Interventional planning and assistance for ascending aorta dissections

To cite this version:
Interventional planning and assistance for ascending aorta dissections

C. Lohoua,*, P. \Lubniewskia,b, N. Fetcacia, H. Feuillâtrec, J. Courbona, V. Sauvagea, J.-Y. Boirea, L. Boyera,d, L. Camilleria,e, L. Cassagnesa,d, P. Chabrota,d, B. Miguela,e, L. Sarrya.

a Clermont Université, Université d'Auvergne, Institut des Sciences de l'Image pour les Techniques interventionnelles, ISIT-UMR 6284 UdA-CNRS, BP 10448, F-63000 Clermont Ferrand (France),

b Cardinal Stefan Wyszyński University, Faculty of Mathematics and Natural Sciences, PL-01815 Warsaw (Poland),

c Université de Rennes 1, Laboratoire Traitement du Signal et de l'Image, LTSI–INSERM U1099, F-35000 Rennes (France),

d CHU Gabriel Montpied, Service de Radiologie B, Pôle Radiologie et Imagerie Médicale, 58 rue Montalembert, BP69, F-63003 Clermont-Ferrand (France),

e CHU Gabriel Montpied, Service de Chirurgie Cardio-Vasculaire, Pôle Cardiologie, 58 rue Montalembert, BP69, F-63003 Clermont-Ferrand (France).

* Corresponding author:
E-mail address: christophe.lohou@udamail.fr (C. Lohou).
Abstract

In this paper, we present our global image processing framework of interventional planning and assistance for ascending aorta dissections.

The preoperative stage of that framework performs the extraction of aortic dissection features inComputed Tomography Angiography (CTA) images. It mainly consists of a customized fast marching segmentation.

The intraoperative stage of that framework realizes medical images registration and proposes data visualization enhancement; standard X-ray fluoroscopic images are used as the reference modality. We use our recently introduced registration method based on image transformation descriptors (ITDs) and usual 3D/2D techniques (based on digitally reconstructed radiographs).

The first stage provides aortic dissection features and is to help clinicians for the planning. The second stage provides an augmented reality visualization and would be used for assistance during the intervention.

As far as we know, this is the first complete image processing framework which focuses on the ascending aorta dissection (minimally invasive) endovascular treatment.

Keywords
aortic dissections, segmentation, 3D/2D registration, augmented reality.

1. Introduction

Aortic dissection is an uncommon yet potentially catastrophic clinical event. The annual incidence has been estimated at 5-30 cases per million [1]. Aortic dissection is a medical emergency and can quickly lead to death. The thoracic aorta is divided into four anatomic segments (Fig. 1 left): the aortic root, the ascending aorta, the aortic arch, and the
descending aorta. The aorta is made up of three layers: the intima (in direct contact with the blood flow), the media and the adventitia (farthest from blood flow). Aortic dissections are caused by one or more aortal tissue perforations issued from tissue weakness and high blood pressure. It consists of one or several intimal tears and a clear separation between layers of the aortic media, resulting in two separate blood flow channels: the true lumen (the primary aorta bed of blood flow) and the false lumen (a channel inside the splitted media occuring during an aortic dissection). The layer of detached aorta tissues between lumens is called intimal flap.

According to both patient's condition and the extent of the dissection, the treatment can be done in three ways: open heart surgery, minimally invasive endovascular intervention with endoprosthesis landing, or medical management. This decision is made following a preoperative 3D Computed Tomography Angiography (CTA) examination (Fig. 1 right). In the case of an endovascular treatment, one of the most used modalities is intraoperative 2D X-ray (fluoroscopic, by a monoplane C-arm system) angiographic images.

Our motivation consists in studying the endovascular treatment of ascending aorta dissections which could be more adapted for certain patients. This study follows recent publications about treatments of this segment of aorta [3, 4] and new prosthesis design. The detailed framework, proposed here, is made up of the two following main steps: segmentation (Sect. 2) from CTA data, 3D/2D registration (Sect. 3) of the 3D segmented data onto the intraoperative 2D X-ray angiographic images. This framework gives the opportunity to assist and help clinicians during their diagnosis (features extraction) and to enhance angiographic intraoperative images. Moreover, due to this augmented angiographic rendering, this study also aims to decrease irradiation dose and to reduce injected contrast quantity.
As far as we know, this is the first complete image processing framework which focuses on the aortic dissection endovascular treatment. Other works concern only segmentation stage in the case of aortic dissections (by example [5]).

2. Segmentation

In this section, we describe the pipeline of image processing operators (Fig. 2) that enables us to separate and distinguish the two lumens inside a CTA image of an aortic dissection. These features will be used in our registration stage (Sect. 3).

Region of interest definition. In order to speed up the image processing, the initial CTA volume I_1, including the dissected aorta is truncated, yielding I_2. Then, we construct a parametric model I_3 of the aorta. That model is a 3D mesh interactively built [6] by delineating the outer aortic wall into I_2.

Lumens retrieval. We want to extract and separate the two lumens, with a segmentation process.

- **PREPROCESSING.** The interior of the model inside I_3 is filled with the corresponding grayscale values of I_2. Then, to improve the image quality, a Gaussian filter is applied ($\sigma=1.0$).

- **MODIFIED FAST MARCHING.** Fast marching segmentation method (FM) [7] is an efficient implementation of level set deformable models. It consists of a propagation process inside a grayscale volume according to a speed function, an initial surface and a number of iterations. Due to intimal tears between lumens, this algorithm would yield the two interconnected lumens on our aortic dissection images. To obtain separated lumens during the segmentation step, we have adapted FM by modifying the speed function [8]. The new speed function must be such that the propagation front should spread over homogeneous regions (we use a Gaussian
density probability); the propagation should stop at the neighborhood of flap and lumens borders (we have proposed an intermediate labelling image). That labelling image, constituted by such candidate points, is computed from both gradients and initial grayscale values.

