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Abstract

The use of the Hurst exponent (H) to quantify the fractal characteristics of bi-

ological signals and its potential to detect abnormalities has aroused, recently, the

interest of many researchers. Numerous techniques to estimate H are described in

the literature, yet the choice of the most performing one is not straightforward. In

this paper, we proposed some tests using artificial signals from experimental data and

stochastic models to evaluate the robustness of three estimation techniques. Different

surrogate-data tests, including a novel method to parametrize the degree of correla-

tion in experimental signals with H (Hurst-adjusted surrogates), were first carried out.

Then, simulated signals with prescribed H were obtained from fractional Gaussian

noise modified properly to follow the lognormal laws observed in empirical data. The

tests were applied to examine detrended fluctuation analysis (DFA), discrete wavelet

transform and least squares based on standard deviation (LSSD) methods in the par-

ticular case of inter-breath interval signals from preterm infants. Simulations showed

that none of the estimators were robust for every breathing pattern (regular, erratic

and periodic) and should not be applied blindly without performing the preliminary

tests proposed here. The LSSD technique was the most precise in general, but DFA

was more robust with highly spiked patterns.

1 Introduction

The immaturity of the cardiorespiratory control system in premature newborns is known

to be the origin of bradycardia, a decay of the heart beat rate, and apnea of prematurity

(AOP), the cessation of breathing for 10-20 seconds [1]. Both events, frequently inter-

related, provoke a diminution of the oxygen blood concentration increasing the risk of the

newborns morbidity and mortality [2]. Other causes of apnea include infection, abnormal

body temperature, or neurological problems. Regardless of their origin, sighs and respiratory
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pauses are the responsible of the variable manner in which the infants breathe during sleep.

Typically, three different patterns can be identified: 1) Regular breathing, a quiet, low

variable breathing in amplitude and frequency, 2) erratic breathing, high variable breathing

in amplitude and frequency including several episodes of AOP and 3) periodic breathing,

the alternation of pauses lasting a few seconds followed by several rapid and shallow breaths

[3]. The inter-breath interval (IBI) signals, formed by the succession of the respiratory cycle

times, appear consequently as complex signals with spikes (apneas) of variable number and

duration according to the pattern. Despite their random-like aspect, IBI signals exhibit

long-range dependence (LRD) or fractal properties [4] as other physiological signals from

preterm infants, such as the heartbeat rate [5]. Since changes in the fractal structure are

related to aging and disease [6], the study of LRD for clinical purposes has become an issue

of growing interest.

A well-known measure of the fractal properties is the Hurst exponent (H). It can be

estimated by a large number of time or frequency domain methods, but their performances

can differ substantially depending on the way they are defined or the context where they are

applied. The numerous comparative analyses available in the literature basically prescribe H

in simulated data, then it is estimated by different methods to evaluate the error. The works

of Taqqu et al [7], and more recently Rea et al [8], presented an extensive review of this

kind of empirical study, analyzing several estimators with different lengths of time-series

generated by fractional Gaussian noise (fGn) [9] and fractional autoregressive-integrated

moving average (FARIMA) models [10]. Other works focusing on non-Gaussian conditions

[11, 12] tested the estimators with infinite variance FARIMA series and concluded that

robustness decreases when short-range dependence (SRD) structures are present. The effect

of non-stationarities on the estimated value of H (Ĥ) has also aroused numerous studies in

view of the fact that real data often contains local trends and shifts in the mean, which are

known to produce a false detection of LRD and bias [11]. In such conditions, the detrended
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fluctuation analysis (DFA) [13] and a wavelet-based (DWT) estimator [14] result in good

performances [15, 16].

However, the models to generate simulated time-series in the mentioned works might

not be realistic for some experimental data, and more specifically, IBI signals from preterm

infants. In a preliminary study [17], we analyzed five estimators through a basic model

which approximated apneic patterns adding spikes ad hoc to fGn, finding out that DFA,

DWT and the least squares based on standard deviation method (LSSD)[18] showed the

best performances. The present work not only analyzes accurately the structure of IBIs,

but also formalizes more rigorous models to generate artificial signals, with the purpose of

evaluating the three aforementioned methods under realistic conditions.

This paper is organized as follows: In Section 2, we first introduce long-range dependent

processes, the Hurst exponent, and the three estimators under evaluation. In Section 3, we

explain how the real IBI signals are obtained and analyzed with surrogate-data tests, as

well as how artificial IBIs are generated. Next, Section 4 describes the characteristics of IBI

signals and the error of estimations through the different tests. A discussion of the main

implications of these findings follows in Section 5 and some general remarks conclude this

paper.

