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Abstract 

Cyanobacteria are ubiquitous microorganisms considered as important contributors to the 

formation of Earth’s atmosphere and nitrogen fixation. However, they are also frequently 

associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and 

dermatotoxins synthesized by these bacteria is a growing environmental and public health 

concern. This paper provides a state of the art on the occurrence and management of harmful 

cyanobacterial blooms in surface and drinking water, including economic impacts and 

research needs. Cyanobacterial blooms usually occur according to a combination of 

environmental factors e.g., nutrient concentration, water temperature, light intensity, salinity, 

water movement, stagnation and residence time, as well as several other variables. These 

environmental variables, in turn, have promoted the evolution and biosynthesis of strain-

specific, gene-controlled metabolites (cyanotoxins) that are often harmful to aquatic and 

terrestrial life, including humans. Cyanotoxins are primarily produced intracellularly during 

the exponential growth phase. Release of toxins into water can occur during cell death or 

senescence but can also be due to evolutionary-derived or environmentally-mediated 

circumstances such as allelopathy or relatively sudden nutrient limitation.  Consequently, 

when cyanobacterial blooms occur in drinking water resources, treatment has to remove both 

cyanobacteria (avoiding cell lysis and subsequent toxin release) and aqueous cyanotoxins 

previously released. Cells are usually removed with limited lysis by physical processes such 

as clarification or membrane filtration. However, aqueous toxins are usually removed by both 

physical retention, through adsorption on activated carbon or reverse osmosis, and chemical 

oxidation, through ozonation or chlorination. While the efficient oxidation of the more 

common cyanotoxins (microcystin, cylindrospermopsin, anatoxin and saxitoxin) has been 

extensively reported, the chemical and toxicological characterization of their by-products 

requires further investigation. In addition, future research should also investigate the removal 
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of poorly considered cyanotoxins (β-methylamino-alanine, lyngbyatoxin or aplysiatoxin) as 

well as the economic impact of blooms.  

  

Keywords: Cyanobacteria, Ecology, Bloom, Toxin, Drinking Water Treatment, Public Health, 

Environmental Economy, Microcystin, Anatoxin, Cylindrospermopsin, Saxitoxin, BMAA 

 

1. Introduction 

Cyanobacteria were amongst the earliest organisms on Earth and the oxygen released 

into the atmosphere through their photosynthesis may have been the precursor of the ozone 

layer (Mur et al., 1999). Presently, while their importance in the evolutionary history of the 

Earth should not be under-stated, these ubiquitous microorganisms are mostly associated with 

eutrophic waters. Eutrophication of water resources is often considered as the primary cause 

of water quality impairment on a world-wide basis. Eutrophication of drinking water 

resources is primarily caused by excess nutrient loading and storage to lakes and reservoirs 

due to human activities although climate change will likely play an increasing role in the 

future (Heisler et al., 2008). 

Cyanobacteria are known because of their ability to produce compounds (2-

methylisoborneol and geosmin) causing unpleasant tastes and odors in drinking water 

(Falconer, 1999). However, over the last 2 decades, research priorities have progressively 

focused on the harmful metabolites also potentially biosynthesised by these microorganisms. 

Toxins of cyanobacteria (cyanotoxins) include hepatotoxins acting on the liver, neurotoxins 

acting on the nervous system and dermatotoxins causing skin irritation. Since they have been 

associated with numerous animal and human poisonings (Briand et al., 2003; Griffiths and 

Saker, 2003; Kuiper-Goodman et al., 1999; Pouria et al., 1998), cyanotoxins are now a 

growing environmental and public health concern.  
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Humans are potentially exposed to cyanotoxins through recreational activities such as 

bathing in contaminated surface water and through consumption of unsuitably treated 

drinking water produced from contaminated resources. Therefore, the efficient management 

and protection of water resources from harmful cyanobacterial blooms is of critical 

importance to protect human health. For that reason, this extensive review aims to provide a 

better understanding of cyanobacterial blooms; from the causes of their occurrence and the 

biosynthesis of toxins to the preventive and remedial options in surface water as well as 

drinking water supplies. While giving the reader a list of key references for further reading, 

this review also intends to underline the economic impacts of harmful cyanobacterial blooms 

and identify major research needs. 

 

2. Occurrence of harmful cyanobacterial blooms 

 There is no international definition or quantification for what a cyanobacterial bloom 

is, however, this phenomenon is generally considered as a significant production of biomass 

over a short period of time correlated with a diminution of phytoplankton diversity. In fact, 

blooms of cyanobacteria are often mono-specific (or nearly so) and may form a dense layer of 

cells at the surface of the water visible to the un-aided eye. The formation of cyanobacterial 

blooms is controlled by environmental factors, and human poisonings are further conditioned 

by the ability of the individual strains to perform the biosynthesis of cyanotoxins plus 

subsequent exposure to these harmful metabolites. 

 

2.1. Formation and monitoring of cyanobacterial blooms 

Since cyanobacteria are primarily phototrophic microorganisms, groundwater 

resources are not as vulnerable to bloom formation and associated problems as are surface 

waters. Cyanobacteria, unlike several types of true algae, usually do not prefer flowing water 
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although some species have adapted to such conditions. Generally, cyanobacteria flourish in 

more lentic aquatic ecosystems with relatively high concentrations of primary algal nutrients 

(nitrogen, phosphorous, and carbon). In some lakes and reservoirs with long residence times, 

nutrient accumulation and increasing trophic status favor blooms (sometimes nearly mono-

specific) of cyanobacteria. As lakes and reservoirs around the world continue to age due to 

either natural or human causes, the resulting eutrophication will favor cyanobacterial bloom 

formation over types of true algae. Therefore, the problem of cyanobacterial bloom formation 

and subsequent risks to human health are an increasingly important and timely topic.  

Given the many types of cyanobacteria and the diversity of habitats they have evolved 

into, predicting all environmental variables required by an individual species to grow and 

thrive is difficult if not impossible. Generally, the formation of cyanobacterial bloom is 

regulated by a combination of three primary environmental factors (Fig. 1). The first one is 

water temperature, several types of cyanobacteria preferring warmer water (25°C or above). 

Consequently, global warming may increase the frequency and magnitude of cyanobacterial 

blooms by favoring cyanobacteria among other phytoplankton species (Arheimer et al., 2005; 

Dale et al., 2006; El-Shehawy et al., 2012; Jöhnk et al., 2008; O’Neil et al., 2012; Paerl and 

Paul, 2012; Paul, 2008; Wiedner et al., 2007). The second environmental factor influencing 

cyanobacterial bloom is light exposure. Although several species of cyanobacteria can be 

considered hetero- or chemo-trophic, most species need a minimum of light availability for 

photosynthesis to occur. The quality, intensity, and duration of light needed are species-

specific. Usually, pigmentation of cyanobacteria protects the cell from photoinhibition due to 

high light intensities and also improves light harvesting through the absorption across a 

broader region of the visible spectrum compared to other phytoplankton species (Mur et al., 

1999). Therefore, it would appear as if duration of light exposure is a more important growth 

parameter than light intensity or quality. However, some species are extremely flexible in 
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their response to light exposure. Indeed, some cyanobacteria can persist in caves for months 

with virtually no light and are viable and capable of growth immediately following light 

exposure (Montechiaro and Giordano, 2006). The third factor leading to bloom formation is 

the trophic status of the aquatic system. Cyanobacterial blooms mainly occur in eutrophic 

reservoirs (El-Shehawy et al., 2012; Heisler et al., 2008) with N/P ratio ranging from 10 to 15 

(Mur et al., 1999). However, another study considering 99 reservoirs indicates that the 

occurrence of cyanobacterial blooms better correlates with the concentration of N total and P 

total rather than N/P ratio (Downing et al., 2001). 

The presence of cyanobacterial blooms is detected and monitored by different means. 

A common approach is to measure chlorophyll a (Chl a), the primary photosynthetic pigment 

contained in all phototrophic microorganisms. Chl a can be measured either in the field using 

in situ sensors or samples can be collected for laboratory analyses. However, measurements 

of Chl a do not discriminate cyanobacteria from algae, which pose a serious limitation on data 

interpretation. Measuring specific cyanobacterial pigments such as phycocyanin may 

overcome the problem (Brient et al., 2008; Gregor et al., 2007). In addition, the combined 

analysis of Chl a and phycocyanin provides useful information with respect to the proportion 

of cyanobacteria among other phytoplankton species.  

Another common method of monitoring cyanobacterial blooms is the enumeration and 

identification of cells by microscope. The advantage of doing so is that cyanobacteria species 

can be accurately identified and the proportion of cyanobacteria compared to other species in 

the phytoplankton assemblage. Microscope examination and enumeration has the highest 

resolution of any other method. Nonetheless, it is time-consuming and requires a relatively 

high level of taxonomic expertise. Like any other method, microscope identification of a 

potentially-toxic species of cyanobacteria does not mean it is actively producing toxin. 

However, enumeration and identification of cyanobacteria by microscope combined with 



 7 

chemical identification of toxins in the water gives a good indication of the culprit species. In 

addition to cell counting and identification, new techniques based on polymerase chain 

reaction (PCR) of genes related to toxin synthesis have been proposed (Al-Tebrineh et al., 

2010; Barón-Sola et al., 2012; Baxa et al., 2010; dos Anjos et al., 2006; Hisbergues et al., 

2003; Kurmayer and Kutzenberger, 2003; Ostermaier and Kurmayer, 2010). 

 

2.2. Origin of the toxicity 

The toxicity of cyanobacteria is related to the biosynthesis of harmful metabolites 

called cyanotoxins. However, cyanobacterial blooms are not necessarily associated with the 

occurrence of toxins since not all the strains are toxic (Sarazin et al., 2002). Indeed, 

cyanotoxins are produced only by the strains having the appropriate genes (Kurmayer and 

Christiansen, 2009). In addition, even toxic strains do not automatically produce toxins since 

several of them seem to have the capability to turn certain genes on or off depending upon 

environmental conditions. Identification of strains having the appropriate genes, however, is 

as-of-today the best method for determining whether a bloom is or may become toxic. Genes 

known to have toxin-producing capabilities have been progressively identified in certain 

strains (Kellmann et al., 2006; Kellmann et al., 2008; Moffitt and Neilan, 2004; Tillett et al., 

2000), allowing the development of PCR methods for the specific detection of potentially-

toxic cyanobacteria in environmental samples. 

