Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(II) complexes by introduction of non-coordinating groups in N-tripodal ligands

Ronan Marion, Nidal Saleh, Nicolas Le Poul, Didier Floner, Olivier Lavastre, Florence Geneste

To cite this version:

HAL Id: hal-00843848
https://hal-univ-rennes1.archives-ouvertes.fr/hal-00843848
Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(II) complexes by introduction of non-coordinating groups in N-tripodal ligands†

Ronan Marion,a Nidal M. Saleh,a Nicolas Le Poul,b Didier Floner,a Olivier Lavastrec and Florence Genestea

Received (in Montpellier, France) 6th April 2012, Accepted 13th June 2012
DOI: 10.1039/c2nj40265c

Asymmetrical N-tripodal ligands have been synthesized in three steps. Diversity has been introduced at the first step of the synthesis by adding pyrazine, pyridine, benzyl and thiophene rings. The corresponding CuII complexes have been prepared by reaction with CuCl2 and characterized by Electron Paramagnetic Resonance (EPR), UV-Vis spectroscopies and cyclic voltammetry. The data show that the ligand coordinates to CuII in a mononuclear fashion in solution and that the complexes display a square pyramidal geometry. All complexes are characterized by a quasi-reversible one-electron redox behavior in acetonitrile. The ability of the complexes to oxidize 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone has been studied and the results show that the rate of the reaction depends on the basicity and the steric hindrance of the heterocyclic donor. Best results have been obtained with CuII complexes coordinated to bidentate ligands, since they facilitate the approach and the coordination of catechol to the metal. Particularly, the introduction of a thiophenyl group to mimic the sulfur atom at proximity to the catalytic center in the catechol oxidase protein structure improves the catalytic activity of the complex.

Introduction

Catechol oxidase (CO) is a copper-containing protein with a type-3 active site, consisting of two closely spaced copper ions each coordinated by three histidine residues. Like other type-3 copper proteins, such as hemocyanin and tyrosinase, it has the ability to reversibly bind and activate dioxygen. Whereas hemocyanin is an oxygen transport storage protein and tyrosinase catalyzes the orthohydroxylation of phenols with further oxidation of the catechol product to the o-quinone, CO lacks hydroxylase activity, but catalyzes the oxidation of o-diphenols to the corresponding o-quinones by molecular oxygen reduction with a two-electron reaction for each oxidized o-diphenol function. In order to gain insights into the catalytic mechanism of a type-3 dicopper enzyme, structures of the oxidized CuII–CuII and the reduced CuI–CuI CO forms from sweet potato (Ipomoea batatas) were determined by X-ray crystallography.1 In both structures, the active site is formed by two copper centers, each coordinated by three imidazoles from the histidine residues (Fig. 1).

In the oxidized CO state, the two CuII centers contain a hydroxide bridging group completing the four-coordinated trigonal pyramidal coordination sphere, and the CuII–CuII distance was determined to be 2.9 Å. Upon reduction of the enzyme the metal–metal separation increases significantly to 4.4 Å. An interesting feature of the dinuclear metal center in catechol oxidase is the covalent thioether bond existing between one of the three histidine residues coordinated to CuA (His 109) and one non-coordinating cysteine (Cys 92). Such thioether bonds were also detected in several tyrosinase and hemocyanin complexes, but not systematically.5–8 The fine analysis of the structures suggested that the presence of the

Fig. 1 The active site of catechol oxidase.
thioether induces geometric effects, which constrain the Cu$_A$ center in a trigonal conformation, thus enhancing electron transfer kinetics by an increase of the reduction potential. Also, it has been shown that this group induces conformational stabilization at the active site, leading to a fixed orientation of the histidine that is optimal for further coordination of the Cu$_A$ atom.9

The investigation of the catecholase activity of molecular copper complexes is a convenient method to detect functional mimics of oxygenases and oxidases, or new catalysts for oxidation reactions. Dinuclear models of catechol oxidase with Cu–Cu distance <5 Å have proved their efficiency. Most of them were symmetrical with coordinating groups (pyridine, imidazole, pyrazole...) mimicking the three imidazole donors from the histidine residues.10–15 Some asymmetrical dicopper complexes have also been prepared.16–23 One evoked reason was to “open” coordination sites to improve the interaction of the metal center with the substrate. Interestingly, the resulting catalytic properties were shown to be enhanced when such asymmetry was created. For instance, the study of a bis-Cu complex with an amino group and two pyridines coordinated on one side, and two nitrogen atoms from pyridine on the other side has shown a high rate for the catalysis of catechol.20 Another reason was to model the asymmetric feature of catechol oxidase due to the presence of the uncoordinating thioether bond on one of the coordinated histidine residues as mentioned previously. To our knowledge, there exists only one example of a asymmetric dinuclear complex with a thioether group.19 For this complex, DFT calculations and ESI-MS experiments showed that the sulfur atom from the thioether was coordinated to the metal ion in solution. An alternative strategy was developed by using a weak thioether donor group to model the thioether and prevent coordination to CuII, as it occurs in type 3 copper proteins.24–26 However, poor catecholase activity was reported for copper(II) complexes bearing a bis-thiophene ligand. Also the role of the thioether groups in the catalytic reaction was not evoked.24 The beneficial presence of the thioether substituent was only highlighted in catalytic polymerization of 2,6-dimethylphenol, attributed to the stabilization of copper(II) species in the catalytic cycle.25

