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Abstract 

Most identification models based on instrumented indentation rely on the knowledge of the 

indentation load-penetration depth curve corresponding to the bulk material. Experimentally, 

and especially in the case of micro and nanoindentation testing, the measured curve can be 

affected by low scale artefacts such as sensor sensitivity, surface roughness, imperfect 

indenter tip geometry and material heterogeneity, leading to incorrect identifications of the 

indented material’s bulk mechanical properties. This work proposes an exploitation of 

identification models which is based on the slope of the indentation curve at indentation load 

values and provides accurate results which are not affected by low scale artefacts.  

 

1. Introduction 

 

The indentation test data is obtained by continuously measuring the applied load F and 

penetration depth h of a stiff indenter of known geometry normally to the surface of the tested 

sample. The adequate exploitation of the data through reverse analysis leads to an evaluation 

of the indented material’s mechanical properties. For the sake of simplicity, many reverse 

analysis models proposed in indentation literature [1-12] make the assumption that the sample 

is an homogeneous infinite half space, that the indented material obeys isotropic linear elastic 

behaviour, that its plastic yielding is predicted by the Von Mises yield criterion, its plastic 

behaviour is isotropic, and its isotropic hardening is described by the Hollomon power law, 

expressed by Eq.1. 
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where σ is the true stress, ε the true strain, E the Young modulus, σy the yield stress and n the 

hardening coefficient. 
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 Following these assumptions, reverse analysis, or identification models are created 

through intensive numerical simulating and data analysing, leading to proposals of explicit 

relations between experimental configuration, measured values, and material properties. In the 

case of an indentation by a rigid sphere, the general dimensionless form of this relation is 

given by Eq.2. 
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where R is the radius of the sphere and E*  the reduced elastic modulus given by Eq.3. 
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where υ is the Poisson ratio of the indented material. The comparison of Eq.2 with 

experimental results leads to the identification of the σy/E
* and n values which generate the 

smallest difference between the curve obtained from the model and the curve obtained 

experimentally. These values provide a stress-strain curve, described by the Hollomon law, 

which is frequently compared to the stress-strain curve obtained by a tensile test in order to 

assess the relevance of the material’s mechanical behaviour evaluation. 

The main advantages of the indentation test compared to the tensile test are the local 

probing of mechanical properties and the few restrictions on the sample shape and size. 

However, a drawback of the indentation test, if the objective is to identify bulk material 

properties, is its sensitivity to low scale artefacts such as sensor sensitivity, surface roughness, 

imperfect indenter geometry, and material heterogeneity [13-19]. These artefacts, 

independently from the assumptions on the bulk material behaviour, lead to deviations from 

the ideal F-h curve predicted by the identification models based on Eq.2.  

Surface roughness cannot be completely eliminated during the preparation of the 

experimental samples, especially in the case of micro and nanoindentation, and the persisting 

asperities’ height can be significant compared to the indenter radius and penetration depth. 

Initial contact between the indenter and the sample occurs on the asperities’ peaks, and the 

slope of the F-h curve can be considered representative of the bulk material only once the 

asperities are compressed. However, if initial contact, i.e. zero penetration depth, is detected 

by the indentation device by a sharp rise of load [15, 19], the penetration depth for a given 

load will show an offset hoffset,R from the penetration depth measured in the case of a perfectly 
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smooth surface, corresponding to the compression of the asperities [7, 14], such as presented 

schematically in Fig.1. Moreover, this offset as well as the necessary load for the compression 

of asperities is dependent on material properties, surface roughness, and the point of initial 

contact, i.e. the position of the indenter compared to the asperities’ peaks and valleys [14], 

which makes the determination of the effect of surface roughness impossible a priori.  

