 

 

Prior to filtration experiments, the membranes were compacted by applying a transmembrane 

pressure difference of 4 bar for 1 hour. After compaction, the pure water flux of membranes 

was measured as a function of the transmembrane pressure. Dead-end filtration experiments 

were then performed at 2 bar with a 1 g/L tylosin tartrate solution. During experiments, 

permeate mass was measured as a function of time with an electronic balance and permeate 

samples were collected at regular intervals in order to determine solute concentration (tylosin 

concentration was determined by UV detection at 260 nm). Tylosin rejection (Rtylosin) was 

determined according to: 
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where perm

tyloC sin  and ret

tyloC sin  are tylosin concentrations in the permeate and retentate 

compartments, respectively. 

 

Filtration was stopped when a volume reduction ratio (VRR) of around 2.5 was achieved. All 

experiments were performed at 20 ± 2 °C.  

 

3. Results and discussion 

 

3.1 Physico-chemical characterization of membranes 

 

3.1.1 Attenuated Total Reflectance - Fourier Transform Infra Red (ATR-FTIR)  

 

As received membranes exhibited a wide band around 3400 cm
-1

 which was assigned to the 

presence of preservatives in accordance with previous reports [10, 21]. To remove these 

preservatives, the PES membranes were washed twice in an ultrasonic bath with ultrapure 

water for 20 minutes. Representative spectra of as received and washed PES membranes are 

shown in Fig. 3 and display the absence of the large band assigned to the preservatives after 

washing and drying of membranes. The spectrum of the washed PES membrane was found in 

good agreement with the literature [10, 19, 21] and notably displays two small bands 

associated with aromatic C-H vibration present at 3068 cm
-1

 and 3095 cm
-1

 (see inset of Fig. 

3). We can also note the presence of typical bands at 1576 and 1480 cm
-1

 assigned to aromatic 

C=C from the aryl ring. 

 

Modified PES membranes were also characterized by ATR-FTIR. After modification by 

chemical reduction of aryldiazonium salts generating different radicals (4-nitrophenyl, 4-

benzonitrile and 4-phenylacetic acid), functionalized membranes exhibited characteristic 

bands. These bands, however, were considerably less intense than the bands arising from 

unmodified membrane (Fig. 4) but could nevertheless be assigned to the presence of the 

modifier on the surface. For the membrane modified with 3-N2
+
, a band at 2225 cm

-1
 (C≡N 

stretching band) was detected in an area clear of PES characteristic bands (Fig. 4a). In the 

case of the membrane modified with 2-N2
+
, a characteristic band at 1520 cm

-1
 (asymmetric 

NO2 stretch) was identified between two intense PES characteristic bands (Fig. 4b). Finally, 

for the membrane modified with 4-N2
+
, a band at 1725 cm

-1
 (C=O stretching vibration) was 
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detected just at the footstep of the first intense PES membrane absorptions (Fig. 4c). This 

provides qualitative evidence that a robust grafting occurred on these membranes. 

 

Despite the low intensity of their characteristic IR bands, these absorptions are not concealed 

beneath the intense PES membrane absorption and are luckily detectable in narrow windows 

almost free of signals arising from the unmodified membrane. We have hence found useful IR 

probes on the modifier that are compatible with the intense absorptions of the underlying PES 

membrane (Fig. 4).  

 

For the last modifier, 1-N2
+
, it was not possible to use any of its characteristic bands to give 

evidence of an efficient grafting onto the PES membrane. Indeed, characteristic vibrations 

such as P-C (795-650 cm
-1

) and P-Aryl (1130-1090 and 750-680 cm
-1

) are not visible since 

the relatively intense IR bands of the unmodified PES membrane spectrum overlap with these 

vibrations.  

 

3.1.2 Energy Dispersive X-ray spectroscopy (EDX) 

 

Since the modification of the PES membrane by 1-N2
+
 was not detectable by ATR-FTIR, 

EDX spectroscopy was used to get elemental analysis of the membrane surface. As can be 

seen from Fig. 5, the Kα ray (2.015 keV) of the chemical element phosphorous (P) was 

observed on the spectrum of the modified membrane, which gives evidence of the efficiency 

of membrane functionalization by 4-benzyltriphenylphosphonium. Control experiments have 

confirmed that the signal for P originates from the phosphonium modifier and not from H3PO2 

contamination. 