Many simple mononuclear complexes have also been studied and have shown good catecholase activities.27–40 However, a few examples of monocopper complexes with sulfur atoms have been described in the literature.41,42 They were mainly designed to tune the geometry through forced coordination of thioether groups, thus enhancing electron transfer properties. Despite the fact that they are drifted from modeling biological systems, mononuclear complexes are interesting because their synthesis is easier and allows the modification of their structure in a systematic way, providing a better understanding of the elements favoring their catecholase activity. Thus, we previously prepared monocopper complexes based on bis-pyrazolyl N-tripodal ligands containing a functionalized chain.43 The variety, introduced both on the substituents of the pyrazole ring and on the side chain, allowed us to rationalize the effect of the oxygen atom in the third position of the side chain and the electronic and steric effects of substituents on pyrazole rings.

In our effort to develop efficient mononuclear catalysts and study their structure–activity relationship, we have prepared a new series of mononuclear complexes based on asymmetrical N-tripodal ligands with a pyrazole group on one arm and pyridine, pyrazine, phenyl or thiophenyl ring on the second arm, the hexanol chain being still present on the third branch for further applications in supported catalysis.44 The thienyl substituent has been chosen to add an uncoordinating sulfur atom in the complex structure, in an attempt to mimic the effect of the thioether bond present in catechol oxidase by geometric and electronic modifications. Moreover, since it is smaller than the phenyl group, it is expected to facilitate the coordination of the catechol substrate to the Cu(n) center. We report here the synthesis, UV, EPR, electrochemical characterization, and catecholase activity study of these new CuII complexes.

Results

Synthesis of complexes

The synthesis of unsymmetrical N-tripodal ligands was achieved in three steps (Scheme 1).

The first step consists of the condensation reaction of 6-aminohexan-1-ol with aldehydes 1a–d to give an imine intermediate. After reduction with NaBH$_4$, the obtained amino compounds 2a–d were condensed with 1-hydroxymethylpyrazole at 70 °C for 3 h without solvent to give the asymmetrical N-tripodal ligands 3a–d. To avoid the presence of remaining amino compounds 2a–d that could form a complex with CuCl$_2$, 10% excess of 1-hydroxymethylpyrazole was necessary in the last step of the synthesis. As shown by 1H-NMR analysis, under these conditions, the asymmetrical N-tripodal ligand was obtained without remaining amino compounds 2a–d. The products were used without further purification for the complexation reaction. Copper complexes were formed by reaction with CuCl$_2$ in anhydrous tetrahydrofuran at room temperature for 2 h. They were isolated by precipitation and then characterized in their more stable monohydrated form.

Spectroscopic characterization

The mononuclear complexes were analyzed by electronic absorption spectroscopy in methanol, showing a wide visible
absorption band in the region of d–d transitions at 685–750 nm (ε = 70–153 M⁻¹ cm⁻¹) (Table 1). This wavelength range is indicative of a d–d electronic transition for Cu complexes in a square-based pyramidal (SBP) conformation (bipyramid trigonal complexes (BPT) are usually characterized by a g_{av} of 850 nm).43

The absorption wavelengths are red shifted with copper complexes 4c and 4d, as a result of distorted geometry and/or change of the primary environment (coordination of MeOH).

The EPR spectra of complexes 4a–d were recorded at 69 K in frozen methanol (Table 1). All complexes display an EPR axial signal, which is typical of a mononuclear Cu(II) complex in a square-based pyramidal geometry ($g_1 > g_\perp$), confirming UV-Vis predictions. The half-field splitting signal, usually observed for dinuclear species in the solid state, was not detected for these complexes, emphasizing the predominance of mononuclear species in solution, as previously observed with bis(pyrazole) analogous complexes.43 The parallel hyperfine coupling between the unpaired electron and the copper nuclear spins (A_1) was determined for each species by spectrum simulation (Table 1). For complexes 4a and 4b, the parameters are fully consistent with a Cu complex with SBP geometry and surrounded by a nitrogen ligand and belong to the Peisach–Blumberg assumptions.46,47 $g_1 = 2.21$ and $A_1 = 173–180 \times 10^{-4}$ cm⁻¹.