Although genetic identification is an excellent tool in determining the biosynthesis of 

cyanotoxins, strain-specific environmental factors for toxin production exist. The iterative 

nature of toxin production on a strain-specific level makes generalizations regarding toxin 

production difficult. Environmental factors include but are not limited to light intensity and 

exposure time, water movement and flow, allelopathic influences and competition for 

resources, herbivory and grazing, nutrient concentrations and ratios, water temperature and 
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salinity, cell division and growth rate (Kosol et al., 2009; Orr and Jones, 1998; Sevilla et al., 

2008; Tonk et al., 2005). Indeed, the list of environmental factors and iterations seems almost 

as large as the list of strains capable of toxin production. Although daunting, much more 

empirical work needs to be done regarding environmental factors causing toxin production at 

the individual strain level.  

 

2.3. Literature available 

The proliferation of Nodularia Spumigena described by Francis (1878) in lake 

Alexandrina, Australia, is often referred to as the first report of toxic cyanobacterial bloom 

even though no toxin was identified. Since then, the growing concerns associated with 

cyanobacteria and their potentially toxic blooms have multiplied the publication of studies on 

the topic. In fact, the annual amount of publications on cyanobacteria suddenly increased in 

1991 and currently keeps growing (Fig.2). In December 2012, the Thomson Reuters Web of 

Science database retrieved 18642 publications related to cyanobacteria, among which 15350 

research articles and 1255 review articles. However, research on cyanobacteria is diverse and 

articles related to blooms only represent 20% of the publications. In fact the literature 

available on cyanobacteria covers more than 100 research areas including engineering and the 

production of biofuels. However, most of the publications remain in the field of water biology 

(22%), ecological science (18%) and microbiology (16%) while public health and 

environmental health (0.3%) are sparsely considered.  

 

3. Potential human exposure to cyanotoxins 

Cyanotoxins have been associated with numerous animal poisonings worldwide, but 

they are also a threat for human health. As presented in Fig. 1, human exposure to these 

harmful metabolites can have 3 major origins. One route of exposure is the ingestion of 
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cyanobacteria-based food ingredients or shellfish which previously bioaccumulated toxins 

through filtration of contaminated water (Ibelings and Chorus, 2007; Johnson et al., 2008; 

Rellán et al., 2009; Saker et al., 2005). Another exposure route is possible through dermal 

contact and accidental inhalation/ingestion during recreational activities in waters subjected to 

a toxic bloom. The third route of exposure could be caused by the ingestion of drinking water 

produced from a contaminated resource (Byth, 1980; Griffiths and Saker, 2003). Depending 

upon the population served and type of treatment prior to delivery, this third exposure route 

could affect a relatively large number of people.  Some examples of intoxication and relevant 

guidelines are provided with the chemical and biological properties of cyanotoxins. 

 

4. Occurrence and properties of cyanotoxins 

The word cyanotoxin refers to more than a hundred compounds that may strongly 

differ in their chemical structure and toxicological property (Table 1). They are usually 

arranged into 3 classes according to their target organ: hepatotoxins that induce liver injuries, 

neurotoxins that alter the neuromuscular transmission and dermatotoxins that induce skin 

irritation. 

 

 

4.1. Cyanobacterial hepatotoxins 

4.1.1. Microcystins 

Microcystins (MCs) form the main family of cyanotoxins since they are the most 

frequently studied and the most widespread. For example, their occurrence has been reported 

in Asia, Europe, North Africa, North America and Scandinavian countries (Fristachi and 

Sinclair, 2008). MCs were named according to Microcystis, the first genera of cyanobacteria 

associated with their biosynthesis. However, MCs are also produced by Oscillatoria, Nostoc, 
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Anabaena and Anabaenopsis (Kaebernick and Neilan, 2001). As mentioned previously, toxin 

synthesis is a complex process influenced by environmental conditions and depending on the 

genetic properties of each cyanobacterial strain. In the last decade, the gene cluster mcyA-J 

was identified as the origin of MCs biosynthesis. In fact, mcyA-J codes for a multienzyme 

complex including peptide synthetase and poliketide synthase, allowing the components of 

the toxin to be assembled non-ribosomally (Dittmann and Wiegand, 2006; Kaebernick and 

Neilan, 2001). 

As presented in Fig. 3, MCs are cyclic compounds enclosing 7 amino acids. Among 

them, the unusual Adda amino acid is often associated with the toxicity of the molecule 

because of its conjugated diene (Dawson, 1998). In addition, X and Z are usually referred to 

as variable amino acids which multiple combinations make the difference between more than 

70 variants of the toxin (Sivonen and Jones, 1999). Then, each variant is identified by the 

initials of X and Z. For example, the common MC which has leucine (initial L) and arginine 

(initial R) should be identified as MC-LR. 

MCs are water-soluble and stable molecules (Sivonen and Jones, 1999). Once 

absorbed by the organism, they are quickly concentrated in the liver (Fischer et al., 2000) and 

bind to the protein phosphatase (Dawson, 1998; Gupta et al., 2003; Kuiper-Goodman et al., 

1999; MacKintosh et al., 1990). Depending upon dose and body weight, the inhibition of 

protein phosphatase may lead successively to the accumulation of phosphorylated proteins in 

the liver, cell necrosis, massive haemorrhage and death. For example, the lethal dose 50 

(LD50) of MC-LR after intraperitoneal (i.p.) injection in mice ranges from 25 to 150 µg/kg 

(Kuiper-Goodman et al., 1999). This value may differ according to the MC variant but MC-

LR is usually used as a reference. MCs are also considered to be potential tumor promoters 

(Falconer, 1991; Nishiwaki-Matsushima et al., 1992).  
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Numerous animal and human intoxications by MCs have been reported (Hilborn et al., 

2007; Soares et al., 2006; Stewart et al., 2008). Most of the human poisonings were limited to 

gastro-enteritis (Kuiper-Goodman et al., 1999; Teixeira et al., 1993) but, when water 

containing the toxin was used for hemodialysis, MCs also caused the death of 60 patients at 

the Brazilian dialysis centre of Caruaru in 1996 (Azevedo et al., 2002; Jochimsen et al., 1998; 

Pouria et al., 1998; Yuan et al., 2006). Consequently, the World Health Organization 

considered the MC-LR no observable adverse effect level (NOAEL) of 40 µg/kg/d obtained 

after 13 weeks mice oral exposure (Fawell et al., 1999) and derived a guideline of 1 µg/L as a 

maximum value for MC-LR in drinking water (WHO, 1998). 

 

4.1.2. Nodularins 

Nodularins (NODs) have been reported mainly in Australia, New Zealand and the 

Baltic Sea (Sivonen and Jones, 1999; van Apeldoorn et al., 2007). Associated only with 

Nodularia spumigena (Kaebernick and Neilan, 2001), their biosynthesis is regulated by genes 

and performed non-ribosomally according to a mechanism similar to that involved in MC 

production (Dittmann and Wiegand, 2006). 

As shown in Fig. 3, NODs are cyclic pentapeptides structurally similar to MCs, 

including the Adda moiety but only one variable amino acid Z. So far, 9 variants of this water 

soluble and stable toxin have been identified (Codd et al., 2005), the most common being 

NOD-R with Arginine as variable amino acid. 

Like MCs, NODs are hepatotoxins acting through the inhibition of protein 

phosphatase and are potential tumor promoters. According to the variant, the LD50 of NODs 

in mice after i.p. injection ranges from 30 to 70 µg/kg (van Apeldoorn et al., 2007). However, 

no human intoxication with NODs has been reported so far, and no guidelines have been 

proposed for drinking water due to the lack of suitable toxicological data. 
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4.1.3. Cylindrospermopsin 

Cylindrospermopsin (CYL) has been initially detected in Australia (Griffiths and 

Saker, 2003; Saker et al., 1999), New Zealand (Stirling and Quilliam, 2001), and Thailand (Li 

et al., 2001). Consequently, CYL was considered as a tropical toxin until its recent 

characterization in temperate areas including Germany (Fastner et al., 2003; Fastner et al., 

2007; Rücker et al., 2007) and France (Brient et al., 2009). CYL was named according to 

Cylindrospermopsis raciborskii, but other cyanobacteria like Aphanizomenon ovalisporum, 

Raphidiopsis curvata and Umezakia natans can also perform the biosynthesis of the toxin 

(Banker et al., 1997; Fristachi and Sinclair, 2008). Similarly to MCs, the synthesis of CYL 

seems to be regulated by genes coding for polyketide synthase and peptide synthetase that 

gather toxin’s components non-ribosomally (Schembri et al., 2001). 

As shown in Fig. 3, CYL is a 415 Da tricyclic alkaloid enclosing a guanidine entity 

along with a uracil moiety potentially responsible for the toxicity (Banker et al., 2001). So far, 

the alteration of the hydroxyl group near the uracil moiety leads to the identification of 2 other 

variants: 7-epicylindrospermopsin with a different OH orientation (Banker et al., 2000) and 

the non-toxic deoxycylindrospermopsin without OH (Li et al., 2001; Norris et al., 1999). 

CYL is highly water-soluble with a half-life greater than 10 days in high purity water 

(Chiswell et al., 1999). After ingestion, the toxin mainly impacts the liver via the irreversible 

inhibition of protein synthesis leading to cell death (Froscio et al., 2003; Froscio et al., 2008; 

Metcalf et al., 2004). For example, CYL exhibits a 2100 µg/kg LD50 in mice, 24 hour after i.p. 

injection (van Apeldoorn et al., 2007). However, CYL exposure can also lead to fetal toxicity 

(Rogers et al., 2007), tumor initiation (Falconer and Humpage, 2001), micronucleus induction 

and chromosome loss (Humpage et al., 2000). 
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The most famous case of human intoxication by CYL occurred in 1979 in Australia 

and is often referred to as the Palm Island mystery disease (Bourke et al., 1983; Byth, 1980; 

Griffiths and Saker, 2003). The application of an algaecide to eliminate a bloom of 

cyanobacteria in the water supply resulted in CYL release and over 100 admissions of 

children to the local hospital for gastroenteritis associated with the consumption of 

contaminated drinking water. Therefore, based on the 30 µg/kg/d NOAEL observed on mice 

orally exposed to CYL during 11 weeks, 1 µg/L was proposed as a guideline for maximum 

concentration in drinking water (Humpage and Falconer, 2003). 