Imperfect indenter geometry also has an effect on the F-h curve, such as in the case of 

cones with a blunted tip [19]. Indeed, in that case, the contact behaviour is initially that 

obtained with a spherical indenter, followed by a mix of that obtained with a spherical 

indenter and a conical one, until the conical geometry of the indenter dominates the evolution 

of the contact behaviour in which case the slope of the F-h curve can be considered 

representative of an indentation with a perfect cone. However, the bluntness of the tip results 

in an offset of the penetration depth hoffset,I in comparison with the penetration depth obtained 

with an ideal cone, due to the incorrect tip position, and the slope of the F-h curve in the 

spherical and spherical-conical phases is obviously different from that obtained with an ideal 

cone, leading to the indentation curve represented schematically in Fig.1.  
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Fig.1. Effect of low scale artefacts on the indentation curve 

 

Material heterogeneity can also affect the F-h curve. Indeed, it can be assumed that the 

slope of the F-h curve becomes representative of the bulk material behaviour only once the 

volume of material which is deformed is sufficiently large to be representative of a 

homogeneous material, leading to similar effects as those of surface roughness and indenter 

tip geometry imperfection. 
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An approach to overcome these effects is to redefine the effective zero penetration 

depth point and the F-h curve at low load values by extrapolating the indentation curve below 

a given non zero reference load [13, 15, 19]. However, this method presents inherent 

incertitude linked to the choice of the adequate reference load, extrapolation function, and 

fitting range [13, 15], which are also unknown a priori. Other methods [16-18], based on the 

use of a spherical indenter, rely on the availability of substantial initial elastic contact data and 

define the effective zero point and the F-h curve at low load values by fitting the initial results 

to the predictions of Hertz’s theory [20]. This approach is generally not relevant if the 

determination of mechanical properties uses the F-h curve (i.e. models based on Eq.2) since 

plasticity occurs at very shallow penetration depth for most engineering materials.  

 

 The classical exploitation of identification models described by Eq.2 [1-12] to identify 

mechanical properties requires the knowledge of the F-h curve corresponding to the bulk 

material, i.e. presenting no offset of penetration depth nor effects on its slope at low load 

values, therefore the effects of the low scale artefacts described above, individually as well as  

coupled, can lead to wrong identification results, and the methods mentioned above may not 

be appropriate to overcome these effects. Therefore, there is an interest in proposing an 

exploitation of identification models based on Eq.2 which is independent of the low scale 

artefacts mentioned above. 

 

This work proposes such an approach based on the derivative of the F-h function 

instead of the F-h function itself. This approach does not require the determination of the 

effective zero penetration point and the perturbation of the slope of the F-h curve at low load 

values can be neglected. In section 2, an identification model based on spherical indentation is 

chosen in the scientific literature, and its efficiency and its correct implementation are 

validated through comparison with finite element method (FEM) simulation. In section 3, the 

effect of an offset of the penetration depth measurement on identification results is 

investigated, leading to an obvious requirement of an alternative approach. In section 4, the 

alternative approach is proposed, and provides identification results which are little different 

from those obtained in the ideal case, whether the penetration depth or the slope of the F-h 

curve at low load values be different of the bulk material behaviour. In section 5, an 

experimental case of an altered indenter tip is presented, showing effects on both the 

penetration depth and the slope of the F-h curve at low load values, eventually validating the 

approach proposed in this article.  
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2. Validation of the implementation of an existing identification model 

 

Due to its simplicity of implementation, the identification model proposed in 2009 by 

Ogasawara et al. [11] is used. This model is defined for the indentation of an infinite half-

space by a rigid sphere of radius R down to a maximal dimensionless penetration depth 

(h/R)max=0.3. The indented material is assumed to obey isotropic linear elastic behaviour with 

a Poisson’s ratio υ of 0.3. The yield criterion is Von Mises, the plastic behaviour is assumed 

isotropic, and the isotropic hardening curve is described by the Hollomon power law (Eq.1). 

The model is established using the Coulomb’s friction law, with a friction coefficient µ=0.15. 

The material parameter domain covers a range larger than 1.67E-4 to 0.33 for σy/E
* and a 

range of 0 to 0.5 for n.  

Spherical indentation simulations are carried out with the ABAQUS/Standard 

commercial finite element method code, in axisymmetric mode. All of the 10.000 mesh 

elements are axisymmetric four-node fully integrated elements. The element density 

distribution is built in order to obtain a compromise between accuracy in the contact and 

plastic zones, and computing time, as shown in Fig.2. 

 

 

 

Fig.2. Mesh used for the simulation of spherical indentation 
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The friction coefficient for the penalty contact algorithm and the material’s 

elastoplastic properties used in the FEM simulations are chosen in adequacy with the 

conditions of the model proposed by Ogasawara et al. (µ=0.15, υ=0.3). The Young modulus is 

set to a fixed value of 210 GPa, which is an average value measured on steel, and the yield 

stress (i.e. the σy/E
* ratio) and the hardening coefficient are varied. The six sets of material 

parameter values used for the simulations, which cover many classical engineering materials, 

are presented in Table 1. 