2 Long-range dependence and the Hurst exponent

2.1 Definitions

Long-range dependence or long-range memory is a property naturally present in many phys-

ical phenomena. It is characterized by self-similar (or fractal) behavior, meaning that similar

statistical properties are preserved at different scale levels, which are related by a constant

known as the Hurst exponent (H) [19]. By contrast, short-range dependence exhibits statis-

tical similarity only at short scales. LRD was firstly reported in hydrology and subsequently
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used in diverse areas of research such as geophysics, econometrics, network traffic and biology.

Among the several definitions of LRD, the approach based on the second-order properties of

a stochastic process is the most commonly accepted in the literature.

Let Xi be a stationary stochastic process with i = 1, 2, .. the discrete sequence of obser-

vations. Let µ, γ(k), ρ(k) (k ≥ 0) denote the mean, the auto-covariance and the autocorre-

lation, and σ2 = γ(0) the variance of the process. Xi is then considered self-similar if it has

an autocorrelation of the form:

ρ(k) ∼ k−βL(i), as k → ∞, (1)

where β ∈ [0, 1], and L is a slowly varying function at infinity, i.e

lim
i→∞

L(ix)

L(i)
= 1 for any x > 0.

Given m a positive scalar representing a scale greater than 1 (X
(1)
k = X), a new data-series,

the mean aggregated stochastic process, is obtained for every scale:

X
(m)
k =

1

m

(k+1)m−1∑

i=km

Xi, (2)

with an autocorrelation denoted ρ(m)(k) at each scale m.

The process X is called second-order (exactly) self-similar with a characteristic Hurst

exponent (H = 1 − β/2) if the variance and autocorrelation are the same at each scale, so

for all m = 1, 2, 3, ..,

var[X(m)] = σ2m2H−2, (3)

ρ(m)(k) = ρ(k) =
1

2
[(k + 1)2H + (k − 1)2H ]− k2H . (4)

In finite processes (with k large enough), X is defined asymptotically self-similar if ρ(m)(k) →
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ρ(k) as m → ∞. Self-similar processes are then scale-invariant, i.e. autocorrelations at low

scale levels (aggregate processes X
(m)
k ) are similar at higher scale (X).

The long-range dependence property is given by the fact that autocorrelation is non-

summable,
∑

k ρ(k) = ∞, and described by a slow, positive decaying function. The Hurst

exponent ranges from 0 to 1 but LRD, which describes natural phenomena, implies H > 0.5.

A value equal to 0.5 means that the process is completely uncorrelated or random (white

noise) and values under 0.5 describe processes with negative correlations or with an anti-

persistent behavior.

2.2 H estimators under analysis

A considerable number of methods to estimate H , providing different approaches to quantify

the self-similar behavior, have been proposed and analyzed in the literature. In this work,

we considered the detrended fluctuation analysis and the discrete wavelet transform-based,

already employed in respiratory signals, and the least squares based on standard deviation,

a method used in hydrology yet unexplored in biomedical data.

2.2.1 Detrended fluctuation analysis

DFA, introduced by Peng et al [13] to estimate long-range dependence in non-stationary

signals, has already been used to quantify the fractal content in IBI series from adults [20]

and infants [21]. The data-series Xn of length N are first integrated and then divided into

blocks of equal size m. A least squares line, representing the local trend, is fit to the data in

each block. The y coordinate of the fitted line, ym(k), is then subtracted to the integrated

series y(k) to remove the trend in each box. Next, F (m), the root-mean-square fluctuation
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of this integrated and detrended time series is calculated:

F (m) =

√√√√ 1

N

N∑

k=1

[y(k)− ym(k)]2. (5)

This function is repeated successively over all time scales (box sizes) to characterize its

relationship with the box size m. A power law, given by F (m) ∼ mα as m → ∞, indicates

the presence of LRD. α is the scaling exponent, a generalization of the Hurst exponent, and

it is obtained by finding the slope of the line relating F (m) to m in a log plot.

2.2.2 Discrete wavelet transform-based estimation method

Abry et Weitch [14] proposed a semi-parametric joint estimator of H based on the DWT,

probed to be robust with non-stationarities even when signals contains SRD. It takes ad-

vantage of the scaling properties of the wavelet basis, which captures optimally the scaling

self-similar nature of LRD processes.

Briefly, the method performs first a wavelet decomposition of a given discrete time series

Xn, providing dx(j, k), the wavelet coefficients or details. Next, at each fixed octave j the

details are squared and then averaged across k to produce an estimate of the variance of

the wavelet coefficients, called µj . A plot of log2(µj) against j is done to identify the range

of octaves where scaling occurs. Finally, H is computed by performing a weighted linear

regression over those scales. The algorithm employed in the present work utilizes Daubechies

wavelets to perform DWT and identifies automatically the octaves with scaling [22].