 

4.2. Cyanobacterial neurotoxins 

4.2.1. Anatoxin-a 

The occurrence of anatoxin-a (ANTX-a) was reported in USA (Osswald et al., 2007), 

Africa (Ballot et al., 2003; Krienitz et al., 2003), Asia (Namikoshi et al., 2003; Park et al., 

1993; Park et al., 1998) and Europe (Carrasco et al., 2007; Gugger et al., 2005; Viaggiu et al., 

2004). This toxin is mainly associated with 3 genera of cyanobacteria: Anabaena, 

Aphanizomenon and Planktothrix (Osswald et al., 2007; van Apeldoorn et al., 2007). The 

biosynthesis of ANTX-a has not been completely described yet, but the responsible genes 

have been identified (Cadel-Six et al., 2009; Mejean et al., 2010). 

As presented in Fig. 4, ANTX-a is a 165 Da alkaloid with a variant called 

homoanatoxin-a resulting from the methylation of the carbon at the extremity of the ketone 

function (van Apeldoorn et al., 2007). ANTX-a is highly water-soluble but unstable at pH 

above 10 and transformed into a non-toxic form by sunlight exposure. 

Once in the organism, ANTX-a induces paralysis by fixation on acetylcholine 

receptors without being degraded by acetylcholinesterase (Osswald et al., 2007). 

Consequently, death can occur by respiratory arrest when muscles involved in breathing 
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activity are affected. For example, the LD50 24 hours after i.p. injection in mice is 375 µg/kg 

(van Apeldoorn et al., 2007). 

ANTX-a has been responsible for various animal poisonings resulting in vomiting, 

convulsion and respiratory arrest (Gugger et al., 2005; Henriksen et al., 1997; Krienitz et al., 

2003; Wood et al., 2007), but no human poisonings have yet been reported. So far, there is no 

official guideline for ANTX-a in drinking water because of dissimilar results in subacute 

toxicity studies (Kuiper-Goodman et al., 1999), but 3 µg/L has been suggested (van 

Apeldoorn et al., 2007). 

 

4.2.2. Anatoxin-a(s) 

Anatoxin-a(s), known as ANTX-a(s), has been identified in restricted areas including 

the United States, Scotland, Denmark and Brazil (Molica et al., 2005; Onodera et al., 1997; 

Sivonen and Jones, 1999). The toxin has been associated only with Anabaena strains, but the 

biosynthesis has not been completely explained yet. 

As shown in Fig. 4, ANTX-a(s) is a 252 Da phosphate ester of a cyclic N-

hydroxyguanine (Sivonen and Jones, 1999; van Apeldoorn et al., 2007). Once absorbed in the 

organism, ANTX-a(s) inhibits acetylcholinesterase (Molica et al., 2005) and induces muscular 

paralysis with potential death by respiratory arrest. Very few toxicological studies have been 

carried out and only the LD50 by i.p. injection into mice is available: 20-31 µg/kg (van 

Apeldoorn et al., 2007). Consequently, no guideline has been proposed yet for ANTX-a(s) in 

drinking water. 

 

4.2.3. Saxitoxins 

In freshwaters, saxitoxins (STXs) have been detected in Australia and USA (Kuiper-

Goodman et al., 1999). While Anabaena circinalis and Aphanizomenon flos-aquae seems to 
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be the main associated cyanobacteria, Lyngbya wollei and Cylindrospermopsis raciborskii 

were also shown to perform the biosynthesis of the toxin (Nicholson et al., 2003). In sea 

water, STXs are also produced by some dinoflagellates. Again, with the identification of a 

relevant gene cluster, the knowledge of STXs biosynthesis has been improved (Kalaitzis et 

al., 2010).   

As presented in Fig. 4, STXs are tricyclic compounds ranging from 241 to 491 Da that 

can be non-sulphated, singly sulphated or doubly sulphated (Nicholson et al., 2003; van 

Apeldoorn et al., 2007). These water-soluble toxins can persist over 90 days in freshwater 

(Jones and Negri, 1997), but they are altered by high temperatures and degraded into more 

toxic variants (Sivonen and Jones, 1999). 

STXs, also known as paralytic shellfish poisons, block sodium ion channels in nerve 

axon membrane and induce nerve dysfunction, paralysis then death due to respiratory failure 

(van Apeldoorn et al., 2007). For example, the LD50 of the most toxic variant in mice was 

shown to be 10 µg/kg after i.p. injection. 

Over the last century, STXs have been associated with numerous human intoxications 

resulting in numbness, complete paralysis and even death (Kuiper-Goodman et al., 1999). 

However, no intoxication through drinking water has been documented so far. While no 

official guideline has been proposed for STXs in drinking water, Australia is considering a 3 

µg STX eq/L to be used (van Apeldoorn et al., 2007). 

 

4.2.4. β-N-methylamino-L-alanine 

The cyanotoxin β-N-methylamino-L-alanine (BMAA) has been recently identified in 

England (Metcalf et al., 2008), Peru (Johnson et al., 2008), South Africa (Esterhuizen and 

Downing, 2008), China (Li et al., 2010) and Florida (Brand et al., 2010). BMAA has not been 

extensively studied yet but a recent work indicates that this toxin may be produced by all 
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known groups of cyanobacteria (Cox et al., 2005). Indeed, cyanobacteria possess genes 

coding for cysteine synthase-like enzyme and methyl transferase, both being involved in 

BMAA biosynthesis (Aráoz et al., 2010a). 

BMAA is a 118 Da non-protein amino acid shown in Fig. 4. It acts mostly on motor 

neurons by fixation on glutamate receptors. In addition, BMAA could also cause 

intraneuronal protein misfolding, the characteristic of neurodegeneration (Banack et al., 

2010a). In fact, there are assumptions that BMAA could be associated with various 

neurodegenerative diseases such as the amyotrophic lateral sclerosis/parkinsonism dementia 

complex in Guam or Alzheimer’s disease (Banack et al., 2010a; Murch et al., 2004; Pablo et 

al., 2009). However, due to the lack of toxicological data such as LD50 or NOAEL, no 

guideline has been proposed for BMAA in drinking water. 

 

4.2.5. Other neurotoxins 

In addition to the common freshwater toxins presented previously, a recent review also 

mentioned the existence of 3 other marine cyanobacterial neurotoxins (Aráoz et al., 2010a). 

Antillatoxin, kalkitoxin and jamaicamide are lipopeptides produced by Lyngbya majuscula 

that induce neurotoxicity through the interaction with voltage-gated sodium channels. 

However, due to the limited data available for these compounds, their chemical and biological 

properties won’t be further developed in this paper. 

 

4.3. Cyanobacterial dermatotoxins 

Cyanobacterial dermatotoxins include aplysiatoxins (APTXs) and lynbyatoxins 

(LTXs) mainly produced by Lyngbya majuscula (van Apeldoorn et al., 2007). So far, these 

toxins have been detected only in marine water. After human exposure, characteristic 

symptoms of poisoning include dermatitis as well as oral and gastrointestinal inflammation 
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resulting in diarrhea (Nagai et al., 1996; Osborne et al., 2007). In addition, APTXs and LTXs 

are also potent tumor promoters through the activation of protein kinase C (van Apeldoorn et 

al., 2007). However, due to the lack of data, their chemical and biological properties won’t be 

further developed in this paper. 

 

4.4. Literature available 

MCs are probably the most common and the most well known toxic metabolites of 

cyanobacteria but STX and ANTX were the first cyanotoxins to be studied in articles from the 

early 1960s. Indeed, other toxins were only considered in studies published since the 1980s. 

The annual amount of publications on cyanotoxins dramatically increased over the last 

two decades (Fig. 2), mainly because of the constant progress in analytical science and the 

growing awareness of the public health risk associated with these cell metabolites. In 

December 2012, the Thomson Reuters Web of Science database retrieved 5293 publications 

related to cyanotoxins, among which 4366 research articles, 467 proceedings and 198 review 

articles. However, these publications are largely unevenly distributed among the different 

toxins, as shown in Fig. 2. Indeed, with 2971 publications MCs account for more than 56% of 

the overall literature. STXs come in second position with 27% of the literature but most of 

these articles are actually associated to red tides rather than cyanobacteria. While NODs, 

ANTX and CYL individually represent less than 10% of the literature available on 

cyanotoxins, Fig. 2 reveals BMAA, LTX and APTX are largely understudied with less than 

2% of the total amount of publications. 

The literature available on cyanotoxins is also unevenly distributed between more than 

100 research areas. Indeed, most of the studies focus on toxicology (24%), ecology (19%), 

chemistry (18%) and pharmacology (17%). While water biology, biochemistry and molecular 

biology still account for 13% of the literature, each of engineering and water resources only 
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represent 7%. With less than 5% of the overall amount of publications, other research areas 

including economy, public health or epidemiology are even less considered. 

 

5. Detection and quantification of cyanotoxins 

A wide range of methods are available for the analysis of cyanotoxins (Table 2; Fig. 

5). These include numerous techniques relying on biological and physico-chemical 

approaches. However, according to the method employed and the kind of results expected, 

samples often require specific preparation before analysis. 