 

 σy (MPa) n 
MAT 1 200 0.000 
MAT 2 200 0.200 
MAT 3 600 0.000 
MAT 4 600 0.200 
MAT 5 1000 0.000 
MAT 6 1000 0.200 

 

Table 1. Material parameter values used for the FEM simulations 

  

The corresponding σy/E
* values are between 9.52E-4 and 4.76E-3, values which are 

contained within the definition range of the Ogasawara et al. model. The comparison and 

relative load difference between the indentation curves obtained from the model proposed by 

Ogasawara et al. and those obtained from the FEM simulations are presented in Fig.3. 
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Fig.3. (a) Comparison and (b) relative load difference between the indentation curves 

obtained from the model proposed by Ogasawara et al. and those obtained from the FEM 

simulations 
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 Apart from the values at low penetration depth values where numerical particularities 

and/or model imperfections can generate noticeable differences, results show a very good 

agreement between the model proposed by Ogasawara et al. and the FEM simulations carried 

out in this work. Indeed, most error values are within the +/- 1% range. 

 

 The model proposed by Ogasawara et al. is then used to identify material parameter 

values from the FEM indentation curves which are taken as experimental data. The procedure 

proposed by Ogasawara et al. uses two data points of the experimental indentation curve at 

any two dimensionless penetration depth values between h/R=0.1 and h/R=0.3 to determine 

the two unknown parameters σy/E
* and n, however in this work the difference between the 

curve obtained from the model and the experimental curve is minimized over the whole 

penetration depth data, i.e. at all penetration depth values, using the classical least square 

based functional ω1 expressed by Eq.4. 
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The identification of the σy and n values which minimize ω1 is led by a conjugate 

gradient algorithm. The identified material parameter values and the corresponding errors are 

presented in Table 2.  

 

 σy (MPa) Error (%) n Error (%) 
MAT 1 197 - 1.5 0.000 / 
MAT 2 209 + 4.3 0.192 - 4.0 
MAT 3 599 - 0.3 0.000 / 
MAT 4 604 + 0.6 0.199 - 0.5 
MAT 5 1009  + 1.0 0.000 / 
MAT 6 1006 + 0.5 0.200 0.0 

 

Table 2. Material parameter values identified from ideal FEM indentation curves, minimising 

ω1 

 

 

Most identification errors are below 1 %, except for MAT 2 which shows errors of 

about 4 % on both σy and n values. 
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The identified stress-strain curves are compared to the stress-strain curves used for the 

FEM simulations in Fig.4. 
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Fig.4. Comparison of the stress-strain curves identified from ideal FEM indentation curves to 

the stress-strain curves used in the FEM simulations, minimising ω1 

 

 

The identified stress-strain curves are in very good agreement with the stress-strain 

curves used in the FEM simulations, even for MAT 2, for which it can be suggested that 

compensation between material parameters provides a stress-strain curve which is very close 

to the one used in the FEM simulation.  

 

This very good agreement validates the relevance of the model, its implementation, 

and the chosen identification procedure in the case of ideal experimental data. This allows the 

assessment in section 3 of the effect of an offset of the penetration depth on the identification 

results. 
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3. Effect of an offset of the penetration depth on the identification results 

 

 In section 2, the experimental curve is supposed to be ideal, i.e. representative of the 

bulk material, presenting neither an offset of penetration depth nor effects on the slope of the 

F-h curve at low load values.  