With 4c and 4d complexes, the g_1 value is significantly higher whereas A_1 is lower. These discrepancies can be correlated to the UV-Vis data and interpreted as the coordination of one MeOH ligand to Cu(ii): this induces a slight change of the geometry and/or a decrease of the electronic intensity on Cu(ii). This last hypothesis is consistent with Peisach–Blumberg assumptions considering the substitution of a mononuclear Cu by a donor ligands ($g_1 = 2.40$ and $A_1 = 130$ G values for a Cu center with 4 oxygen ligands).

Table 1 UV-Vis absorption data and EPR spectral data for copper(II) complexes 4a–e

<table>
<thead>
<tr>
<th>Complex</th>
<th>UV-Visa (λ_{max}/nm) (ε/M⁻¹ cm⁻¹)</th>
<th>EPRb</th>
<th>g_1</th>
<th>g_\perp</th>
<th>A_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>705 (153)</td>
<td>2.21</td>
<td>2.11</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>685 (137)</td>
<td>2.22</td>
<td>2.05</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>741 (83)</td>
<td>2.39</td>
<td>2.09</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>750 (70)</td>
<td>2.39</td>
<td>2.09</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>4ebc</td>
<td>705 (145)</td>
<td>2.23</td>
<td>2.06</td>
<td>166</td>
<td></td>
</tr>
</tbody>
</table>

a CH₃OH solution of 10⁻² mol L⁻¹ metal complex at 298 K. b Frozen CH₃OH solution of 10⁻² mol L⁻¹ metal complex at 69 K. c Hyperfine coupling constant, $A_1/10^{-4}$ cm⁻¹.

Fig. 2 Cyclic voltammograms of 4a (---), 4b (---), 4c (-----) and 4d (----) in acetonitrile + 0.1 M tBu₄NPF₆. Scan rate 0.1 V s⁻¹.

Table 2 Cyclic voltammetry (E/V vs. SCE) data in acetonitrile of copper(II) complexes 4a–e

<table>
<thead>
<tr>
<th>Complex</th>
<th>E_{pa}/V</th>
<th>E_{pc}/V</th>
<th>$E_{1/2}$/V</th>
<th>ΔE_{pa}/V</th>
<th>i_{pa}/i_{pc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>0.24</td>
<td>0.03</td>
<td>0.13</td>
<td>0.21</td>
<td>0.9</td>
</tr>
<tr>
<td>4b</td>
<td>0.17</td>
<td>−0.04</td>
<td>0.06</td>
<td>0.21</td>
<td>0.9</td>
</tr>
<tr>
<td>4c</td>
<td>0.50</td>
<td>0.39</td>
<td>0.44</td>
<td>0.11</td>
<td>1.1</td>
</tr>
<tr>
<td>4d</td>
<td>0.57</td>
<td>0.31</td>
<td>0.44</td>
<td>0.26</td>
<td>1.1</td>
</tr>
<tr>
<td>4ebc</td>
<td>0.34</td>
<td>0.20</td>
<td>0.27</td>
<td>0.14</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Electrochemical properties

Cyclic voltammetry of the complexes was performed on a glassy carbon electrode in CH₃CN–tBu₄NPF₆ and CH₃Cl₂–tBu₄NPF₆ at $v = 0.1$ V s⁻¹ (Fig. 2). Data are summarized in Table 2.

Quasi-reversible systems corresponding to the Cu(II/1) couple were obtained in acetonitrile, with peak separation (ΔE_{pa}) ranging from 0.11 to 0.26 V and a ratio of anodic to cathodic currents (i_{pa}/i_{pc}) between 0.9 and 1.1. The average of the peak potentials was taken as an approximation of the formal potential ($E_{1/2}$). For complexes 4a and 4b, the potential value ($E_{1/2}$) is fully dependent on the basicity of the heterocycle: $4b < 4a$. Indeed, the donor effect of the pyridine ring ($pK_a = 5.2$) is clearly highlighted by the low potential value of complex 4b. This effect was less pronounced with pyrazine-containing complex 4a, since the pK_a of pyrazine is only 0.6. Complexes 4c and 4d containing phenyl and thiophenyl groups, respectively, present significantly higher potential values than their tridentate analogues 4a and 4b ($\approx +0.3$ V), due to the absence of coordination between the copper metal and a third donor nitrogen atom. The similar electrochemical behavior of the two complexes tends to show that the thiophenyl ring is not coordinated to the metal in 4d in agreement with spectroscopic results.