- **APPLICATION.** This algorithm extracts each lumen by a single voxel initialization. Note that the propagation occurs inside the parametric model therefore no other organs nor vessels are retrieved. By repeating this process twice, we obtain the separated lumens image I_4.

Lumens distinction. Intensity values of blood mixed with contrast are usually higher inside the true lumen for our images. A straightforward operator (mean intensity inside each lumen) enables us to distinguish the true and false lumens; we obtain I_5.

3. **Registration**

The goal of our proposed registration framework is to provide an alignment of pre- and intraoperative images. The pipeline is composed of two steps (Fig. 3): the first one – based on the recently introduced descriptors (ITDs) – yields a coarse registration providing a quick initialization for the second step – an iterative precise algorithm.

3.1. Fast ITD-based registration

This original method [9] quickly provides a relatively accurate 3D pose estimation T.

Input.

We have recently introduced a technique called *fluoroscopy amplification* [10]: it processes the angiographic sequence J_1 to extract contrast agent, thus to increase the visibility of the aorta; the obtained image is J_2. As input for this registration, we use the binarized amplification image J_3 as a reference; and the parametric model of the aorta I_3 as a target.

Method.
Our registration approach uses a new technique of 2D images alignment, based on the *image transformation descriptors* (ITDs). Our 3D/2D registration technique is driven by such a 2D approach carried out for an estimated best orientation, obtained through a 3D pose estimation and a rotation sampling. The three major stages of the method are described below:

- **ITD 2D/2D FLAT ALIGNMENT.**
 ITDs enable us to obtain a 2D similarity transformation T'_\sim between two 2D images M_1 and M_2 (Fig. 4) without any iterative optimization process [11].

- **3D/2D REGISTRATION FOR A GIVEN ORIENTATION.**
 (Cf. Fig. 5.) At this stage, we assume we have a projection $\text{Proj}(N_2)$ of the 3D image N_2 with a correct volume orientation (relatively to the reference N_2). A 3D pose estimation algorithm computes a 3D pose update as a function of both the current volume 3D transformation T_{i-1} and the 2D output T'_i of our 2D/2D ITD-based method [9]. Such a volumetric transformation update is repeated (e.g. 3 times), until the projection image $\text{Proj}(N_2)$ is coherent with its 2D reference N_1.

- **COMPLETE ALGORITHM.**
 If the correct projection orientation is known, the pose is directly obtained by the previously described 3D/2D stage. Otherwise, starting with a roughly computed initialization T_0, we perform a sampling over the selected orientations range, choosing the best parameters from a similarity measure (Dice coefficient) issued from the projections for each sample. The optimal 3D orientation T'_\sim is chosen for the sample with maximum similarity measure. The resulting coarse transformation parameters are given after carrying out the final 3D/2D ITD algorithm for the best volume orientation (see [6] for further details).

3.2. Precise DRR-based registration
The last stage of the registration framework is an iterative method, based on digitally reconstructed radiograph (DRR). DRR is an approximation of an X-ray image from CTA data [12].

Input.

The algorithm takes as inputs the 2D image J_2 (reference image) obtained by the amplification technique, and the 3D volume (target image) combining both the image I_5 of the two lumens (obtained by the segmentation approach described in Sect. 2) whose intensity is increased (after experimentations), and the initial CTA volume I_1. The algorithm is initialized with the transformation T issued from our fast ITD-based algorithm.

Method.

The registration is achieved by matching the reference image J_2 to generated DRR images, derived from the 3D CTA volumetric data I_1. Reference image and the DRR image are compared by measuring the similarity between the images using the value of the Mattes mutual information. The transformation is estimated using the evolutionary 1+1 optimizer [13].

The preliminary visual results are presented in Fig. 6.

4. **Conclusion**

In this paper, we presented our whole framework concerning interventional planning and assistance. As far as we know, this is the first attempt to propose such an image processing framework to treat ascending aorta dissections. Future works will be devoted to improve our pipeline: retrieve all aortic dissection characteristics (intimal tears, flap ...), perform a deformable registration using the aorta parametric model, provide endoprostheses sizing and elaborate a clinical protocol, etc.
References

Figure 1- Left: (A) The aortic root, (B) the ascending aorta, (C) the aortic arch, (D) the upper part of the descending aorta; (1), (2) and (3) respectively intima, media and adventitia layers; (a) an intimal tear, (b) the false lumen; (c) the true lumen [2]. Right: One 2D grayscale Computed Tomography Angiography slice (T: true lumen, F: false lumen).

Figure 2 - Aortic dissection segmentation. In I_5: in red the true lumen, in blue the false lumen.

Figure 3 - Complete 3D/2D registration framework.

Figure 4 - ITD-based 2D/2D registration.

Figure 5- ITD-based 3D/2D registration for a known 3D orientation T_0.

Figure 6 - Enhanced intraoperative images. Upper row: the X-ray amplification image (left) and the two lumens superposed (right). Lower row: a selected frame of the X-ray angiographic sequence (left) followed by its augmented view.
Computing ITDs(M_1)

Computing ITDs(M_2)

Computing transformation parameters

$T^{-}(2D)$

M_1 (2D)

M_2 (2D)
Projections
Proj\((2D)\)

ITD based
2D/2D registration

3D pose
estimation

\(N_t\) (2D)

\(T_0\) (3D)

\(N_2\) (3D)

\(T_i\) (3D)

\(T_n\) (3D)