 

There is an interest in assessing the effect of an offset of penetration depth on the 

identification results. If one considers in first approximation that the offset is equal to half the 

distance between peak and valley in the case of a rough surface [7], a dimensionless 

penetration depth offset hoffset/R=0.006 value can be assimilated, depending on the scale, to the 

indentation of a rectified surface presenting a Ra value of 1 µm by a sphere of radius 0.8 mm, 

as well as to the indentation of a mechanically polished surface presenting a Ra value of 0.2 

µm by a sphere of radius 160 µm. An offset hoffset/R=0.006 is applied on all six FEM curves 

and the identification procedure presented in section 2 is applied, leading to the fitting of the 

curves obtained from the model to the offset FEM curves presented in Fig.5. 
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Fig.5. Fitting of the indentation curves obtained from the model to the offset FEM 

curves, minimising ω1 

 

The offset is more visible for curves presenting high slopes, i.e. for materials showing 

high mechanical parameter values. It can be expected that the effects on the identified 

material parameter values is also higher for curves presenting high slopes. The identified 

material parameter values are presented in Table 3. 
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 σy (MPa) Error (%) n Error (%) 
MAT 1 167 - 19.7 0.031 / 
MAT 2 138 - 45.0 0.261 + 30.5 
MAT 3 479 - 25.1 0.055 / 
MAT 4 408 - 47.1 0.281 + 40.5 
MAT 5 775 - 29.0 0.075 / 
MAT 6 678 - 47.6 0.294 + 47.0 

 

Table 3. Material parameter values identified from offset FEM indentation curves, 

minimising ω1 

 

 The resulting identification errors are significant, of an average value of 40 %. The 

errors are higher for materials showing high material parameter values. The identified stress-

strain curves are compared to the stress-strain curves used in the FEM simulations in Fig.6. 

True strain

0,00 0,05 0,10 0,15 0,20 0,25 0,30

T
ru

e 
st

re
ss

 (
M

P
a)

0

500

1000

1500

2000

FEM input
Identification, MAT 1
Identification, MAT 2
Identification, MAT 3
Identification, MAT 4
Identification, MAT 5
Identification, MAT 6

 

Fig.6. Comparison of the stress-strain curves identified from the offset FEM curves 

minimising ω1 to the stress-strain curves used in the FEM simulations 

 

The identified stress-strain curves are very different from the ones used in the 

simulations. The trend of the identification errors is consistent with the offset. Indeed, the 

offset FEM curve is closer to that of a material presenting a lower yield stress value and a 

higher hardening exponent value.  

It is thus clear that a reliable identification of material properties through the use of 

models based on Eq.2 using ω1, i.e. a minimisation of load difference at known penetration 

depth values, cannot be carried out in the case of an offset of penetration depth due, for 

instance, to surface roughness or imperfect indenter tip geometry. In section 4, an alternative 

approach is proposed to overcome this problem.  
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4. Proposition of a new approach independent of the offset of indentation depth 

 4.1. Proposition of a new cost functional 

In section 3, it is shown that a minimisation of the load difference at penetration depth 

values cannot provide a reliable identification of material properties in the case of an offset of 

the penetration depth measurement, when using identification models based on Eq.2. 

Therefore, there is an interest in developing an approach which is independent of the true 

penetration depth value. Mathematically, the offset on the penetration depth measurement 

creates a non zero intercept on the curve. A value which does not depend on this intercept is 

the slope of the curve, if plotted versus the indentation load. If the reverse analysis model 

defines the indentation load-depth relationship continuously over the penetration depth range, 

such as the model proposed by Ogasawara et al [10] and many others [2, 4, 5, 8, 9, 11, 12], 

the derivative of the F-h function can be extracted. The slope of the indentation curve versus 

the indentation load is plotted for the indentation curves obtained from the FEM simulations, 

non offset and offset, and for the indentation curves obtained from the model, in Fig.7.  
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Fig.7. Slope of the indentation curve versus indentation load for the indentation curves 

obtained from the FEM simulations, non offset and offset, and for the indentation curves 

obtained from the model 

 

The F-h curve obtained from the identification model obviously presents a zero 

intercept, i.e. zero load for zero penetration depth. Consequently, the relation between the 

indentation function given by the model and its derivative is unique, and the use of the 

derivative is as relevant as the use of the indentation function itself. Therefore, the proposition 

in this work is to use a new cost functional ω2 which uses the slope of the indentation curve at 

indentation load values, such as expressed by Eq.5. 
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The identification procedure presented in section 2 is applied minimising ω2, and leads 

to the identified material parameter values presented in Table 4.  