For better knowledge of the species coordinated to the metal in solution, 4c and 4d were also analyzed by cyclic voltammetry on a glassy carbon electrode in anhydrous CH₃Cl₂–tBu₄NPF₆ at $v = 0.1$ V s⁻¹. A quasi-reversible system corresponding to the Cu(II/1) couple was obtained for both complexes, with formal potential values equal to $E_{1/2} = 0.50$ and 0.32 V/SCE, respectively. When a large excess of dry acetonitrile or MeOH was added, the redox potential shifted both to 0.40 V/SCE, which is similar to the value found in pure CH₃CN (Table 2). The shift of the potential can thus be explained by the replacement of the initial donor ligands (for example, the OH terminal group of the six carbon chain, and/or a chloride ion) by solvent molecules.

Kinetic studies

The catecholase activity of the copper(II) complexes was studied by testing their ability to catalyze 3,5-di-tert-butylcatechol. This substrate with two bulky tert-butyl substituents on the ring is highly stable and has a low quinone–catechol reduction potential that makes it easily oxidized to the corresponding α-quinone. The kinetics of formation of 3,5-di-tert-butylquinone in the presence of complexes 4a–d was continually monitored using a dipping probe colorimeter, since the quinone presents a strong absorption band at 400 nm. The reaction was performed for 1 h at constant agitation and temperature of 25 °C and with a...
Table 3 Catalytic activity of copper(n) complexes 4a–e

<table>
<thead>
<tr>
<th></th>
<th>Without catalyst</th>
<th>4a</th>
<th>4b</th>
<th>4c</th>
<th>4d</th>
<th>4e (^{43})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate/10^8 mol L(^-1) s(^-1)</td>
<td>0.68</td>
<td>0.44</td>
<td>1.08</td>
<td>1.62</td>
<td>2.89</td>
<td>3.23</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>0.997</td>
<td>0.997</td>
<td>0.999</td>
</tr>
<tr>
<td>Induction time/min</td>
<td>0</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 3 Plot of absorbance vs. time for the oxidation of 3,5-di-tert-butylcatechol performed at 25 °C in MeOH without the catalyst □ and catalyzed by 4a ○, 4b △, 4c ■. Error bars are based on two reproducibility measurements.

Fig. 4 Plot of absorbance vs. time for the oxidation of 3,5-di-tert-butyl catechol performed at 25 °C in MeOH without the catalyst □ and catalyzed by 4b △, 4c ■, 4d ▼. Error bars are based on two reproducibility measurements.

As previously observed for copper complexes with bis-pyrazolyl N-tripodal ligands, the electronic and steric effects of the ligands are known to strongly affect the catalytic activity (Fig. 3). The comparison between Cu complexes 4a and 4b is a good indicator of the influence of the basicity of the ligand on the catalytic properties, since both complexes display similar geometries (from EPR/UV-Vis spectroscopies) and steric hindrance. Our studies show that the catecholase catalytic activity of 4b with a pyridine group is higher than that of 4a containing a pyrazine ring (Table 3). As previously mentioned, pyridine is a better electron donor than pyrazine. As a consequence, the potential value of 4b is slightly lower than 4a (Table 2), meaning that 4b is more difficult to reduce than 4a. This indicates that the effectiveness of the whole redox reaction with catechol is correlated to the \(E_{1/2}\) of the initial copper complex.

On the basis of such considerations (only basicity effects), compound 4e\(^{43}\) containing two pyrazole groups (\(pK_a = 2.5\)), and displaying similar geometrical features to 4a and 4b (Table 1) should present intermediate catalytic activity and \(E_{1/2}\) compared to 4a and 4b. However, our studies show that the rate of reaction (4e > 4b > 4a) follows neither the ligand basicity (4b > 4e > 4a) nor the potential (4e > 4a > 4b). Since pyrazole is smaller than pyrazine and pyridine, the enhancement of the oxidation reaction may be due to a decrease of the steric hindrance around the metal, favoring the coordination of catechol.

The oxidation of 3,5-di-tert-butyl catechol by complexes coordinated with bidentate nitrogen ligands has been the subject of only a few investigations in the literature, probably due to the fact that the copper ions at the CO active site are coordinated by three imidazoles. Our study gives here the opportunity to directly compare the tridentate vs. bidentate design for a better understanding of the role of the tridentate ligand coordinated to the active copper site in the catecholase activity. Our spectroscopic and electrochemical studies have shown that compounds 4c and 4d bearing bidentate ligands (3c and 3d) display significant differences with their analogues 4a, 4b, and 4e. Indeed, one observes higher redox potential (both anodic and cathodic parts) and remarkable deviation from the typical SBP spectroscopic features obtained with 4a, 4b and 4e. These effects probably result from the absence of coordination of the third arm (phenyl, thiophenyl) of the complex with two asymmetrical Cu–Cl–Cu bridges. In our case, this induction period ranging from 0 to 20 min (Table 3).