2.2.3 Least squares based on standard deviation method

Classical statistics assume that a sample is constituted by independent random variables, but

this is not consistent with finite processes exhibiting long range dependence. In particular,

the variances of the sample mean decay slower than those from the sample size, hence
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important bias can be introduced if the properties of self-similarity are not taken into account

[23]. It has been shown in [24] that a robust estimator of variance Ŝ2 with known H is given

by:

Ŝ2 =
n− 1

n− n2H−1
S2 =

1

n− n2H−1

n∑

i=1

(Xi −X)2, (6)

with X = 1
n

∑n
i=1Xi. Note that when H = 0.5 (absence of long-term memory), the above

expression becomes the classic variance estimator.

Koutsoyiannis proposed a method to estimate both H and standard deviation, σ, using

modified statistics for long-range dependent processes [18]. Combining expressions (2) and

(6), assuming that E(Ŝ) = σ, the standard deviation of X(m) at each scale m could be

approximated by Ŝ(m) ≈ Cm(H)mH+1σ, where:

Cm(H) =

√
n/m− (n/m)2H−1

n/m− 1/2
. (7)

Then, the next step was to minimize the fitting error e2 to estimate both H and σ:

e2(H, σ) =

m′∑

m=1

[ln σ(m) − lnS(m)]2

mp
, (8)

where m′ is the maximum scale level so that m′ = n/10 and p is a weight factor. After

a Monte-Carlo study, it was found that p = 2 gave the best H estimation. A complete

analytical and iterative procedure is detailed in the original paper [18] and a performance

analysis in [25].

3 Methodology

In this section, we describe the methodology employed to evaluate the performance of the

H estimators under test in IBI signals. After the selection of real signals (3.1) and the
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extraction of IBIs (3.2), we designed two surrogate-data tests (3.3) with two goals in mind:

1) to verify the existence of LRD and SRD, and 2) to examine the performance of the

estimations regarding the dispersion of Ĥ . Moreover, a novel surrogate technique, that will

be referred as Hurst-adjusted surrogates (HAS), is introduced here to generate artificial data

from real IBIs governed by H . Furthermore, to reinforce the results from the surrogate

analysis, a second strategy evaluates the error of the estimators using simulated signals with

prescribed H (3.4).

3.1 Selection of real breathing signals

Twenty-four breathing signals from a database of 43 preterm infants were selected in order

to characterize the three respiratory patterns. Patients were born between 29 and 33 weeks

of gestation at the University Hospital of Rennes (France) and were three to 10 days of

postnatal age. Exclusion criteria were: ongoing inflammatory response, medication known

to influence the autonomic nervous system except caffeine, intratracheal respiratory support,

intracerebral lesion or malformation. This study was under parental consent and approved

by the local ethics committee (03/05-445).

All recordings (Powerlab system; ADInstruments, Oxfordshire, UK) were performed in

the neonatal intensive care unit (NICU) and consisted of a 1-hour recording at a 400-Hz sam-

pling rate of abdominal strain gauges. Signals were low-pass filtered (20 Hz cutoff frequency)

and subsampled by a factor of 10. Artifacts, mostly due to gross body movements or clin-

ical intervention, were rejected by visual inspection. After preprocessing raw signals with

Matlab R©, 20-minute excerpts were selected by clinicians according to their predominant

breathing pattern so that they were classified in three groups of eight signals.
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3.2 Extraction of IBI signals

Respiratory rate or IBI signals are formed by collecting the time durations in all cycles

of a breathing trace (see Figure 1-a). Since the fluctuations in the abdominal trace are

proportional to the variations of the tidal volume, a breathing cycle is the elapsed time

between successive minima, called total time (ttot). Inspiration (ti) and expiration (te) times

correspond to the first and second half-cycles delimited by the maximum (see Figure 1-c). A

peak detector was employed to find local extrema in the respiratory signal, but cycles were

considered valid only if the difference in amplitude between consecutive maxima et minima

exceeded a threshold, defined as 0.2 times the interquartile range of the trace.

IBI signals are constituted by a discrete sequence of time intervals, Xi = ttot(i), where

index i is not proportional to time. Data-series coming from irregularly observed experiments

have already been studied by the Hurst exponent in other research areas as ecology or clinical

trials [26]. In this paper, H is also estimated directly on our experimental signals, assuming

that it should not be interpreted in strictly temporal terms, but rather as a parameter

describing the self-affinity in a signal.

3.3 Design of surrogate-data tests

Surrogate-data tests are utilized to statistically infer the nature of the process generating

the observed data [27]. The realization of a surrogate set, artificial signals preserving certain

statistical properties of the original data, determines the formulation of the null hypothesis,

H0, which is to be tested with a statistic capable to discern original and surrogates properties.

If the statistics from the surrogate set and from the empirical data are significantly different,

H0 can be rejected.

In this work, we designed two surrogate tests, each posing different null hypotheses and

modifying differently the original data:
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• Random-shuffled surrogates (RSS) test: Temporal correlations are destroyed (theo-

retically, H = 0.5) and spectrum is whitened in surrogate-data. The addressed null

hypothesis is that LRD in empirical data is generated by uncorrelated noise. H can

be used directly as discriminant statistic thanks to its ability to detect LRD.