 

5.1. Sample preparation 

After field sampling, samples should be stored at low temperature (4°C) and analyzed 

as soon as possible in order to prevent any alteration of toxin distribution 

(intracellular/extracellular). Sample preparation differs according to the kind of toxin 

analyzed. As shown in Fig. 5, direct filtration of the sample only allows the detection of 

extracellular toxins but an additional step inducing the lysis of cyanobacteria retained on the 

filter would allow separate detection of intracellular toxins. However, cell lysis prior to 

filtration allows the simultaneous detection of both extracellular and intracellular toxins 

without determining their repartition. Cell lysis is often obtained by freezing-thawing 

cyanobacteria or adding methanol in the sample (or onto the filter). Both methods directly 

damage cell membranes and release intracellular toxins (Harada et al., 1999). 

In addition, cyanotoxins in the filtrate may also undergo further purification and 

concentration, usually through solid phase extraction (SPE). In this case at least 500 mL of 

filtrate are poured through a cartridge containing a sorbent, usually a reversed phase C18. 

Then toxins are eluted using methanol and water (usually 90% methanol). In order to further 

increase the concentration of toxins, the cartridge eluate may be partially evaporated. This 
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practice can concentrate cyanotoxins by 3 orders of magnitude, which consequently improves 

the detection limit of any subsequent analytical method. 

 

5.2. Biological approach for the analysis of cyanotoxin 

Cyanotoxins can be detected and quantified through a biological approach relying on 

in vivo assays, immunological assays or biochemical assays, each with specific benefits and 

limitations. 

 

5.2.1. Toxin analysis by in vivo assays 

Mouse bioassay is likely the most well known in vivo assay. In fact, it was the first 

method developed to detect cyanotoxins in water even if it was actually designed to assess 

their biological effects. The procedure consists in the i.p. injection of the sample in a 

minimum of 3 mice followed by their necropsy after 24 hours (Falconer, 1993). The 

observation of different symptoms reveals the presence of hepatotoxins or neurotoxins in the 

matrix. For instance, while increasing the weight and the volume of the liver, the hepatotoxins 

also induce the alteration of hepatic cells (Falconer, 1993). However, mouse bioassay does 

not allow the exact identification of the toxin (MCs, NODs…) in the sample. 

Despite its low sensitivity, mouse bioassay can be considered as a semi-quantitative 

method when comparing the extent of the lesions to those observed on mice exposed to 

different concentrations of a standard toxin. In this case, the results are often expressed as 

equivalent of the standard toxin (usually MC-LR). Due to ethical issues with respect to animal 

experiments and the development of new methods (faster, more sensitive and more specific) 

for cyanotoxin measurement, the use of mouse bioassay is mostly limited to toxicological 

research. 
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Alternative in vivo bioassays relying on less controversial organisms, like crustacean 

larvae, have also been developed in order to quantify cyanotoxins (Kaushik and 

Balasubramanian, 2012). Larvae of the selected organism (for example Artemia, Daphnia or 

Thamnocephalus) are exposed to toxins through the incubation in a growth medium diluted in 

a specific volume of the sample to be tested. However, while these assays can be performed in 

a 96-well plate, they are still not specific and have a strong potential for interferences due to 

matrix effects. 

 

5.2.2. Toxin analysis by immunological assays 

Cyanotoxins can also be detected through recognition and binding to specific 

antibodies. For example, various ELISA (Enzyme-Linked ImmunoSorbent Assay) kits are 

commercially available for the detection of MCs in water (Carmichael and An, 1999; Hilborn 

et al., 2005; Lindner et al., 2004; Rapala et al., 2002). According to the antibody and the 

procedure employed, these extremely sensitive methods can achieve a detection limit as low 

as 4 ng/L with an upper quantitation limit (due to saturation) close to 2 µg/L for MC-LR 

(Lindner et al., 2004). Therefore, while ELISA is successfully employed for the detection of 

MCs, specific antibodies have also been designed to apply this method to the detection of 

CYL and STXs (Bláhová et al., 2009; Campbell et al., 2009) 

However, detection methods based on ELISA also have some limitations. For 

instance, the different MCs variant cannot be distinguished and the results have to be 

expressed as equivalent MC-LR/L. In addition, cross reactivity (even limited) with other 

compounds in the sample may lead to overestimate the concentration of the toxins.  
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5.2.3. Toxin analysis by biochemical assays 

Since MCs and NODs are potent inhibitors of protein phosphatase, these toxins can be 

detected using a protein phosphatase inhibition assay known as PPIA (Almeida et al., 2006; 

Bouaïcha et al., 2002; Heresztyn and Nicholson, 2001; Ortea et al., 2004; Rapala et al., 2002). 

Before incubation with the relevant substrate, the enzyme is exposed to an aliquot of the 

sample containing the toxin. Measuring the absorbance of the mixture at a specific 

wavelength allows the detection of the substrate (or its transformation product) and the 

assessment of the enzyme activity, which is inversely proportional to the concentration of the 

toxin. 

According to the method employed, PPIA can ensure toxin detection within a few 

hours for a large number of samples. Such procedure allows the quantification of MC-LR 

with a detection limit reaching 0.01 µg/L (Almeida et al., 2006). However, PPIA cannot 

distinguish co-occurring variants of MCs and cannot distinguish MCs from NODs. Therefore, 

results are often expressed as equivalent MC-LR/L. In addition, when analyzing bloom-

containing water, interferences with unknown compounds leading to overestimation or 

underestimation of toxin concentration should be considered. Moreover, since PPIA detects 

only MCs and NODs, further analysis should be undertaken to detect other cyanotoxins 

potentially occurring in the sample. 

  

5.3. Physico-chemical approach for the analysis of cyanotoxins 

Cyanotoxins can also be analyzed through a physico-chemical approach often relying 

on two steps, the separation of compounds present in the sample by chromatography followed 

by their quantification with specific detectors. Depending on compatibility, a 

chromatographic technique can be coupled to different detection technique and reciprocally.  
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5.3.1. Separation techniques 

Separation techniques are commonly employed since they allow the discrimination of 

several co-occurring toxins within a single analysis, even with a non-specific detector. Indeed, 

toxins are then identified when pairing the separation profile of the sample with references 

obtained from the analysis of standards or purified compounds in the same conditions. 

Liquid chromatography (LC), usually with a reversed phase C18 or a HILIC column 

and methanol/water or water/acetonitrile as a mobile phase, is likely the most common 

separation method for cyanotoxins since it allows flexibility, rapidity and adaptability to a 

wide range of detector relying on UV absorbance, fluorescence or mass spectrometry. Gas 

chromatography (GC) is also used as a separation method for cyanotoxins (Kaushik and 

Balasubramanian, 2012) but to a lower extent. Indeed, some cyanotoxins like MCs are large 

molecules and not really volatile and GC separation requires more complex sample 

preparation that may include derivatization. Capillary electrophoresis (CE) performing 

separation of compounds according to their mass and charge can also be employed in the 

analysis of cyanotoxins like ANTX, CYL and MCs (Vasas et al., 2004). However, even 

though detection by mass spectrometry or fluorescence (after derivatization) could provide 

sensitivity, a recent study indicates CE is not considered sufficiently robust yet to be used for 

routine analysis (Kaushik and Balasubramanian, 2012). 

 

5.3.2. Detection by UV absorbance and fluorescence 

Monitoring UV absorbance was one of the first techniques to detect cyanotoxins after 

LC separation. Indeed, MCs or CYL have specific UV spectra with a maximum absorbance at 

240 nm and 262 nm respectively (Merel et al., 2009; Merel et al., 2010b). However, detection 

by UV absorbance offers only limited sensitivity and low specificity. For instance, MCs have 

similar UV spectra (Harada et al., 1999) and the identification of the variant depends only on 
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the retention time. Consequently, only 7 variants with analytical standards available can be 

reliably identified and quantified by LC-UV. Those remaining have to be quantified and 

reported as MC-LR equivalent. In addition, the lack of specificity further increases when 

monitoring only the absorbance at selected wavelengths instead of the full UV spectrum and 

potential interferences should be anticipated in complex matrices like bloom-containing 

water. 

Detection by fluorescence is also commonly used after LC separation. Therefore, 

methods based on this technique have also been developed for the detection of cyanotoxins as 

an alternative to UV absorbance (Harada et al., 1997; Kaushik and Balasubramanian, 2012). 

Indeed, fluorescence detection usually significantly improves sensitivity. However, 

cyanotoxins do not naturally fluoresce implying the addition of a derivatization process 

during the sample preparation. 

 

5.3.3. Detection by mass spectrometry 

Mass spectrometry (MS) became increasingly common over the last decades due to its 

high sensitivity in comparison to other detection methods and its availability for both LC and 

GC. In addition, MS detects compounds based on their mass and charge, which therefore 

limits the potential for interferences and improves selectivity. Moreover, the development of 

tandem mass spectrometry (MS/MS) also enhanced specificity by further discriminating 

compounds with similar mass and charge through their specific fragmentation pattern when 

colliding with molecules of inert gas.  

GC-MS methods have been developed and proven successful for the analysis of some 

cyanotoxins like MCs but very complex procedures are required for sample preparation. 

Indeed, published GC-MS methods for the analysis of MCs even require sample oxidation, 

post-treatment to remove remaining reagents and derivatization. Consequently, cyanotoxins 
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are mostly detected by LC-MS or LC-MS/MS, allowing simultaneous detection of a larger 

amount of toxins with a simpler sample preparation procedure (Kaushik and 

Balasubramanian, 2012). Specific details about analytical conditions and methods can be 

found in the relevant references provided in Table 2. 

Cyanotoxins can also be detected by MS without preliminary chromatographic 

separation, particularly with time of flight (TOF) mass spectrometers. For example MALDI-

TOF instruments can be used to perform toxin analysis in very small sample volume such as 

cell colonies (Kaushik and Balasubramanian, 2012). Molecules enclosed in the dried and solid 

sample are ionized by a laser beam and accurately identified through the high mass resolution 

provided by the TOF instrument. However TOF mass spectrometers usually tend to be less 

sensitive than other mass spectrometers from the same generation.  

