M. F. Doerner and W. D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, vol.36, issue.04, p.601, 1986.
DOI : 10.1016/0020-7225(65)90019-4

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.XI, issue.06, p.1564, 1992.
DOI : 10.1557/JMR.1992.0613

J. Loubet, J. Georges, and G. Meille, Vickers Indentation Curves of Elastoplastic Materials
DOI : 10.1520/STP32952S

J. Ahn and D. Kwon, Derivation of plastic stress???strain relationship from ball indentations: Examination of strain definition and pileup effect, Journal of Materials Research, vol.436, issue.11, 2001.
DOI : 10.1016/0956-7151(93)90122-9

J. Kim, K. Lee, J. Lee, and D. Kwon, Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach, Surface and Coatings Technology, vol.201, issue.7, pp.4278-4283, 2006.
DOI : 10.1016/j.surfcoat.2006.08.054

S. Kucharski and Z. Mröz, Identification of plastic hardening parameters of metals from spherical indentation tests, Materials Science and Engineering: A, vol.318, issue.1-2, p.65, 2001.
DOI : 10.1016/S0921-5093(01)01334-X

A. Nayebi, R. Abdi, O. Bartier, and G. Mauvoisin, New procedure to determine steel mechanical parameters from the spherical indentation technique, Mechanics of Materials, vol.34, issue.4, p.243, 2002.
DOI : 10.1016/S0167-6636(02)00113-8

Y. Cao and J. Lu, A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve, Acta Materialia, vol.52, issue.13, p.4023, 2004.
DOI : 10.1016/j.actamat.2004.05.018

H. Lee, J. Lee, and G. Pharr, A numerical approach to spherical indentation techniques for material property evaluation, Journal of the Mechanics and Physics of Solids, vol.53, issue.9, p.2037, 2005.
DOI : 10.1016/j.jmps.2005.04.007

M. Beghini, L. Bertini, and V. Fontanari, Evaluation of the stress???strain curve of metallic materials by spherical indentation, International Journal of Solids and Structures, vol.43, issue.7-8, p.2441, 2006.
DOI : 10.1016/j.ijsolstr.2005.06.068

M. Zhao, N. Ogasawara, N. Chiba, and X. Chen, A new approach to measure the elastic???plastic properties of bulk materials using spherical indentation, Acta Materialia, vol.54, issue.1, p.23, 2006.
DOI : 10.1016/j.actamat.2005.08.020

Y. Cao, X. Qian, and N. Huber, Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain, Materials Science and Engineering: A, vol.454, issue.455, 2007.
DOI : 10.1016/j.msea.2007.01.002

J. Collin, G. Mauvoisin, O. Bartier, E. Abdi, R. Pilvin et al., Experimental evaluation of the stress???strain curve by continuous indentation using different indenter shapes, Materials Science and Engineering: A, vol.501, issue.1-2, p.140, 2009.
DOI : 10.1016/j.msea.2008.09.081

URL : https://hal.archives-ouvertes.fr/hal-01006843

J. Collin, G. Mauvoisin, and P. Pilvin, Materials characterization by instrumented indentation using two different approaches, Materials & Design, vol.31, issue.1, p.636, 2010.
DOI : 10.1016/j.matdes.2009.05.043

URL : https://hal.archives-ouvertes.fr/hal-00830348

P. Jiang, T. Zhang, Y. Feng, and N. Liang, Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach, Journal of Materials Research, vol.92, issue.03
DOI : 10.1557/JMR.2001.0437

N. Ogasawara, N. Chiba, and X. Chen, A simple framework of spherical indentation for measuring elastoplastic properties, Mechanics of Materials, vol.41, issue.9, p.1025, 2009.
DOI : 10.1016/j.mechmat.2009.04.010

J. Lee, T. Kim, and H. Lee, A study on robust indentation techniques to evaluate elastic???plastic properties of metals, International Journal of Solids and Structures, vol.47, issue.5, p.647, 2010.
DOI : 10.1016/j.ijsolstr.2009.11.003

G. Constantinides, E. Silva, G. Blackman, V. Vliet, and K. , Dealing with imperfection: quantifying potential length scale artefacts from nominally spherical indenter probes, Nanotechnology, vol.18, issue.30, p.305503, 2007.
DOI : 10.1088/0957-4484/18/30/305503

S. Kang, Y. Kim, I. Kang, and D. Kwon, Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter, Journal of Materials Research, vol.465, issue.09, 2009.
DOI : 10.1557/JMR.1998.0146

S. Kang, Y. Kim, Y. Lee, J. Kim, and D. Kwon, Determining effective radius and frame compliance in spherical nanoindentation, Materials Science and Engineering: A, vol.538, pp.58-62, 2012.
DOI : 10.1016/j.msea.2012.01.013

J. Collin, G. Mauvoisin, E. Abdi, and R. , An experimental method to determine the contact radius changes during a spherical instrumented indentation, Mechanics of Materials, vol.40, issue.4-5, pp.401-406, 2008.
DOI : 10.1016/j.mechmat.2007.10.002

URL : https://hal.archives-ouvertes.fr/hal-01005233

P. Brammer, O. Bartier, X. Hernot, G. Mauvoisin, and S. Sablin, An alternative to the determination of the effective zero point in instrumented indentation: Use of the slope of the indentation curve at indentation load values, Materials & Design, vol.40, pp.356-363, 2012.
DOI : 10.1016/j.matdes.2012.04.013

URL : https://hal.archives-ouvertes.fr/hal-00865915

X. Hernot, O. Bartier, Y. Bekouche, E. Abdi, R. Mauvoisin et al., Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, International Journal of Solids and Structures, vol.43, issue.14-15, pp.4136-4153, 2006.
DOI : 10.1016/j.ijsolstr.2005.06.007

URL : https://hal.archives-ouvertes.fr/hal-01148145