The synthetic method\(^9\) used here led to the preparation of a variety of asymmetrical N-tripodal ligands. The systematic comparison of the catecholase activity of the resulting complexes allows a better understanding of the factors influencing their reactivity in the catalytic oxidation of 3,5-di-tert-butyl catechol. Particularly, it highlights the influence of the bidentate vs. tridentate structure of the ligand on the catalytic properties.

Discussion

The synthetic method\(^9\) used here led to the preparation of a variety of asymmetrical N-tripodal ligands. The systematic comparison of the catecholase activity of the resulting complexes allows a better understanding of the factors influencing their reactivity in the catalytic oxidation of 3,5-di-tert-butyl catechol. Particularly, it highlights the influence of the bidentate vs. tridentate structure of the ligand on the catalytic properties.
N-tripodal ligand to the Cu center (partly compensated by solvent coordination), inducing a decrease of the electronic density and geometrical changes, which are kept at both redox states (low peak separation). The properties of the Cu complexes 4c and 4d to catalyze the oxidation of 3,5-di-tert-butylcatechol were then investigated and compared to their analogues. As shown in Table 3, complex 4c containing a phenyl group displays a higher catalytic rate for this reaction than 4a and 4b bearing pyridine and pyrazine residues with similar steric hindrance (Fig. 4). Two synergetic effects may be responsible for these results for 4c and 4d: (i) the lower stability of the CuI complex due to poor electronic density, and (ii) the higher accessibility of the substrate to the Cu center due to the absence of coordination of one arm. This underlines the interest in using a bidentate ligand to improve the reaction by facilitating the approach and the coordination of catechol to the metal.

Compound 4d was synthesized in an attempt to mimic the effect of the sulfur atom present in the structure of catechol oxidase and to see if it has an influence on the catalytic activity. Since thiophene is a weak donor group due to electronic delocalization, it can be assumed that it is located close to the catalytic centre without being coordinated to copper, as it occurs for the sulfur atom in the protein structure.

As shown in Table 1 and Fig. 4, 4d has a better catecholase activity than its analogues 4a–c. A possible explanation of the improvement in the catecholase activity of 4d would be the higher accessibility of catechol to the active site as already observed with complex 4c containing the bidentate ligand 3c. However, the rate obtained with 4d (2.89 × 10$^{-8}$ mol L$^{-1}$ s$^{-1}$) is clearly higher than 4c (1.62 × 10$^{-8}$ mol L$^{-1}$ s$^{-1}$), underlining the interest in adding a thiophenyl group in the asymmetrical complexes structure. Since sulfur-donor compounds are known to be good ligands for low-oxidation-state copper atoms, another explanation for the enhancement of the catalytic activity would be the stabilization of copper(i) species by the thiophene group in the catalytic cycle.

Previous kinetic investigations with 4e (Scheme 1) based on the Michaelis–Menten model have shown that the catalytic activity of the mononuclear complex characterized by the parameters $k_{cat} = 3.1 \times 10^{-3}$ s$^{-1}$, $K_M = 1.62$ mM and $k_{cat}/K_M = 1.9$ M$^{-1}$s$^{-1}$ was significantly lower than those reported for the catalytic oxidation of catechol with CO but was in the range of values found for some dicopper complexes described in the literature. As shown by the rate values depicted in Table 3, the thiophene complex 4d presents CO activity in the same range as 4e.

We previously observed with this family of mononuclear copper complexes that dioxygen reduction led to the formation of 1 mole of dihydrogen peroxide for 1 mole of 3,5-di-tert-butylcatechol and suggested a mechanism based on mononuclear semi-quinonate and a dinuclear bis-μ-hydroxo intermediate. On this basis, we propose here a similar pathway for the catechol oxidation by 4e (Scheme 2), involving a coordination of the thiophene group by the Cu$^2+$ intermediate. As demonstrated previously, the mechanism involves the formation of copper(i)-semi-quinonate intermediate species, which yields, in the presence of dioxygen, the quinone compound and H$_2$O$_2$. This mechanism implies also the formation of a reactive superoxo species.

Here, only one molecule of catechol is being oxidized per catalytic cycle, in contrast to the mechanism proposed for the natural enzyme.