 

5.4. Challenges for the analysis of cyanotoxins 

Cyanotoxins enclose a wide range of compounds with different properties and, despite 

the major progress in analytical science over the last decades, their analysis still remains 

challenging. The first challenge consists in developing new methods able to identify and 

quantify simultaneously as many toxins as possible along with their different variants. Indeed, 

there is no single method yet able to detect all the cyanotoxins potentially occurring in a water 

sample. For instance, while biological methods are usually toxin specific, physical methods 

like LC-MS also have limitations and quantifying several cyanotoxins might require several 

sample analysis using different chromatographic conditions. The second challenge consists in 

continuously improving method robustness and detection limit. For example, sample 

preparation may result in a partial loss of analytes, biological methods are subject to matrix 

interference called cross reaction and physical methods like LC-MS suffer matrix effect called 

ion suppression. While cross reaction cannot be readily accounted for, spiking the sample a 
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stable isotope of the analyte can correct for eventual loss during sample preparation and ion 

suppression. However, stable isotopes of cyanotoxins are not commercially available yet, 

meaning that without such correction, concentration reported by LC-MS in bloom-containing 

water might have been partially underestimated. Finally, another challenge consists in making 

the analysis of cyanotoxins faster, cheaper and feasible in situ. For example sample 

preparation is increasingly automated but also more commonly performed online, which 

lower the volume of sample necessary and increase throughput. However, the current state of 

the art does not yet allow sensitive mass spectrometric analysis in-situ, but serious progress 

have been made on this topic with biological detection methods. Indeed, immunological 

method have been adapted to develop strips for measurement of toxins in the field (Humpage 

et al., 2012) but further research is still needed to achieve the same quantification capabilities 

than laboratory based procedures.     

 

6. Management of cyanobacterial blooms in surface water 

The management of cyanobacterial blooms in surface water is a complex task which 

aims to prevent, monitor, and treat such phenomenon while circumventing human health 

issues. Different strategies can be applied to reach these objectives, but each potentially 

contaminated site has to be carefully considered in order to select the more suitable approach.  

 

6.1. Prevention of bloom occurrence 

The concentration of nutrients (primarily species of C, N, and P) for cyanobacterial 

and algal growth in water is a key factor in promoting bloom formation and overall 

eutrophication of surface waters across the world. Decreasing the inputs of nutrients in 

surface water is a primary, but long term strategy to prevent the occurrence of cyanobacterial 

blooms (Downing et al., 2001; Paerl et al., 2011a; Paerl et al., 2011b). First effort to reduce 
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nutrient inputs was made in 1970s by increasing and improving wastewater treatment instead 

of rejecting untreated effluents directly into surface waters. Within a few years, this approach 

significantly decreased bloom occurrence in numerous surface waters in the US such as Lake 

Washington, Lake Erie and the Potomac River (Heisler et al., 2008). Now, as most of the 

largest cities in developed countries operate wastewater treatment facilities, further reduction 

of nutrient inputs can be achieved by improving agricultural practices with particular 

emphasis on the use of fertilizers and manure spreading (Chorus and Mur, 1999). However, 

acting on such diffuse, non-point sources of nutrients is a long term strategy. In addition, 

results may not be observed immediately since the high amount of nutrients already in lake 

sediments and released through physico-chemical processes (autochthony) may still favor the 

growth of cyanobacteria and overall eutrophication years into the future. 

The management and control of cyanobacterial blooms is really the control and 

management of nutrients from two sources, from outside of the lake or reservoir 

(allochthonous) and from within the reservoir (autochthonous). Controlling non-point sources 

of nutrients is difficult. Indeed some nutrients (i.e. nitrogen) are deposited atmospherically in 

lakes and reservoirs from remote sources thousands of kilometers away. Also, almost every 

human activity in the watershed affects nutrient loading to lakes and reservoirs. For instance, 

urbanization in general is a huge source of nutrient delivery along with climate change and 

wildland fires also resulting from anthropogenic activities.  

To control non-point sources of pollution, the US Environmental Protection Agency 

(EPA), under Section 303(d) of the Clean Water Act, has implemented a Total Maximum 

Daily Load Program (TMDL) for surface waters of the US (US EPA 2012a). The TMDL 

program is run on a state-by-state basis and attempts to: 
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1. Identify Quality Limited Waters. States must identify and prepare a list (US EPA 

2012b) of waters that do not or are not expected to meet water quality standards after 

applying existing required controls (e.g. minimum sewage treatment technology). 

2. Establish Priority Waters/Watersheds. States must prioritize waters/watersheds and target 

high priority waters/watersheds for TMDL development. 

3. Develop TMDLs- For listed waters, States must develop TMDLs that will achieve water 

quality standards, allowing for seasonal variations and an appropriate margin of safety. A 

TMDL is a quantitative assessment of water quality problems, contributing sources, and 

load reductions or control actions needed to restore and protect individual waterbodies.  

The TMDL process attempts to control and reduce non-point sources of pollution 

while taking into account the complexity involved with many different types of aquatic 

ecosystems. It can be a lengthy process but it is relatively comprehensive in scope.  

Although the TMDL process is a key tool for US regulation and control of non-point 

sources of pollution delivered to surface waters of the US (allochthonous inputs), it is less 

robust at controlling nutrient recycling (autochthonous) within lakes and reservoirs. To 

address the problem of nutrient recycling and a reduction in cyanobacterial biomass requires 

highly specialized techniques and expertise. Also, due to large differences in inherent 

variability within aquatic systems, the “one-size-fits-all” approach almost never works. The 

selection of what specific technique or set of techniques works the best in any given lake or 

reservoir is site-specific. Lake and reservoir management should be on-going so that data can 

be collected and analyzed in light of changing environmental conditions. Phytoplankton in 

lakes and reservoirs is a highly dynamic assemblage of organisms and therefore, the 

management of these aquatic resources should be equally as dynamic.  

It is beyond the scope of this paper to address all the limnological concepts behind 

lake and reservoir management for a reduction in trophic status and, therefore, in bloom 
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formation. The most important tool in reducing bloom formation is an ecological 

understanding of what species are present and their requirements for growth. This knowledge 

needs to be first and foremost otherwise, all management techniques aiming to reduce the 

prevalence and magnitude of cyanobacterial blooms are hit-or-miss. Just a few lake and 

reservoir management techniques known to control nutrient recycling are provided below: 

- Aeration and mixing (including hypolimnetic aeration) 

- Sediment dredging 

- Sediment inactivation (usually by using aluminium sulfate) 

- Dosing with aluminium sulfate to bind P and make it limiting for cyanobacterial growth. 

- Algaecides to reduce cyanobacteria and algal biomass (and decrease bottom deposits). 

 

 Techniques should be carefully chosen and expert limnologists and lake managers 

consulted. Results need to be data-driven rather than anecdotal and on-going management as 

well as data collection should be implemented. Unfortunately, there are no quick fixes for 

reducing trophic status and bloom formation so goals and objectives might take some time to 

be achieved.  

 

6.2. Eradication of occurring cyanobacterial blooms 

The usual technique to eradicate a bloom of cyanobacteria consists in applying an 

algaecide, usually copper sulfate (Hrudey et al., 1999). Indeed, cyanobacteria are among the 

microorganisms most vulnerable to Cu2+ which affects electron transport in the photosystem 

and the activity of fundamental enzymes (Hrudey et al., 1999; Le Jeune et al., 2006). 

While algaecides efficiently eliminate occurring blooms, they also induce cell lysis 

and subsequent release of intracellular toxins (Jones and Orr, 1994; Peterson et al., 1995). For 

example, microscopic observation of Microcystis aeruginosa exposed to copper sulfate (650 
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µ/L for 24 hours) indicates massive cell membrane alteration correlated with an increasing 

concentration of extracellular MC-LR (Kenefick et al., 1993). In addition, Cu2+ tends to 

precipitate and accumulate in sediments, causing copper toxicity issue and allowing 

cyanobacteria to bloom again after a few weeks. 

Even though a recent study addresses the issue of copper toxicity by the application of 

hydrogen peroxide instead of copper sulfate (Matthijs et al., 2012), algaecides should be 

avoided has much as possible since it is barely a short term solution to blooms which further 

leads to both ecological and public health risk through copper accumulation in sediment and 

potentially significant toxin release (Griffiths and Saker, 2003). Thus, once a bloom occurs in 

surface water there is no ideal curative measure, which strengthen the importance of 

preventive measures described previously. 

 

6.3. Bloom monitoring and prevention of health issues 

Several countries besides the US, such as Germany, Finland, France or the Netherland, 

have developed specialized monitoring procedures (Chorus, 2005; Ibelings, 2005; Rapala et 

al., 2005). Differences in procedures exist yet but they all share some commonality. As 

previously mentioned, phytoplankton counts and identification should be on-going and must 

take into account seasonal variability in assemblage changes. Based upon total biomass, if 

cyanobacteria are predominant, then toxins should be analyzed. If toxin concentrations are 

low (different ranges of high, intermediate, and low by country) there may be no need for any 

action other than public warning and awareness. On the contrary, intermediate toxin 

concentration leads to public information with restriction of recreational activities while high 

toxin concentration leads to prohibition of recreational activities, including fishing. Once 

toxins are detected in surface water, their concentration has to be monitored until they become 

non-detected again (biodegradation, etc.). 
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As it is impossible to constantly supervise every surface waters for toxin activity, 

public information should be the primary means to prevent human intoxication.  

 

7. Drinking water treatment and cyanobacteria 

Until preventive measures (unique but long term solutions to blooms) discussed 

previously successfully prevent the occurrence of cyanobacterial blooms in drinking water 

resources, drinking water treatment should be able to protect consumer from exposure to 

cyanotoxins. Consequently, drinking water treatment should remove cyanobacteria without 

compromising cell integrity in order to simultaneously eliminate intracellular toxins, but it 

should also remove potentially extracellular toxins previously released in raw water. 

 

7.1. Overview of drinking water treatment 

Drinking water treatment plants usually include a sequence of fundamental and 

optional processes, as presented in Fig. 6. The succession of these processes strongly differs 

according to the quality of the water resource but also according to the country and region. 

For example, while the most basic treatment for a high quality surface water resource would 

typically consist of coarse filtration followed by clarification to remove natural organic matter 

(NOM) and disinfection to inactivate pathogens, the decreasing quality of the in-coming 

surface water resource would require the application of additional processes to fulfill drinking 

water quality standards. 