• Small-shuffled surrogates (SSS) test: Surrogate-data have their samples shuffled in a

small scale, consequently local correlations (SRD) are lost and long-term structures

preserved (H is theoretically unchanged). The null hypothesis addressed with SSS

is that empirical data do not contain short term dependent processes. The average

mutual information (AMI) computed in short lags to capture short-term dynamics can

be used as discriminant statistic [28].

Although the main goal of RSS and SSS tests is to demonstrate the existence of LRD and

SRD, the set of artificial data generated by both methods will be used for a second purpose:

to evaluate the performance of estimators measuring the bias from the theoretical values of

H .

However, RSS and SSS confine H to very specific values, and hence the tests of robustness

remains incomplete. The Hurst-adjusted surrogates overcome this limitation by generating

artificial signals with variable H . The principle consists in replicating the degree of correla-

tion within an ordinary realization of fGn (governed by H) to an empirical record X . This

procedure is done as follows:

1. Generate Y , a realization of fGn with the desired H and the same standard deviation

of X and form iy, the vector of indexes of Y .

2. Obtain Y ′ by sorting in ascending order Y , and get iy′, a vector containing the original

positions of the fGn samples.

3. Form a new series X ′ by sorting X , also in ascending order.
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4. Reorder X ′ using the indexes of iy′.

These artificial signals, equally distributed than the original ones, are characterized by an

H approximately equal to the value prescribed in fGn.

3.4 Generation of simulated signals with prescribed H

The utilization of surrogate-data to evaluate the estimators has the advantage of reproducing

realistic conditions, but at the expenses of imposing approximated values of H on artificial

signals. Therefore, to conduce more complete performance studies, simulated self-similar

signals with an exact prescription of H are necessary.

In order to generate processes exhibiting LRD, several methods can be utilized. One of

the most employed is the fractional Gaussian noise, a stochastic model able to synthesize

exact self-similar realizations [9]. The FARIMA model is another alternative if both short-

range and long-range dependence need to be introduced but, for simplicity, and knowing that

the original series does not contain important SRD processes (see section 4.2), we utilized

the fGn model.

fGn is originated from the family of fractional Brownian motions (fBm) BH = {BH(t), t ∈

R}, that are Gaussian self-similar stochastic processes with stationary increments indexed

by the Hurst parameter H . So, a process X = {Xk, k ∈ Z}, with an autocorrelation function

ρ(k) as equation (1), is fractional Gaussian noise if Xk = BH(k + 1)−BH(k).

We employed the circulant embedding technique [29] to synthesize stationary, normally-

distributed realizations of fGn with H ∈ {0.5, 0.55, ...0.9}. However empirical data are

described by lognormal distributions (see next section), hence fGn need to be transformed

to follow the same marginal law to test the estimators under similar conditions.

A Gaussian discrete series, XG(n) can be transformed into a log-normally distributed
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series XL(n) using the relation [30]:

XL(n) = eµG+σGXG(n), (9)

where µG and σG,the mean and standard deviation of the normal distribution, are given by:

µG = ln
µL√

1 + cv2
; σG =

√
ln(1 + cv2), (10)

where µL is the mean of the lognormal distribution and cv = σG/µG its coefficient of variation,

a measure of the relative dispersion of the series. The transformation of normally distributed

series to lognormal processes can be applied to fGn, obtaining fractional Lognormal noise

(fLn) with approximately the same characteristic Hurst exponent [31]. Values of cv in close

proximity to zero produce a highly peaked distribution with low variance, whereas greater

values increase the tail. A few examples of fLn with several values of cv and H can be seen

in Figure 2.

4 Results

In this section the characteristics of real IBI signals are first described, and then the hy-

potheses of long- and short-range dependence are tested. Finally, the results from the test

of robustness using artificial and simulated data are presented.

4.1 Characteristics of real IBI signals

Subsequent to the application of the peak detector on the 24 respiratory records, we com-

puted the mean duration of cycles, ttot, and the standard deviation, std(ttot). Apnea were

defined as cycles ≥ 3 ∗ ttot, hence the number of apneas per hour, NAp, and the main du-

ration of apneas, DAp were computed for each IBI signal. Regarding the three groups of
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infants, these parameters showed statistically significant differences in a Mann-Whitney U-

test, whereas the gestational age (GA) and the weight did not (see Table 1).

With regard to the marginal laws, the presence of apneas (spikes), variable with the

individual breathing pattern, and the fact that there are no negative times, determines right

skewed distributions in IBI signals, which were best fit with lognormal laws [32]. In our IBI

signals, the fitted lognormal parameters between the three patterns were also significantly

different. Later on, the mean and standard deviation of the distribution parameters (Table

1) will be employed to simulate the fLn series.