 

 σy (MPa) Error (%) n Error (%) 
MAT 1 199 - 0.5 0.000 / 
MAT 2 198 - 1.0 0.203 + 1.5 
MAT 3 592 - 2.3 0.004 / 
MAT 4 604 + 0.6 0.199 - 0.5 
MAT 5 983 - 1.9 0.009 / 
MAT 6 1041 + 3.8 0.189 - 5.5 

 

Table 4. Material parameter values identified from offset FEM indentation curves, 

minimising ω2 

 

The range of errors of identification shows an average absolute value of 2%, which is 

slightly higher than the one obtained in section 2, i.e. in the case of ideal FEM indentation 

curves minimising ω1, nevertheless the identification results minimising ω2 still show a very 

good agreement with the material parameter values used in the FEM simulations. 

The identified stress-strain curves are compared to the stress-strain curves used in the 

FEM simulations in Fig.8. 
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Fig.8. Comparison of the stress-strain identified from offset FEM indentation curves to the 

stress-strain curves used in the FEM simulations, minimising ω2 
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The identified stress-strain curves show a very good agreement with the stress-strain 

curves used in the FEM simulations. As in the case of MAT 2 in the ideal identification case, 

the identified parameter values for MAT 6 seem to compensate one another and provide a 

good identification of the stress-strain curve. The overall good agreement validates the 

relevance of the use of the new cost functional ω2 in the case of an offset of the penetration 

depth. 

 

4.2. Neglecting the data at low load values 

 Independently of the offset of the penetration depth, there is an interest in proposing 

an approach which is little affected by the perturbation of the slope of the F-h curve at low 

load values. In the experimental application proposed in section 5, the perturbation of the 

slope of the F-h curve reaches about 10% of the maximum load, therefore the identification 

procedure minimising ω2 is applied neglecting the data corresponding to the lower 10 % load 

values. The identified material parameter values are presented in Table 5. 

 

 σy (MPa) Error (%) n Error (%) 
MAT 1 200 0.0 0.000 / 
MAT 2 213 + 6.5 0.188 - 6.0 
MAT 3 589 - 1.8 0.006 / 
MAT 4 611 + 1.8 0.196 - 2.0 
MAT 5 984 - 1.6 0.009 / 
MAT 6 1039 + 3.9 0.190 - 5.0 

 

Table 5. Material parameter values identified from offset FEM indentation curves, 

minimising ω2 and neglecting the lower 10 % load values 

 

 The range of errors of identification is comparable with that obtained in the case of the 

use of all load values, except for MAT 2 for which it can once again be suggested that a 

compensation between material parameter values leads to opposite errors on both σy and n 

values. The identified stress-strain curves, which are not shown, are also in an agreement with 

the stress-strain curves used for the FEM simulations which is comparable to the agreement 

obtained in the case of the use of all load values (Fig.8).  

The overall good agreement validates the relevance of the use of the new cost 

functional ω2 in the case of an offset of the penetration depth as well as in the case of affected 

slope of the curve at low load values. The approach proposed in this work is applied to an 

experimental case in section 5. 
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5. Experimental application 

 

 The experimental application proposed in this work focuses on the effect of imperfect 

indenter tip geometry on the indentation curve and on the identification results. The indented 

material is an AISI 1095 steel. The indenter is a rounded tip carved in bulk tungsten carbide, 

such as shown by the SEM visualization in Fig.9.a. 

 

    
(a)      (b) 

 

Fig.9. Scanning Electron Microscopy (SEM) visualization of the indenter (a) before (x180) 

and (b) after (x150) tip alteration 

 

 In order to assess the influence of imperfect indenter tip geometry, the profile of the 

indenter is intentionally altered at the tip, such as shown in Fig.9.b. The profiles measured 

from the by SEM visualizations before and after alteration are compared in Fig.10.  
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Fig.10. Indenter profiles before and after alteration of the tip 
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 It is clear that only the geometry of the tip of the indenter is altered. Indentation tests 

are led up to a load of 200 N on a sample of AISI 1095 whose surface is mirror-like polished, 

before and after alteration of the indenter’s profile. The indentation curves are presented in 

Fig.11. 
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Fig.11. Experimental indentation curves before and after alteration of the indenter’s profile 

 

 The indentation curves clearly show a difference of slope at low loads which 

corresponds to the alteration of the indenter’s profile at its tip. After reaching a load of about 

20 N (FI), which represents 10% of the maximum load, the slopes of the curves are identical, 

as shown by the rightward shift of the curve obtained after alteration of the profile. This shift 

of about 2 µm is the penetration depth offset due to the imperfection of the indenter tip 

geometry, written hoffset,I in Fig.11. 