Water treatment processes are usually divided into 2 categories: those based on the 

retention of contaminants (clarification, adsorption, filtration…), and those based on the 

degradation of contaminants (UV irradiation, ozonation, chlorination…). While retention-

based treatments generally require the regular application of cleaning procedure (backflush to 

limit fouling) as well as the replacement of pseudo-consumables (activated carbon and 
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membranes), degradation-based treatments may lead to the formation of potentially harmful 

known or unknown by-products such as trihalomethanes (THMs). 

 

7.2. Impact of pre-treatment on cyanobacteria and cyanotoxins 

Upon entering a water treatment plant, raw water is first coarsely filtered then 

potentially pre-oxidized. Both of these steps are often referred to as pre-treatments, as 

indicated in Fig. 6. Coarse filtration aims to remove macro-contaminants (leaves, plastic 

bags…) that could either damage treatment facilities or disturb following treatment processes. 

However, it does not greatly affect microcontaminants such as cyanobacteria and their toxins. 

The optional pre-oxidation by chlorine or ozone aims to improve the efficiency of next 

treatment steps, but it also damages the membrane of cyanobacteria (Miao and Tao, 2009). As 

indicated in Table 3, pre-oxidation induces cell lysis and the release of intracellular toxins. 

Also, the rapid consumption of chlorine and ozone by the high amount of dissolved organic 

carbon (DOC) in water at this stage of the treatment is likely to prevent substantial toxin 

oxidation. Consequently, while pre-oxidation is becoming less prevalent due to the production 

of harmful by-products, it should also be avoided when a bloom occurs in drinking water 

resources. 

 

7.3. Impact of retention-based treatment on cyanobacteria and cyanotoxins 

7.3.1. Coagulation-flocculation-sedimentation 

The first steps in common drinking water treatment, coagulation-flocculation-

sedimentation, aims to remove colloidal material (negatively charged suspended particles) in 

order to decrease turbidity. The addition of iron or aluminum salts neutralizes negative 

charges of colloids and prevents electrostatic repulsion between particles. Consequently, 
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colloids tend to agglomerate and form bigger particles (flocs) subsequently removed by 

sedimentation. 

Cyanobacteria are microscopic microorganisms with negative charges on the 

membrane that can be roughly considered as colloids and removed by coagulation-

flocculation-sedimentation. For example, up to 90% removal can be achieved on cultured 

Microcystis (Hall et al., 2000), but the dose of coagulant has to be increased according to the 

concentration of cyanobacteria in raw water and the organic matter content (Briley and 

Knappe, 2002; Velzeboer et al., 1995). Indeed, the higher concentration of cyanobacteria the 

more negative charges to be neutralized. In addition, the negative charges on the membranes 

increase with the production of polysaccharides during exponential growth. Consequently, the 

removal of cyanobacteria also depends on the age of the cells (Konno, 1993; Pieterse and 

Cloot, 1997). 

Although coagulation-flocculation-sedimentation is capable of removing 

cyanobacteria, certain species containing gas vacuoles may disturb sedimentation by 

preventing flocs to settle (Pieterse and Cloot, 1997). Therefore, some studies showed that 

dissolved air flotation (DAF) could also efficiently remove cyanobacteria instead of 

sedimentation (Teixeira and Rosa, 2006a; Teixeira et al., 2010). In this case, the air injected at 

the bottom of the reactor carries the cells to the surface where they can be removed by 

scrapping. 

Both sedimentation and DAF efficiently remove intracellular toxins since various 

studies have concluded that the elimination of cyanobacteria without damage to cell 

membrane or toxin release can occur (Table 3). However, once transferred into the sludge 

resulting from these processes, up to 90% of the cyanobacteria are lysed and released their 

toxins within 24 hours (Drikas et al., 2001). Therefore, sludge should be quickly extracted in 

order to avoid any back contamination of water by toxins diffusing to the aqueous phase.  
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On the contrary, coagulation-flocculation-sedimentation or DAF are not expected to 

remove extracellular toxins since both of them are designed to remove particles. As indicated 

in Table 3, this theory was confirmed by studies showing no difference in the concentration of 

MCs after treatment. The impact of these processes on other cyanotoxins was not further 

investigated. 

 

7.3.2. Sand filtration 

Slow sand filtration was shown to remove both cyanobacteria and their toxins during 

water treatment (Grützmacher et al., 2002). For example, 85% to 99% removal of MCs could 

be achieved when filtering water containing Planktothrix agardhii but the removal rate 

drastically decreases at low water temperature. While the main process for the elimination of 

MCs from a healthy cyanobacterial population was physical filtration of intracellular toxins 

(Grützmacher et al., 2002), extracellular toxins were also shown to be biodegraded (Bourne et 

al., 2006; Ho et al., 2006a; Ho et al., 2007). Indeed, the upper layer of sand filters potentially 

allows the growth of microorganisms. Among them, some bacteria brought in from the raw 

surface water resource could efficiently degrade MCs but a latency period might be required. 

With the isolation of microorganisms able to assimilate MCs (Ho et al., 2007; Ho et al., 

2012a; Ho et al., 2012b) and the identification of the related genes (Bourne et al., 2001; Dziga 

et al., 2012; Yan et al., 2012), biodegradation offers a promising alternative for the removal of 

cyanotoxins in drinking water treatment. However, toxin-degrading microorganisms may not 

be able to grow in each sand filter of each drinking water treatment plant and biodegradation 

of cyanotoxins other than MCs have not been observed yet. Consequently, biodegradation of 

cyanotoxins on slow sand filters should not yet be considered as a remedial treatment by itself 

but as a link in the chain of a multi-barrier approach. 
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7.3.3. Membrane filtration 

The term membrane filtration covers various processes characterized by the pore size 

of the associated membrane: microfiltration (0.1-10 µm), ultrafiltration (1-100 nm), 

nanofiltration (around 1 nm) and reverse osmosis (0.1 nm). These retention techniques have 

received considerable attention for their potential to remove microcontaminants in drinking 

water treatment. For example, according to the membrane employed, membrane filtration 

processes can efficiently remove cyanobacteria and their toxins, as indicated in Table 3. 

Microfiltration and ultrafiltration processes are particularly efficient to remove 

cyanobacteria and intracellular toxins. For instance, both kinds of membranes were shown to 

achieve 98% removal of Microcystis aeruginosa, a toxic cyanobacteria frequently detected in 

drinking water resources (Chow et al., 1997). Although clogging and cell lysis are primary 

concerns in any filtration technique, damage to cell membranes were shown to be non-

existent or limited during microfiltration and ultrafiltration, which prevents the increase of 

extracellular toxins in the permeate (Table 3). On the contrary, extracellular toxins are not 

expected to be removed by microfiltration membranes because of the pore size. Similarly, 

even though ultrafiltration membranes were shown to remove extracellular MCs (Lee and 

Walker, 2008), they may not be able to retain smaller toxins. On the other hand, both kind of 

filtration techniques can be applied to remove extracellular toxins previously adsorbed on 

powdered activated carbon (Campinas and Rosa, 2010a; Dixon et al., 2011a). 

Theoretically, cyanobacteria should be efficiently removed by nanofiltration and 

reverse osmosis (lower pore size compared to ultrafiltration), but cells are not supposed to 

reach these processes. In fact, cyanobacteria are eliminated by previous treatments in order to 

avoid immediate clogging of these membranes. However, both nanofiltration and reverse 

osmosis are particularly efficient for the retention of extracellular toxins, as indicated in Table 

3. For example, more than 95% removal could be observed for MC-LR and ANTX-a 
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(Teixeira and Rosa, 2006b) while 90-100% removal could be observed for CYL (Dixon et al., 

2010; Dixon et al., 2011b). In addition, reverse osmosis was also shown to remove NODs 

(Vuori et al., 1997) but no published data are available concerning STXs, ANTX-a(s), 

BMAA, APTX or LBTX. 

Although membrane filtration seems to be a promising option to remove both 

cyanobacteria and cyanotoxins during drinking water treatment, nanofiltration and reverse 

osmosis are complex as well as expensive methods. Their high retention potential often 

implies subsequent re-mineralization of the treated water. In addition, the cost associated with 

the energy required by such processes makes them unaffordable for small drinking water 

treatment units. 

 

7.3.4. Activated carbon 

In drinking water treatment, activated carbon is employed in two forms: powdered 

(PAC) to perform adsorption simultaneously with clarification, or granulated (GAC) to 

perform adsorption in percolation units. While activated carbon does not have any impact on 

cyanobacteria and intracellular toxins, it can be successfully applied to remove extracellular 

MCs, CYL, ANTX-a and STXs (Table 3). 

The removal of cyanotoxins mostly depends on the kind of adsorbent employed 

(Donati et al., 1994; Huang et al., 2007; Newcombe and Nicholson, 2004). Indeed, when 

studying the adsorption of MC-LR on 8 activated carbons, adsorbents with the largest volume 

of mesopores (pore diameter in the range 2-50 nm) were shown to be the most efficient 

(Donati et al., 1994). However, other cyanotoxins may require other activated carbons. For 

example, since STXs are smaller than MCs, using microporous instead of mesoporous carbon 

is recommended for their removal (Newcombe and Nicholson, 2004). 
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Water quality also has a strong influence on the removal of cyanotoxins by activated 

carbon since NOM can compete with contaminants and limit their adsorption (Donati et al., 

1994; Huang et al., 2007). This phenomenon clearly appears when comparing the adsorption 

isotherms of MC-LR in ultrapure water treated with fresh versus preloaded adsorbent, or MC-

LR in ultrapure water versus surface water treated with fresh adsorbent (Lambert et al., 1996). 

Indeed, the adsorption of the toxin significantly decreases in surface water and when using 

preloaded activated carbon. Moreover, the isotherms obtained with surface water or 

previously used activated carbon exhibit an alteration of the slope indicating much lower 

adsorption capacity for toxin concentration below 0.15 µg/L. Therefore, although activated 

carbon efficiently retains MC-LR, reaching lower concentration would require a high and 

unusual amount of adsorbent for drinking water treatment (Lambert et al., 1996).  