On the other hand, the estimation of H on real data (see Figure 3) revealed that, as

expected for biological signals, LRD (H > 0.5) is present in the great majority of the cases

with the exception of some periodic IBI. Likewise, the different sensitivities of DFA, DWT

and LSSD is evidenced by the meaningful differences of Ĥ on the same groups.

4.2 Long and short-range dependence in real IBI signals

Given that LRD is detected on the real IBIs, it should be verified if 1) LRD is not caused

by uncorrelated processes in IBIs (apneas and local trends), and if 2) IBI signals do not

contain strong short-term dependent dynamics, known to perturb the estimation of the

Hurst exponent [11].

Hence, long- and short-range dependence need to be examined by a RSS and a SSS test.

In next lines, the following notation concerning H will be utilized:

• Hr and Ĥr: The real value of H of an empirical signal and its estimation, respectively.

• Hs and Ĥs: The theoretical value of H imposed by a surrogate technique and its

estimated value.

In both tests, a set of 100 surrogates was obtained from each original signal. Then, Ĥs

and Ĥr were compared by a Mann-Whitney U-test to find possible statistically significant
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differences.

4.2.1 Results of RSS tests

The RSS provided data-series with Hs = 0.5, meaning that LRD is eliminated by un-

sorting randomly the empirical data. Statistically significant differences were found be-

tween Ĥs and Ĥr using the three estimators (pDFA, pDWT and pLSSD < 0.0001) in reg-

ular and erratic group. However, these differences were not found in the periodic group

(pDFA = 0.585; pDWT = 0.919; pLSSD = 0.176), presumably due to the nature of this breath-

ing pattern, which contains less LRD and hence closer values of Hr to 0.5.

Therefore, the null hypothesis, that long-range dependence is caused by an uncorrelated

process, can be rejected by regular and erratic groups, but not by the periodic group.

4.2.2 Results of SSS tests

The SSS produced a set of signals without SRD containing approximately the same LRD

(Hs ≈ Hr). Comparing Ĥs and Ĥr it could be stated that SRD does not affect the estimation

of LRD because no statistically significant differences were found, but the use of the statistic

given by AMI, as introduced previously, is a more rigorous criterion. AMI was computed

with lags from 1 to 10 to quantify the dependence between close cycles in each original

signal and in a set of 100 SSS. The analysis of the 24 IBI signals (see Figure 4) revealed that

there are statistically independent differences regarding the AMI of original and surrogate

populations in the closest cycles: breaths one to three in regular patterns, one and two in

erratic and only the first breath ahead in periodic breathing. Therefore, the null hypothesis,

that there is no short range dependence in IBI signals, can be rejected only in the mentioned

lags.
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4.3 Robustness of estimators

As can be observed in Figure 3, the meaningful differences regarding Ĥr poses a dilemma

to choose the most appropriate estimator in each pattern. The following tests elucidate and

compare the robustness of DFA, DWT and LSSD employing artificial data generated by

surrogate techniques and simulated data generated by the fLn model.

4.3.1 Results in surrogate-data

The knowledge ofHs in surrogate-data allowed to carry out a first evaluation of the estimators

with signals identically distributed than the real ones. The robustness was measured by the

error of estimations, ǫsur, defined as:

ǫsur = Hs − Ĥs. (11)

We used the set of 100 RSS (Hs = 0.5) and SSS (Hs ≈ Hr) generated in previous tests

to compute ǫsur on the 3 groups of IBIs (see first and second columns in Figure 5). The

sample size of surrogate-data, as real IBIs, is comprised approximately between 500 and

1000 samples due to the variations on breathing rates and apneas. In view of the boxplots

dispersion and bias from the middle lines (ǫsur = 0), DWT is the least accurate and least

precise technique, whereas LSSD exhibits very small bias and the least scattered interquartile

ranges (IQRs).

The HAS method was employed to obtain surrogates with different levels of LRD, setting

Hs from 0.6 to 0.9 in steps of 0.05. The evaluation of the robustness in this case was measured

by the mean surrogate error, ǫsur, computed as the mean of the different ǫsur obtained by 100

realizations of HAS for each value of Hs (see third column in Figure 5). The boxplots show,

in general, more dispersed and positive-biased IQRs, revealing that the presence of a stronger

LRD perturbs the estimations. Of note, only LSSD has its IQRs below the simulation step
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(∆Ht = 0.05) in all patterns, despite having the greatest bias.

4.3.2 Tests with fLn

Prior to evaluating the estimation errors, we first verified if the apneas generated by the fLn

model are realistic. One hundred fLn series of 1024 samples were realized for cv from 0.2 to

1 in steps of 0.05, then the mean duration (DAp) and number of apneas per hour (NAp) were

obtained. Both parameters are plotted in Figure 6 as a function of cv, together with the

corresponding points from empirical IBIs. As it can be observed, fLn signals can reproduce

the frequency of real apneas, with the 87.5% of empirical NAp into the 95% confidence

intervals (CI) of simulated values. However, the duration of apneas shows some limitations

based on the fact that the 47.5% of empirical DAp (specially long apneas) are not included

into the 95% CI obtained by the simulated fLn.