 

3.1.3 Streaming current measurements 

 

In order to confirm the results of EDX experiments regarding the PES membrane modified 

using 1-N2
+
 (bearing the positively charged phosphonium functionality), streaming current 

measurements were also carried out since this electrokinetic technique is sensitive to any 

change in the surface electrical properties of a macroscopic solid. As illustrated in Fig. 2, the 

streaming current varies linearly with the pressure drop through the channel. The slope is 

defined as the streaming current coefficient. Its sign and magnitude give information about 

the surface charge properties. It is illustrated in Fig. 6 which shows the variation of the 



9 

 

streaming current coefficient with the pH of a 0.001 M  KCl solution for the unmodified PES 

membrane and the membranes modified by 1-N2
+
. Electrokinetic measurements indicated that 

the unmodified PES membrane was negatively charged. As shown in Fig. 6, the membrane 

charge increases (in absolute value) with the pH of the solution and tends to level off for 

pH >  6, which suggests that weak acid functionalities are present at the surface of the 

unmodified membrane.  

The streaming current method confirms the efficiency of the membrane modification with the 

positively charged 4-benzyltriphenylphosphonium group since the initial negative charge of 

the PES membrane is significantly lowered (in absolute value) after surface modification and 

a significant shift of the isoelectric point towards higher pH values (which is a signature of the 

presence of positively charged surface groups after membrane functionalization) is put in 

evidence. It is worth noting, however, that the overall charge of the modified PES membrane 

remains negative over a wide range of pH which suggests that the membrane surface is not 

totally covered after grafting. 

 

3.2 Transport properties 

 

In order to assess the impact of surface functionalization by aryl radicals on the transport 

properties of PES membranes, dead-end filtration experiments were performed with both 

unmodified and functionalized membranes. The selected functionalized membrane was that 

modified by 1-N2
+
. Fig. 7 shows the rejection rate of tylosin by both membranes as a function 

of the volume reduction ratio (VRR).  

At pH 5.9 the unmodified PES membrane was found to reject only 10 % of tylosin 

approximately. This very low rejection is mainly due to the small size of tylosin (the molar 

mass of tylosin is 916 g mol
-1

) with respect to the MWCO of the HFK-131 membrane (5-10 

kD). At identical pH, the rejection of tylosin by the modified membrane increases up to 22-25 

% depending on the VRR value. Although grafting of 4-benzyltriphenylphosphonium radicals 

onto the pore surface reduces the effective pore size of the membrane, it is unlikely that steric 

hindrance be the only mechanism responsible for such an increase in the tylosin rejection by 

the modified membrane. This can be justified by comparing the hydraulic permeabilities of 

the different membranes. Fig. 8 shows the pure water flux of both membranes against the 

transmembrane pressure difference. As expected, the hydraulic permeability of the modified 

membrane is smaller than that of the unmodified membrane but the permeability ratio is 

found to be 0.82. Assuming a Poiseuille’s law for the pressure dependence of water flux and 
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ideal cylindrical pores, the effective pore radius of the modified membrane would be reduced 

by less than 10 % with respect to the original pore size (according to Poiseuille’s law, the 

hydraulic permeability decreases with the square of the pore radius), which cannot explain the 

rise of rejection from 10 up to 25 %. It is likely that electrostatic repulsions between the 

positively charged 4-benzyltriphenylphosphonium groups (see Fig. 1a) and the protonated 

amine group of tylosin (pKa = 7.73 [22]) also contribute to tylosin rejection. As discussed in 

section 3.1.3, the membrane surface is not fully covered by 4-benzyltriphenylphosphonium 

groups and the overall charge density of the modified membrane remains negative at pH 5.9 

which limits the tylosin rejection. This interpretation is fully supported by additional 

measurements carried out at pH 3.5, that is at a pH for which the overall charge density of the 