Conclusion

In conclusion, a family of asymmetrical copper complexes containing pyrazole ligands was prepared. According to EPR analyses, the complexes mostly exist in solution as mononuclear species and present a square pyramidal geometry. Their catalytic activity toward the oxidation of 3,5-di-tert-butylcatechol was compared, allowing us to conclude the structural effects of the ligand on catalysis. First, the comparison of similar copper complexes containing either pyrazine or pyridine rings underlined the importance of the electronic effect of the ligand coordinated to...
the metal. Thus a less electron-donating group such as pyrazine enhanced the catalytic activity of the complex, probably favoring the reduction of Cu(II) into Cu(I) that occurs in the beginning of the catalytic cycle. Second, the presence of a bulkier coordinating group in the N-tripodal ligand (here a pyrazine group compared with a pyrazole group) decreased the kinetic rate, preventing the approach of catechol to the metal. This effect was even more pronounced when a bidentate ligand was used, since it “opens” coordinating sites on the metal. Interestingly, the incorporation of a thiophenyl group in the copper complex structure also significantly enhanced the catalytic activity of the complex, underlining the importance of the presence of a sulfur atom close to the catalytic center. A possible explanation is the stabilization by the thiophene group of copper(i) intermediates in the catalytic cycle.

Experimental section

Materials

Tetrahydrofuran (THF) was distilled from deep blue solutions of sodium–benzophenone ketyl prior to use. All commercially available reagents were used as supplied. Pyrazol-1-yl-methanol and pyrazine-2-carbaldehyde were prepared according to the literature.

Methods

Copper complexes were prepared using Schlenk techniques under an Ar atmosphere. NMR spectra were recorded on a Bruker DPX-200 or a Bruker AH300 FT spectrometer. Chemical shifts are expressed in parts per million downfield from TMS. High resolution mass spectra (HRMS) were obtained with a Waters Q-TOF 2 with an Electrospray Ionisation (ESI) at the Centre de Mesures Physiques de l’Ouest (CRMPO) from Rennes. UV-vis absorption spectra were recorded using a UVIKON 942 spectrophotometer using quartz cuvettes of 1 cm path length. Voltammetric experiments were carried out using an EDAQ potentiostat unit, with the EChem software package. A vitreous carbon working electrode, a platinum wire auxiliary electrode, and a Saturated Calomel reference Electrode (SCE) were used in a standard three-electrode configuration. Cyclic voltammetry analyses were performed in acetonitrile containing 0.1 M tetrabutylammonium hexafluorophosphate, at a 100 mV s⁻¹ scan rate, under a dinitrogen atmosphere. EPR spectra were recorded on a Bruker EMX-8.27 (X-band) spectrometer at 69 K, and simulated by using the Simfonia software (Bruker).

Synthesis

6-((Pyrazin-2-ylmethyl)amino)hexan-1-ol (2a). Pyrazine-2-carbaldehyde (0.92 g, 9 mmol) was added dropwise to 6-aminohexan-1-ol (1 g, 9 mmol) dissolved in methanol (20 mL). The mixture was stirred at room temperature in the presence of MgSO₄ for 1 h and then filtered. To the filtrate was added sodium borohydride (0.48 g, 13 mmol) in portions at 0 °C. The mixture was stirred at room temperature for 1 h and then, methanol was evaporated. The resulting residue was dissolved in ether (50 mL) and water (50 mL) was added. The aqueous phase was extracted, the organic phase washed with water (2 × 50 mL) and dried with MgSO₄. Filtration and evaporation of the solvent made it possible to obtain the product (1.50 g, 85%) as a yellow oil without further purification. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 8.63 (s, 1H); 8.54 (d, J = 2.5 Hz, 1H); 8.49 (d, J = 2.5 Hz, 1H); 3.98 (s, 2H); 3.66 (t, J = 6.6 Hz, 2H); 2.70 (t, J = 6.6 Hz, 2H); 1.75 (br s, 1H); 1.63–1.50 (m, 4H); 1.43–1.30 (m, 4H). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 155.4; 144.6; 144.5; 143.5; 62.9; 52.9; 49.8; 33.0; 30.2; 27.3; 26.0. HRMS (ESI): m/z calced for C₁₁H₁₇N₃O₉Na [M + Na]⁺: 232.1426; found, 232.1425.