Simulations were performed by generating 100 fLn signals using the average parameters

σL and µL for the three breathing patterns (see Table 1), and H was prescribed from 0.5

to 0.9 in steps of 0.05. To evaluate the robustness of DWT, DFA and LSSD, we utilize the

estimation error from simulated values, ǫsim, the homologous of expression (11):

ǫsim = Hr − Ĥr, (12)

where Hr is in this case the prescribed value of H by fLn and Ĥr its estimation. In Figure 7

ǫsim is plotted as a function of Hr for 1024-sample data, comparing the curves obtained for

each simulated pattern and estimator.

It can be noticed that, in general, LSSD is the most precise technique, showing the nar-

rowest 95% CI. However, its accuracy diminishes slightly as the simulated pattern becomes

more spiky and the strength of LRD increases. On the other hand, the DWT-based method

has the worst precision yet enhances the accuracy with irregular and periodic patterns, and
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DFA shows the best performance in periodic-like patterns. Observing the sense of bias, DFA

and DWT are prone to underestimate the real value of H whereas LSSD behaves conversely.

Simulations using 512-sample signals were also undergone, and the confidence intervals

of the estimation errors and bias (not shown here) exceeded 20 to 40% the values obtained

in simulations for 1024 samples. Therefore, it can be stated that robustness estimating H

decreases as the length of data diminishes, as reported previously [8].

5 Discussion

In this paper, we investigated the usage of the Hurst exponent in the particular case of IBI

signals from preterm infants. Since the way these newborns breathe can be highly variable,

we selected representative signals of the typical immature breathing patterns, regular, erratic

and periodic, to bring up two main issues: Do all patterns can be analyzed reliably by the

Hurst exponent? How commonly used estimators perform on these signals? To uncover these

questions, we generated both artificial data, using surrogate-data techniques, and simulated

data, using the fLn model.

5.1 Main findings

The application of the surrogate-data tests allowed first to evaluate the properties of IBI

signals. The random-shuffled surrogates found significant long-range dependence, as reported

by earlier works [21, 32], and the small-shuffled surrogates proved the existence of short-term

memory regarding the three first consecutive breaths in regular breathing, as it had been

found in adults [33]. Not surprisingly, the SRD is weaker as the randomness and apneas

increase, i.e. typically immature respiration, where it decreased to two and one consecutive

breaths in erratic and periodic patterns, respectively. As randomness is associated with

uncorrelated and irregular processes (weak LRD), this result is also consistent with the
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lowest values of Ĥr characterizing periodic patterns. On the contrary, regular patterns show

the highest Ĥr, suggesting a more predictable long-term behavior within breaths.

The Surrogate-techniques served as well to test the performance of the estimators using

artificial data generated from experimental signals. Interestingly, the HAS method provides

identically distributed signals than real IBIs approximating H , permitting to assess the

estimation errors in a realistic scenario including spikes. Evaluating the results of this test,

it can be stated that H tends to be overestimated in situations in which LRD becomes

stronger in artificial signals, particularly if the pattern analyzed contains more spikes, as

erratic and periodic breathing. A possible explanation could be the inefficacy of HAS to

replicate the exact correlations of fGn on the basis of apneic patterns, but there is still an

uncertainty if the presence of spikes itself introduces the before-mentioned bias.

This is the reason why our stochastic model to simulate IBIs, initially Gaussian, was

modified to generate apneas with approximately the same probability as the real signals.

In this way, H can be prescribed reliably by the fLn while apneas can be regulated by

the distribution parameters of empirical data. Nevertheless, the fLn approach has some

limitations. Severe apneas, which in some patterns exceed frequently 10 seconds, cannot

be reproduced within this model because the tail of the fitted distributions restricts greater

values. Other marginal laws could be more suitable for highly spiked patterns, such as

generalized extreme distributions, but they will be the object of further research.

However, it is noteworthy that the behavior of the estimators with simulated fLn is

similar to the trends observed in the surrogates analysis: LSSD appears to be the most

precise but least accurate, DWT the most imprecise and DFA seems to be a compromise

between precision and accuracy. In spite of the limitations of the fLn model, it can be stated

that the use of DWT on IBI signals, regardless of the pattern, should be avoided due to the

unacceptable bias in estimations (the 75% CI exceed the simulation step). LSSD could be a

good choice in case-control studies where two populations need to be characterized by H in
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regular-erratic patterns, because its good precision gives the best discriminant power despite

overestimating the real value of H . On the other hand, the robustness of DFA facing spiky

signals makes it a more reliable choice in periodic breathing or mixed patterns.