modified membrane is positive (see Fig. 6). As can be seen in Fig. 7, the rejection by the 

modified membrane increases to  50 % at pH 3.5, which is in line with the stronger repulsive 

interactions between the targeted solute and the membrane. It should be stressed that 

hydrolysis of tylosin occurs in acidic medium and leads to the release of mycarose (neutral 

sugar) and the formation of tylosin B (or desmycosin) [23]. However, hydrolysis of tylosin is 

thought to be quite slow in our conditions of pH and temperature [24]. To check this point, we 

performed the UV spectra of the freshly-prepared tylosin solutions and those of the same 

solutions at the end of filtration experiments and we did not observe any difference for both 

pH 5.9 and 3.5. Anyway, this point does not question our analysis based on the contribution 

of electrostatic interactions since tylosin B is smaller than tylosin and remains positively 

charged at pH 3.5 (the pKa of tylosin B is 8.36 [22]).  

 

The above results give evidence that transport properties of the original membrane have been 

strongly modified. The versatility of the functionalization method has been demonstrated in 

section 3.1 and the modification of PES membranes via chemical reduction of aryl diazonium 

salts appears as a promising method for tailoring the separation properties of mesoporous PES 

membranes. In addition to its versatility, the method also has the advantage of allowing a 

covalent grafting occurring spontaneously by simple dipping of the membrane into a solution 

of the diazonium salt. It can therefore be advantageous, in terms of stability, compared to 

other methods leading to non-covalent functionalization [25].  
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4. Conclusion  

 

This study demonstrated that chemical reduction of aryl diazonium salts could be successfully 

applied to the covalent functionalization of ultrafiltration PES membranes with a significant 

impact on their separation properties. 

This method has several advantages that make it very attractive. First, the method is easy to 

implement since grafting occurs spontaneously by simply dipping the membrane into a 

diazonium salt solution. The second advantage is that it leads to a robust modification of 

membranes since covalent bonds are formed between aryl radicals and the membrane surface. 

Finally, the method offers a wide range of possibilities in terms of functional groups that can 

be grafted. Depending of the functionality of the group(s) that aryl radicals bear, this method 

could therefore be applied to achieve various specific goals, e.g. more hydrophilic membranes 

(the main disadvantage of PES membranes is related to their relatively hydrophobic 

character), membranes with anti-biofouling properties, catalytic membranes… 
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Figure 1. (a) Chemical structure of in situ-generated aryl diazonium salts. From left to right:  

4-benzyltriphenylphosphonium diazonium (1-N2
+
), 4-nitrophenyl diazonium (2-N2

+
), 4-

benzonitrile diazonium (3-N2
+
) and  4-phenylacetic acid diazonium (4-N2

+
) . (b-d) Proposed 

mechanism for Polyethersulfone (PES) modification through aryl diazonium salt reduction 

using hypophosphorous acid as a reducing agent. 
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Figure 2: Streaming current (Is) vs. pressure difference (P); Unmodified PES membranes in 

10
-3

 M KCl solution at pH 5.4. 
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Figure 3: Representative ATR-FTIR spectra of as received and of washed and dried PES 

membranes. 
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(c) 

Figure 4: Representative ATR-FTIR spectra of PES membranes modified (blue solid lines) 

with solutions of with 3-N2
+
 (a), 2-N2

+
 (b) and 4-N2

+
 (c). Unmodified PES membrane spectra 

are also represented with black dashed lines. Blow-ups of the spectra are shown in insets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

 

 

 

 

 
 

 

Figure 5: EDX spectra of PES membranes before (black dashed line) and after (red solid line)   

modification by 1-N2
+
. 
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Figure 6: pH dependence of the streaming current coefficient (Is/P) measured with different 

membranes; circles: unmodified PES membrane; Squares: PES membrane modified by 1-N2
+
. 
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Figure 7: Rejection rate of tylosin as a function of the volume reduction factor (VRR) for the 

unmodified PES membrane (open symbols) and the membrane modified by 1-N2
+
  

(closed symbols). 
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Figure 8: Pure water flux of unmodified and modified (by 1-N2
+
) membranes against 

transmembrane pressure difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