Activated carbon can also fix and grow specific microorganism and subsequently 

eliminate cyanotoxins by biodegradation (Newcombe and Nicholson, 2004). Therefore, after 

a latency period, the removal of cyanotoxins could progressively switch from adsorption to 

biodegradation. 

While activated carbon can efficiently retain cyanotoxins, their complete adsorption 

would require a high amount of different adsorbent types, and their biodegradation on GAC 

may not necessarily occur in each drinking water treatment plant. Consequently, activated 

carbon should not be considered as an individual remediation measure but as a part of a multi-

barrier approach. 

 

7.4. Impact of degradation-based treatment on cyanobacteria and cyanotoxins 

7.4.1. UV irradiation and photocatalysis 

UV irradiation is a potential process for drinking water disinfection since light in the 

range 240-280 nm inactivates microorganisms by inducing DNA alteration. However, 
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increasing the UV dose can generate highly reactive hydroxyl radicals (OH
•
). Therefore, UV 

irradiation can also be employed as an advanced oxidation process (AOP) in order to remove 

organic contaminants. For this specific purpose, combining UV irradiation with ozone or 

hydrogen peroxide usually enhances the efficacy of the treatment by increasing OH
•
 

production. Additionally, photocatalysis of trace contaminants by titanium dioxide (TiO2) is 

another UV-based AOP that could potentially be applied in drinking water treatment although 

the formation of unknown and potentially toxic by-products remains an issue.  

UV irradiation can potentially remove MCs, ANTX-a and CYL from drinking water 

but its effect on other cyanotoxins has not been investigated (Afzal et al., 2010; He et al., 

2012; Kaya and Sano, 1998; Senogles et al., 2000a; Tsuji et al., 1995). The efficacy of such 

treatment depends on the lamp type and design, the intensity of the irradiation, the UV 

spectrum of each toxin and the turbidity of water. For instance, since MCs have a maximum 

absorbance at 240 nm, they can be transformed by a germicidal lamp emitting at 254 nm. 

When exposing MC-LR (10 mg/L in high purity water) to UV irradiation, toxin removal was 

shown to increase from 60% within 30 minutes to 100% within 10 minutes while the 

irradiation shifted from 147 µW/cm2 to 2550 µW/cm2 (Tsuji et al., 1995). As a result, 3 non-

toxic by-products have been identified: 2 geometrical isomers of MC-LR consisting in a 

different conformation of the conjugated diene, plus another compound formed by addition 

between the benzene ring and one of the double bonds of the conjugated diene (Kaya and 

Sano, 1998). On the contrary, ANTX-a is not degraded using a low pressure disinfection UV 

lamp (ANTX-a does not absorb at 254 nm) but only using a medium pressure UV lamp (Afzal 

et al., 2010) with a broader UV emission spectrum.  

For both MCs and ANTX-a, combining UV irradiation with the addition of hydrogen 

peroxide enhances the degradation of the toxin (Afzal et al., 2010; He et al., 2012; Qiao et al., 

2005). While pH in the range of 7-8 was found to be optimal for MC-RR degradation, 
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increasing H2O2 over 1 mM and UV irradiation over 3.66 mW/cm2 would not further increase 

the degradation rate (Qiao et al., 2005). Indeed, the production of OH
•
 tends to increase with 

the concentration of hydrogen peroxide but, at some point, H2O2 itself consumes hydroxyl 

radicals and competes with water contaminants. Besides, toxin removal is also correlated with 

water quality since OH
•
 will also react with DOC (He et al., 2012). Similar results were 

observed for ANTX-a, and the medium pressure UV lamp necessary for toxin elimination by 

standalone UV irradiation can be replaced by a common low pressure UV lamp (Afzal et al., 

2010). 

Adding a photocatalyst and increasing pH was shown to improve the efficiency of UV 

irradiation to remove cyanotoxins (Senogles et al., 2001). For instance, the half-life of CYL 

decreases from 14 min with UV irradiation alone to less than 2 min with UV irradiation in 

presence of TiO2 (Senogles et al., 2001). In addition, photocatalysis by TiO2 also enhances the 

transformation of NODs and MCs (Lawton et al., 1999; Liu et al., 2005) but, unlike CYL, 

acidic conditions are preferable (Antoniou et al., 2008). While numerous by-products and 

intermediates have been identified (Antoniou et al., 2008), it is considered that the 

transformation of NODs and MCs mainly occurs through isomerization and subsequent attack 

by OH
•
 leading to substitution and cleavage of the Adda amino acid (Liu et al., 2005; Liu et 

al., 2009), which is consistent with the lower toxicity of treated samples (Lawton et al., 1999; 

Liu et al., 2005). 

 

7.4.2. Ozonation 

Ozone can potentially be used as a disinfection process to produce drinking water. 

However, since this powerful oxidant is not persistent in water, it is mostly used to remove 

trace organic contaminants by chemical degradation. For this purpose, ozone can also be used 
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along with H2O2 or Fe(II), which generates more OH
•
 and usually enhances the degradation of 

chemicals. 

As indicated in Table 3, ozone reacts with all the common cyanotoxins but less 

efficiently with STXs. For instance, at pH 7 and 20°C, 5 mg/L MC-LR in high purity water 

can be completely removed by 2 mg/L O3 within 2 minutes (Al Momani and Jarrah, 2010). 

Moreover, the reaction kinetic was shown to improve when decreasing pH as well as 

increasing ozone dose with temperature (Al Momani et al., 2008; Al Momani and Jarrah, 

2010; Shawwa and Smith, 2001). While the occurrence of NOM in the sample is known to 

limit toxin removal by competing for O3, it is usually considered that the ozone dose 

necessary to achieve a 0.05 mg/L residual ensures the complete removal of MCs (Brooke et 

al., 2006; Newcombe and Nicholson, 2004). In fact, ozonation mainly alter MCs through 

initial OH
•
 attack on the conjugated diene of the molecule while further oxidation leads to the 

cleavage of the Adda amino acid and the opening of the peptide ring (Al Momani and Jarrah, 

2010; Miao et al., 2010). Such alteration of the toxin, particularly the Adda moiety, is 

consistent with the decrease or total elimination of toxicity in ozonated samples analyzed 

either by mouse bioassays or PPIA (Brooke et al., 2006; Miao et al., 2010). 

Similar efficacy (with similar impact of temperature and DOC) has been observed 

with CYL and ANTX-a but by-products and residual toxicity have not been considered (Al 

Momani, 2007; Rodríguez et al., 2007a). However, while the removal of ANTX-a is 

improved when pH increases (unlike MCs), STXs were shown to be poorly altered by 

ozonation (Newcombe and Nicholson, 2004). 

The use of ozone either with H2O2 or Fe(II) for the removal of cyanotoxins has not 

been extensively studied. However, both O3/H2O2 and O3/Fe(II) where shown to enhance the 

transformation of MCs and ANTX-a compare to O3 alone (Al Momani, 2007; Al Momani et 
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al., 2008). Further research could be undertaken to determine if O3/H2O2 and O3/Fe(II) may 

also enhance the degradation of the recalcitrant STXs. 

 

7.4.3. Chlorination and chloramination 

Chlorination is frequently used to perform drinking water disinfection. Chlorine is 

often preferred to ozone or UV irradiation since it is persistent and can prevent the 

contamination of drinking water by pathogens in the distribution network. Similarly, in water 

treatment facilities, chlorine can also be replaced by chloramine or chlorine dioxide. 

However, chlorine and its substitutes are also oxidants that can react with water contaminants.  

A recent review on the chlorination of cyanotoxins indicates that MCs and NODs as 

well as CYL and STX are quickly transformed, but the kinetic was too slow for ANTX-a to 

be altered during drinking water treatment (Merel et al., 2010a). Although MCs are highly 

reactive with chlorine, the alteration of these toxins decreases when pH and DOC increase. 

Indeed, increasing pH will progressively transform chlorine into ClO- (a weaker oxidant 

prevailing at pH above 8) while DOC will compete with the toxin. It is usually considered 

that MCs are efficiently transformed when pH is maintained below 8 and chlorine dose is 

enough to ensure 0.5 mg/L residual after 30 minutes (Acero et al., 2005; Newcombe and 

Nicholson, 2004; Nicholson et al., 1994). For instance, with chlorine 20 times in excess at pH 

7, more than 99% of MC-LR in high purity water can be transformed within 5 minutes (Merel 

et al., 2009). Similar efficacy is also expected in water treatment plants since for the worst 

scenario (high toxin concentration with only chlorine residual, respectively 20 µg/L and 0.5 

mg/L) chlorine would be at least 350 times in excess compare to MCs (Merel et al., 2009). 

Additionally, chlorination of MCs leads to the formation of numerous by-products through 

multiple hydroxylation or chlorine substitution on the initial toxin, including on the Adda 

moiety (Merel et al., 2009; Tsuji et al., 1997). However, multiple studies based on bioassays 
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or PPIA have reported a decrease in toxicity of the mixture after chlorination (Merel et al., 

2010a; Nicholson et al., 1994; Rodríguez et al., 2008; Tsuji et al., 1997). 

Various studies indicate that CYL is quickly transformed during chlorination (Banker 

et al., 2001; Merel et al., 2010b; Newcombe and Nicholson, 2004). For instance, with chlorine 

10 times in excess at pH 7 and 20°C, more than 98% of CYL can be transformed within 2 

minutes (Merel et al., 2010b). While neutral pH was found to be optimum (unlike MCs), toxin 

degradation was shown to occur twice faster when temperature increases from 10°C to 30°C 

(Rodríguez et al., 2007b). Although only 3 by-products formed by chlorine addition followed 

by cleavage of the uracil moiety have been identified, these were not shown to be toxic 

(Banker et al., 2001; Merel et al., 2010b). Only one study reported liver injuries in 40% of 

male mice when feeding the entire population with chlorinated cell free extract of C. 

raciborskii (Senogles-Derham et al., 2003). However, the ratio chlorine/CYL was not 

specified and chlorination is still usually considered to decrease the toxicity of the mixture. 