In relation to the length of the breathing signals, it has to be considered that long and

clean records are difficult to obtain at NICU, so the number of samples in IBI series could be

in some cases insufficient to compute H reliably. Therefore, the optimal length of analysis

should be a trade-off between a realistic sample size and a tolerable level of bias in estimators,

but keeping in mind that the interest of the sample size is not only technical. Indeed, the

choice of long IBIs can result in capturing different breathing dynamics, associated with

changes in sleep [34]. As sleep stages are quite variable in duration, we consider appropriate

to set the range of the analysis between 512 and 1024 samples, equivalent to time intervals

from 10 to 25 minutes.

5.2 Clinical implications

Several breathing disorders are challenging problems in the premature infant. These disorders

include frequent and severe apneas, erratic and periodic breathing, exaggerated or insufficient

response to laryngeal chemoreflex [35, 36]. These events, when they repeat, are usually the

reason why the hospitalization in intensive care unit is required or prolonged [37] and are

associated with a worse neurodevelopmental outcome [38]. They are related to immaturity of

the respiratory control and the inability of the premature infant to cope with a challenging

environment. The analysis of the respiratory pattern variability, proposed in the present

study, add comprehensive information in the documentation of these adverse events which

may help to improve their management, if introduced in a bed side monitoring system.

Another challenging problem in neonatal medicine is infection [39]. Premature infants are

at high risk of hospitalized acquired infection due to immaturity of their immune system and

frequent need for intensive care. Early and correct diagnosis of infection is often difficult in
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these patients due to non-specific and subtle presenting symptoms [40]. In this perspective,

the analysis of cardiorespiratory signals appears to be a promising tool. Indeed, heart rate

variability [41, 42] and cardiorespiratory interactions [43] appear to be affected by infection

and these characteristics are already implemented in neonatal monitoring systems to help the

physician in its decisions [44]. Since respiratory control is affected by infection, these methods

of exploring the complexity of the respiratory signal, alone or as part of a multiparametric

model, may help in the recognition and early diagnosis of infection, including in the context

of a highly immature respiratory control.

Apart of these two areas of application for H calculation, other potential areas are nu-

merous in the neonatal medicine looking at the development of these techniques in the adult

intensive care medicine [45, 26, 46], H could be used as well in neonatal monitoring systems

as an additional non-invasive indicator of both pathology and maturation.

6 Conclusion

The Hurst exponent is gaining interest in many fields thanks to its ability to quantify the long-

range dependence. However, its application on some non-Gaussian signals with spiky and

changing patterns like the variability signals analyzed here, should be examined carefully.

As previous works demonstrated, the estimation of H by traditionally-employed methods

may introduce significant bias, even to mislead the interpretation of LRD in the observed

data. We believe that the tests proposed here to test experimentally the robustness of H

estimators using artificial -but realistic- data, could be useful as a preliminary analysis to

predict the behavior of any long-range dependence estimator on any specific data. Choosing

the most appropriate method will indeed minimize the bias and imprecision of such a sensitive

parameter, allowing its confident use as an index of interest in many research areas.
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7 Figure captions

Figure 1: a) Example of a pre-processed respiratory signal corresponding to a patient born

after 32 weeks of gestation. b) One-minute excerpt showing apnea and irregular breaths,

with detected minima (o) and maxima (*). c) Definition of inspiration, expiration and total

times within a cycle. d) Resulting IBI signal with the horizontal line marking the apnea

threshold (3 ∗ ttot). e) Empirical distribution of the IBI signal, whose fitted lognormal pa-

rameters are µ = 0.29 and σ = 0.43.

Figure 2: Examples of fLn realizations with several coefficients of variation (cv = σG/µG) at

H = 0.6, 0.7 and 0.8. a) cv = 0.3 b) cv = 0.7 c) cv = 1.

Figure 3: Illustration of the discrepancy within the estimations of the Hurst exponent (Ĥr).

Regular IBIs (a) showed in general the highest LRD, followed by erratic (b) and periodic

(c) patterns. In all cases, Ĥr in periodic IBIs presented statistically significant differences

(p < 0.05) with regard to regular and erratic breathing.

Figure 4: Average Mutual Information (AMI) computed for the first 10 lags in original

IBI series (upper panels) and small-shuffled surrogates (lower panels). There were signifi-

cantly significant differences in the first three breaths for regular breathing (a), in the first

two breaths for erratic (b) and in the first breath for erratic patterns (c) after performing a

Mann-Whitney U-test (∗, p < 0.001; ∗∗, p < 0.005; ∗ ∗ ∗, p < 0.05).

Figure 5: First and second columns: Estimation error from surrogates (ǫsur) in RSS (Hs =

0.5) and SSS (Hs ≈ Hr). Third column: Averaged estimation error (ǫsur) for HAS prescrib-

ing Hs (0.6, ...0.9). Results for regular (a), erratic (b) and periodic (c) IBIs.
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Figure 6: Comparison of the mean duration (DAp) and the number of apneas per hour

(NAp) obtained by simulated IBIs (grey lines) and from real signals (regular IBIs in trian-

gles, erratic in circles and periodic in diamonds). These plots were obtained by simulated

IBIs at H = 0.6, but similar curves were obtained with values between 0.55 and 0.9.