6-((Pyridine-2-ylmethyl)amino)hexan-1-ol (2b). Pyridine-2-carbaldehyde (0.88 mL, 9 mmol) was added dropwise to 6-aminohexan-1-ol (1.08 g, 9 mmol) dissolved in methanol (20 mL). The mixture was stirred at room temperature in the presence of MgSO₄ for 1 h and then filtered. To the filtrate was added sodium borohydride (0.51 g, 14 mmol) in portions at 0 °C. The mixture was stirred at room temperature for 1 h and then, methanol was evaporated. The resulting residue was dissolved in ether (50 mL) and water (50 mL) was added. The aqueous phase was extracted, the organic phase washed with water (2 × 50 mL) and dried with MgSO₄. Filtration and evaporation of the solvent made it possible to obtain the product (1.54 g, 82%) as a yellow oil without further purification. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 8.56 (d, J = 4.5 Hz, 1H); 7.65 (t, J = 7.0 Hz, 1H); 7.30 (d, J = 6.5 Hz, 1H); 7.17 (t, J = 5.0 Hz, 1H); 3.90 (s, 2H); 3.61 (t, J = 5.9 Hz, 2H); 2.66 (t, J = 6.4 Hz, 2H); 2.12 (br s, 1H); 1.67–1.47 (m, 4H); 1.43–1.32 (m, 4H). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 159.9, 149.7, 137.0, 122.9, 122.5, 63.2, 55.5, 33.1, 30.3, 27.4, 26.0, 18.9. HRMS (ESI): m/z calced for C₁₂H₁₅N₃O [M + H]⁺: 209.1654; found, 209.1653.

6-((Benzylamino)hexan-1-ol (2c). Benzaldehyde (0.87 mL, 9 mmol) was added dropwise to 6-aminohexan-1-ol (1 g, 9 mmol) dissolved in methanol (20 mL). The mixture was stirred at room temperature in the presence of MgSO₄ for 1 h and then filtered. To the filtrate was added sodium borohydride (0.48 g, 13 mmol) in portions at 0 °C. The mixture was stirred at room temperature for 1 h and then, methanol was evaporated. The resulting residue was dissolved in ether (50 mL) and water (50 mL) was added. The aqueous phase was extracted, the organic phase washed with water (2 × 50 mL) and dried with MgSO₄. Filtration and evaporation of the solvent made it possible to obtain the product (1.72 g, 98%) as a yellow oil without further purification. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 7.37–7.24 (m, 5H); 3.77 (s, 2H); 3.56 (t, J = 5.9 Hz, 2H); 2.52 (br s, 1H); 1.67–1.50 (m, 4H); 1.43–1.32 (m, 4H). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 155.4; 144.6; 144.5; 143.5; 62.9; 52.9; 49.8; 33.0; 30.2; 27.3; 26.0. HRMS (ESI): m/z calced for C₁₂H₁₅NO [M + H]⁺: 209.1654; found, 209.1653.

6-((Thiophen-2-ylmethyl)amino)hexan-1-ol (2d). Thiophene-2-carbaldehyde (1.24 mL, 13 mmol) was added dropwise to 6-aminohexan-1-ol (1.24 mL, 13 mmol) dissolved in methanol (20 mL). The mixture was stirred at room temperature in the presence of MgSO₄ for 1 h and then filtered. To the filtrate was added sodium borohydride (0.75 g, 20 mmol) in portions at 0 °C. The mixture was stirred at room temperature for 1 h and then, methanol was evaporated. The resulting residue was dissolved in ether (50 mL) and water (50 mL) was added. The aqueous phase was extracted, the organic phase washed with water (2 × 50 mL) and dried with MgSO₄. Filtration and evaporation of the solvent made it possible to obtain the product (2.08 g, 98%) as a yellow oil without further purification. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 8.63 (s, 1H); 8.54 (d, J = 2.5 Hz, 1H); 8.49 (d, J = 2.5 Hz, 1H); 3.98 (s, 2H); 3.66 (t, J = 6.6 Hz, 2H); 2.70 (t, J = 6.6 Hz, 2H); 1.75 (br s, 1H); 1.63–1.50 (m, 4H); 1.43–1.30 (m, 4H). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 155.4; 144.6; 144.5; 143.5; 62.9; 52.9; 49.8; 33.0; 30.2; 27.3; 26.0. HRMS (ESI): m/z calced for C₁₃H₂₁N₃O₉Na [M + Na]⁺: 234.1426; found, 234.1425.
dissolved in ether (50 mL) and water (50 mL) was added. The aqueous phase was extracted, the organic phase washed with water (2 × 50 mL) and dried with MgSO₄. Filtration and evaporation of the solvent made it possible to obtain the product (2.43 g, 86%) as a yellow oil without further purification.

\[\text{H NMR (200 MHz, CDCl}_3 \text{)} \delta (ppm): 7.22 (dd, } J = 1.6 \text{ Hz and } 4.8 \text{ Hz, 1H); 6.99–6.95 (m, 2H); 4.00 (s, 2H); 3.65 (s, } J = 6.7 \text{ Hz, 2H); 2.68 (t, } J = 7.0 \text{ Hz, 2H); 1.62 (br s, 1H); 1.62–1.50 (m, 4H); 1.42–1.36 (m, 4H). \]

\[1^3 \text{C NMR (50 MHz, CDCl}_3 \text{)} \delta (ppm): 144.4; 127.1; 125.4; 124.8; 63.2; 49.4; 48.8; 33.1; 30.3; 27.5; 26.1. \]

HRMS (ESI): \(m/z \) calcd for \(\text{C}_{14}\text{H}_{28}\text{NO}_5 \text{[M + H]}^+ \): 214.1266; found, 214.1266.