 An in-house calibration procedure is available to take into account the real profile and 

the deformation of the indenter and obtain the results which would be obtained by a perfect 

rigid sphere, allowing the use of the model proposed by Ogasawara et al. However, this 

calibration procedure is defined for the initial profile of the indenter, thus the interest of this 

application is to determine if the approach proposed in this article can avoid the necessity to 

redefine the calibration procedure for the case of the altered tip profile. 

 Based on the data obtained by a tensile test and presented in a preceding article [21], 

the Young modulus of the AISI 1095 steel is set to 210 GPa in the identification model. The 

identification procedure minimising ω1 is applied to the indentation curves obtained before 

and after alteration of the tip profile over the whole indentation data. The identification 
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procedure minimising ω2 is applied to the indentation curve obtained after deformation of the 

tip profile, using the values corresponding to load values higher than 20 N (FI). The identified 

material parameter values are presented in Table 6.  

 σy (MPa) n 

Initial profile, ω1 211 0.218 

Altered profile, ω1 304 0.149 

Altered profile, ω2, F>20N 216 0.214 

 

Table 6. Material parameter values identified by indentation with respect to the identification 

method for AISI 1095 steel 

 

 The material parameter values identified minimising ω1 and the curve obtained after 

alteration of the tip profile are very different from those identified minimising ω1 and the 

curve obtained before alteration of the tip profile. Indeed, the leftward relative position of the 

curve obtained after alteration of the tip profile corresponds to a material presenting a higher 

yield stress and a lower hardening coefficient. However, the material parameter values 

identified minimising ω2 and the upper 90% of the curve obtained after alteration of the tip 

profile are very close to those obtained minimising ω1 and the curve obtained before 

alteration of the tip profile. The identified stress-strain curves are compared to the stress-strain 

curve obtained by the tensile test in Fig.12. 
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Fig.12. Comparison of the stress-strain curves obtained from identification by indentation to 

the stress-strain curve obtained from the tensile test 
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 In the case of the initial profile, i.e. the ideal case, the identification of Hollomon law 

parameter values by instrumented indentation using the model proposed by Ogasawara et al 

and the cost functional ω1 provides a very good evaluation of the stress-strain curve of the 

AISI 1095 steel obtained by the tensile test. The same exploitation of the data obtained with 

the altered tip profile provides a poor evaluation of the tensile curve due to the offset of the 

indentation curve. Indeed, the indentation curve is closer to that of a material presenting a 

higher yield stress value and a lower hardening exponent value. Nevertheless, the application 

of the approach proposed in this work provides an evaluation of the stress-strain curve of the 

AISI 1095 which is very close to the ideal case, i.e. a very good evaluation. In this application 

it is thus shown that even in the case of an altered indenter tip geometry, initial indenter 

geometry can be assumed if the approach proposed in this work is used. This approach can be 

used in the case of a crushed spherical indenter as well as in the case of a blunted conical 

indenter. 

 

5. Conclusion 

 

 In this work, after validating the efficiency and the implementation of an identification 

model based on spherical indentation selected in indentation literature, the effect of an offset 

of penetration depth on identification results is assessed. In the case of the classical 

minimisation of the load difference at penetration depth values, results are much affected by a 

slight offset of penetration depth. An alternative exploitation of the identification model is 

proposed, based on the minimisation of the difference between the slopes of the F-h curves at 

indentation load values, leading to identification results which are comparable to the ones 

obtained by classical identification in the case of non offset indentation data. Moreover, the 

proposed alternative is little affected if the initial data in terms of load is neglected in the 

identification procedure, which is necessary in the case of significant effects of low scale 

artefacts on the slope of the F-h curve at low load values. Finally, an experimental case is 

presented, showing that the proposed alternative is relevant in the case of an indenter with an 

altered tip geometry. 

 In conclusion, the exploitation method of identification models in instrumented 

indentation proposed in this work is a reliable alternative to the determination of the effective 

zero point and redefinition of the F-h curve at low load values, and can be used to overcome 

the effects of many low scale artefacts such as sensor sensitivity, surface roughness, and 
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imperfect indenter tip geometry which are frequently encountered during micro and 

nanoindentation testing. 
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