Figure 7: Performance of estimators in 100 realizations of fLn. The median of the sim-

ulation error (ǫsim) in solid lines and 75% and 95% confidence intervals in semi-dotted (-.-)

and discontinuous (- -) lines, respectively. Curves for regular breathing in (a), erratic in (b)

and periodic in (c).
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Table 1: Description and some characteristics of the selected signals of each pattern. µL and

σL correspond to the mean and standard deviation of the lognormal law, respectively.

Regular Erratic Periodic
GA (weeks) 31.9 ± 1.5 31.2 ± 0.9 31.1 ± 0.5

Weight (g) 1338 ± 353 983 ± 249 1061 ± 149

ttot (s) 0.93 ± 0.17* 1.29 ± 0.22§ 1.39 ± 0.18*§

std(ttot) 0.29 ± 0.08* 0.93 ± 0.25*§ 1.58 ± 0.56*§

NAp (num/h) 10.6 ± 7.70* 68.2 ± 19.5*§ 122.9 ± 29.7*§

DAp (s) 2.26 ± 1.42* 5.58 ± 1.31*† 7.20 ± 1.65*†

µL -0.12 ± 0.17†‡ 0.15 ± 0.22† 0.02 ± 0.14‡

σL 0.25 ± 0.06* 0.46 ± 0.02*§ 0.58 ± 0.08*§

*, § paired groups with p < 0.01
†, ‡ paired groups with p < 0.05

1

Table 1



0 400 800 1200 1500  
−5

0

5

Time (s)

0 100 200 300 400 500 600 700 800 900
0

5

10

Cycle number
0 2 4 6 8 10 12 14   

0

100

200

Duration of cycles (s)

Fr
eq

ue
nc

y

500 510 520 530 540 550 560
−2

0

2

4

Time (s)
542 543 544   

−2

0

2

Time (s)

*

*
* * * ** * * * * * *

**
* ** * * * * * * *

*
* **

*
*

* *
*

*

oo o

o o

o o o o o o
o o

o o o o o

o
o o o o

o o o o o o o o o
o o o o

**

o
o

c)

oo

* *
t i te

ttot

b)

a)

e)d)

*

t to
t (

s)

* 

Figure 1



1

3

5

7
H = 0.6 

D
ur

at
io

n 
(s

)

1

3

5

7

D
ur

at
io

n 
(s

)

0 500 1000     

1

3

5

7

Cycle

D
ur

at
io

n 
(s

)

  0 500 1000      
Cycle

  0 500 1000      
Cycle

H = 0.7 H = 0.8 
a)

c)

b)

Figure 2



0.4

0.6

0.8

1

DFA DWT LSSD

�
�

Regular IBI

0.4

0.6

0.8

1

DFA DWT LSSD

Erratic IBI

0.4

0.6

0.8

1

DFA DWT LSSD

Periodic IBI

~

a) b) c)

�
�~ �
�~

Figure 3



0

0.05

0.1

1 2 3 4 5 6 7 8 9 10

Regular IBIs

A
M

I 
of

 o
ri

gi
na

l I
B

I 
(b

its
)

0

0.05

0.1

A
M

I 
of

 S
S

S
 (

bi
ts

)

Erratic IBIs Periodic IBIs

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

�

��
��� �

��
�

SSS-data SSS-data SSS-data

a) b) c)

��������	A ��������	A ��������	A

Figure 4



−0.2

−0.1

0

0.1

0.2

DFA DWT LSSD

RSS

−0.2

−0.1

0

0.1

0.2
SSS

−0.2

−0.1

0

0.1

0.2
HAS

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

a)

b)

c)

�
su

r

DFA DWT LSSD DFA DWT LSSD

DFA DWT LSSD

DFA DWT LSSDDFA DWT LSSDDFA DWT LSSD

DFA DWT LSSD DFA DWT LSSD

�
su

r
�

su
r

�
su

r
�

su
r

�
su

r

�
su

r
�

su
r

�
su

r

Figure 5



0

2

4

6

8

10

D
A

p (
s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

N
A

p (
N

um
/h

)

cv

 

 

Median (simulated IBI)    
95% confidence intervals

Figure 6



0.5 0.6 0.7 0.8 0.9

DWT

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

0.5 0.6 0.7 0.8 0.9
−0,1

0

0.1

H

ǫ s
i
m

0.5 0.6 0.7 0.8 0.9

H
0.5 0.6 0.7 0.8 0.9

H

0.5 0.6 0.7 0.8 0.9

LSSD

0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

ǫ s
i
m

DFA

0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

ǫ s
i
m

a)

b)

c)

Figure 7