General procedure for the synthesis of 7-N-tert-butylpyrazole ligands

A mixture of 1-hydroxymethylpyrazole (1.1 eq.) and secondary amine (1 eq.) was stirred without solvent for 3 h at 70 °C. The product was obtained as a yellow oil in quantitative yield in the presence of 10% pyrazole.

\[6-(((1H-Pyrazol-1-yl)methyl)(5-5\text{-(2-yl)methyl)amino})hexan-1-ol (3a). \]

\[\text{H NMR (200 MHz, CDCl}_3 \text{)} \delta (ppm): 8.73 (s, 1H); 8.56 (d, } J = 2.5 \text{ Hz, 1H); 8.50 (d, } J = 2.5 \text{ Hz, 1H); 7.56 (d, } J = 2.0 \text{ Hz, 1H); 7.52 (d, } J = 2.0 \text{ Hz, 1H); 6.33–6.30 (m, 1H); 5.57 (s, 2H); 3.93 (s, 2H); 3.54 (s, } J = 6.0 \text{ Hz, 2H); 2.62 (s, } J = 6.0 \text{ Hz, 2H); 1.63–1.53 (m, 4H); 1.31–1.33 (m, 4H). \]

\[1^3 \text{C NMR (50 MHz, CDCl}_3 \text{)} \delta (ppm): 155.2; 145.7; 144.3; 143.6; 140.0; 130.1; 106.0; 69.1; 63.2; 56.3; 52.3; 33.1; 27.8; 27.2; 25.9. \]

HRMS (ESI): \(m/z \) calcd for \(\text{C}_{14}\text{H}_{24}\text{N}_2\text{O}_4 \text{[M + Na]}^+ \): 289.1903; found, 289.1889.

General procedure for the synthesis of monocupper complexes.

Copper(II) chloride (1.0 eq.) and N-tert-butylpyrazole (1.2 eq.) were stirred in anhydrous THF for 2 h at room temperature. A solid was formed or the complex was precipitated by addition of anhydrous ether or dichlormethane. The precipitate was filtered under argon, washed with ether or dichlormethane and dried under vacuum. The anhydrous complex was then dissolved in MeOH:H₂O (95:5) and the solvent was evaporated under reduced pressure to obtain the hydrated form of the complex.

4a. Yield 57% of a blue-green powder. HRMS (ESI): \(m/z \) calcd for \(\text{C}_{13}\text{H}_{23}\text{CuI}_2\text{N}_2\text{O}_5 \text{[M + Cl]}^+ \): 387.0887; found, 387.0887.

4b. Yield 52% of a blue powder. HRMS (ESI): \(m/z \) calcd for \(\text{C}_{16}\text{H}_{25}\text{CuI}_2\text{N}_2\text{O}_5 \text{[M + Cl]}^+ \): 386.0934; found, 386.0934.

4c. Yield 55% of a green powder. HRMS (ESI): \(m/z \) calcd for \(\text{C}_{15}\text{H}_{24}\text{CuI}_2\text{N}_2\text{O}_5 \text{[M + Cl]}^+ \): 385.0982; found, 385.0981.

4d. Yield 61% of a green powder. Found, C, 39.91; H, 5.92; N, 9.37; S, 7.06%. Calc. for \(\text{C}_{16}\text{H}_{25}\text{N}_2\text{O}_5\text{ClCu} \): C, 40.40; H, 5.65; N, 9.42; S, 7.19%.

Catalysis

The experiments were conducted in air at constant stirring and temperature of 25 °C, monitored with a contact thermometer dipped in the solution. 6 mL of a 10⁻⁴ mol L⁻¹ solution of copper complex in methanol was added under stirring to a fresh solution of 10⁻¹ mol L⁻¹ of 3,5-di-tert-butylcatechol in 40 mL methanol maintained at 25 °C. The absorbance was continually monitored at 400 nm for 1 h using a dipping probe colorimeter (662 photometer from Metromoh) to detect the o-quinone characteristic signal.

Notes and references