Chlorination of STXs has not been extensively studied but some variants were shown 

to be efficiently transformed under specific conditions (Nicholson et al., 2003). Unlike MCs 

and CYL, toxin alteration improves from 20% to 98% when pH increases from 4 to 9. 

However, toxin alteration also depends on the variant. In fact, the following vulnerability has 

been established: GTX5 = dcSTX > STX > GTX3 = C2> C1> GTX2 (Nicholson et al., 2003). 

Although several chlorination by-products remain unknown, chlorination is considered to 

decrease the toxicity of the mixture since no acute toxicity could be observed by mouse 

bioassay (Nicholson et al., 2003). However, further research should be undertaken to confirm 

these results. 

The use of ClO2 and monochloramine to remove cyanotoxins has not been extensively 

studied. In fact, ClO2 also efficiently transforms MC-LR and decreases the toxicity of the 

mixture but its efficiency with other cyanotoxins is limited or unknown. For example, CYL 
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has a 14.4 hour half-life when exposed to chlorine dioxide but a 1.7 minute half-life when 

exposed to chlorine (Rodríguez et al., 2007a). Similarly, monochloramine is a weak oxidant 

and reacts slowly with cyanotoxins. Indeed, even if monochloramine potentially reacts with 

CYL (Banker et al., 2001), the kinetic constant is 2400-fold lower than with chlorine in 

similar conditions (Merel et al., 2010a; Rodríguez et al., 2007b). Consequently, 

chloramination is considered inappropriate to remove harmful metabolites from cyanobacteria 

during drinking water treatment. 

 

8. Regulation of cyanotoxins 

The elaboration of a new regulation for cyanotoxins or any other chemical requires 

extensive scientific background established from multiple research programs across several 

disciplines. Indeed, as shown in Fig. 7, each regulating agency must consider multiple factors 

in order to define meaningful but applicable values for regulation. While cyanotoxins include 

multiple compounds, the first step of the regulation process consists in determining which 

toxins must be considered, individually or as a mixture. After selecting a suitable analytical 

method, the second step should estimate the occurrence of the selected toxins in the 

environment in terms of frequency and concentration. Then, human exposure can be assessed 

depending on the type of water and the maximum toxin concentration proposed from 

toxicological studies. However, the limit or threshold value should remain economically 

achievable with the technology currently available. 

Toxic cyanobacterial blooms in surface water represent a growing public health 

concern due to the multiple sources of human exposure to toxins. Therefore, more than a 

decade after WHO’s guideline for MC-LR, several countries already regulated cyanotoxins 

(Table 4) in drinking water and others like USA are also considering it. MCs are the most 

regulated cyanotoxins and most of the countries consider the 1 µg/L guideline as the 



 43 

maximum concentration. However, in most cases this value does not apply to MC-LR only 

but to the sum of all MCs. Some countries also regulate CYL and STXs but while the 

maximum concentration for STXs is identical at 3 µg/L, the maximum concentration for CYL 

varies from 0.1 to 15 µg/L. New Zealand is the only country regulating MCs, NOD, CYL, 

ANTX-a, homoANTX-a, ANTX-a(s) and STXs. However, emerging cyanotoxins like 

BMAA, APTX or LTX are not considered, probably because the lack of data did not allow 

the calculation of a guideline. 

Cyanobacterial toxins are also considered by several countries in recreational waters 

but only MCs are attributed specific values. As expected the maximum concentrations are 

higher than those defined for drinking water since the exposure is lower in terms of frequency 

(occasional for bathing but chronic for drinking water) and volume of water ingested. 

Dermatotoxins to which exposure is expected to be significant in recreational water are not 

considered, probably due to the lack of toxicological data available. In fact, the cell count 

appears to be the dominant parameter monitored to assess the quality of recreational water. 

Analyzing water for toxins is expensive and it cannot be done on a regular basis on 

every water body. Therefore, most of the countries regulating cyanotoxins have developed 

different risk management schemes with several alert levels based on cell counts. For 

example, the World Health Organization has proposed 2 alert levels, 2 for 20,000 cells/ml and 

3 for 100,000 cells/ml, this last leading to bathing prohibition (Chorus and Mur, 1999). The 

density of cyanobacteria in water usually triggers the analysis of cyanotoxins which can lead 

to administrative measures ranging from public information to restriction or interdiction of 

recreational activities. However, more research and feedback from policy makers is needed to 

improve regulation of cyanotoxins and protect human health without worsening the economic 

impact of blooms. 
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9. Economic impact of cyanobacterial blooms  

Cyanobacterial blooms in surface water may have a strong impact on local economies. 

For example, the restriction or interdiction of recreational activities such as bathing or 

shellfish harvesting in contaminated water can be detrimental to tourism. During the 1991 

bloom of neurotoxic Anabaena which occurred in the Darling River, Central Australia, losses 

to the tourism industry were estimated around $1.5 million (Steffensen, 2008). In the same 

period, because of another bloom occurring in the Hawkesbury Nepean River, New South 

Wales, Australia, revenues of tourism facilities were estimated to be $6.7 million lower 

compared to the previous year (without a bloom). Considering that the bloom was not toxic, 

the entire loss of revenues was only the consequence of a negative publicity (Steffensen, 

2008). Multiple blooms over a wide range of latitudes can have a significant impact on the 

tourism industry but the associated cost is not often calculated. 

Preventive and remedial measures also contribute to the global economic impact of 

cyanobacterial blooms. For example, preventing cyanobacterial growth by artificial water 

circulation in a lake or reservoir requires the installation of various pumps at specific 

locations and regular maintenance. Applying algaecides to eradicate an existing bloom is also 

associated with an elevated cost. Indeed, in Australia, SA Water spends over $1 million a year 

to apply algaecides and dispose of the copper contaminated water treatment sludge 

(Steffensen, 2008). In order to prevent blooms by inhibiting photosynthesis, the same 

company also covered three storage reservoirs for a total cost of over $7 million. 

Once a bloom appears in surface water, monitoring the evolution of the phenomenon 

implies the repetition of expensive analysis, sometimes over several months. For example, 

toxicity tests may cost over $1,000 per sample and monitoring several sampling sites may be 

necessary if a lake or reservoir is used for both recreational activities and drinking water 
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production. Therefore, in Australia, the cost estimation of bloom monitoring reaches over $8 

million per year (Steffensen, 2008). 

As indicated in Fig. 8, the global economic impact of cyanobacterial blooms should 

also include costs related to water treatment, health consequences and research programs. 

Indeed, while cyanobacterial blooms disturb drinking water production by increasing the 

consumption of reactants, they also decrease the productivity through faster filter clogging. 

Health consequences through human intoxication also represent a high expense, particularly 

in the case of acute (liver failure) or long term (cancer or neurodegenerative diseases) 

exposure. However, since moderate human intoxication is often limited to gastro-enteritis, a 

symptom common to numerous pathologies, patients are treated without considering the 

underlying cause and the relation with cyanotoxins is not or rarely established. Research 

programs and conferences should also be held frequently so that the most current science 

available can be used to alleviate the problem of cyanobacterial blooms in surface waters, but 

these activities and events have an associated cost as well.  

The overall impact of cyanobacterial blooms on the economy remains poorly 

understood. Therefore, specific research is required on this topic with particular emphasis on 

public health consequences and water treatment in the frame of global warming. 

 

10. Research needs 

The previous sections established a broad state of the art on harmful cyanobacterial 

blooms, considered their occurrence, toxicity, management and economic impact. However, 

several research needs still exist.  
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10.1. History of bloom occurrence and related environmental conditions 

In most surface waters, long-term, quantitative data regarding phytoplankton and 

cyanobacteria assemblage changes over time is non-existent. Paleolimnological techniques 

can be applied to re-construct past histories of lakes and reservoirs by collecting and 

analyzing sediment cores. Buried within the sediments of lakes and reservoirs is a repository 

of proxy information that can be used to construct trophic state and environmental changes 

over time. Information contained within sediment cores can also be used to predict past 

climates, vegetation changes within the watershed, nutrient loading and recycling, etc. 

Sediment cores can be age-dated using a variety of techniques including stable isotopes, varve 

formation, etc. They can also be analyzed for algal and cyanobacterial pigments. By doing so, 

it is possible to recreate past instances of bloom formation and the environmental 

circumstances leading to their occurrence. Consequently, such historical data accumulated 

over a period of time beyond human scale would greatly benefits the development of new and 

more accurate predictive models for bloom occurrence. 

 

10.2. Prediction of bloom occurrence 

Predicting the occurrence of cyanobacterial blooms remains challenging. 

Cyanobacteria and phytoplankton in general are very patchy assemblages that exhibit great 

temporal and spatial variability. Many species of cyanobacteria exist and each has different 

environmental requirements for survival and growth. For example, some species contain 

heterocysts and are capable of “fixing” atmospheric nitrogen, some are filamentous and some 

colonial (sometimes forming macroscopic colonies), some produce copious amounts of 

exopolysaccharides, etc. Cyanobacteria are not a homogenous group of organisms and show 

great diversity between species. This fact makes bloom prediction and management difficult. 

While predictive models need to be established, refinement based upon predominant and 
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problematic species as well as individual ecosystems and environmental conditions can be 

incorporated within a generalized framework.  

Future research should also address the impact of climate change on bloom 

occurrence. Climate change may increase the frequency and magnitude of blooms and alter 

toxin distribution by cyanobacteria spreading to latitudes outside of their current range.  

Increased runoff and altered hydrologic regimes may increase nutrient concentration in 

surface waters, favoring the occurrence of cyanobacterial blooms and overall eutrophication. 

Generalized and predictive models that address the overall spread or re-distribution of 

cyanobacteria, and potential bloom formation and toxin formation, due to climate change are 

needed.  

 

10.3. Prediction of toxicity 

The occurrence of cyanobacterial blooms in surface water does not necessarily imply 

toxicity. Although it is clearly established that the ability of cyanobacteria to perform the 

biosynthesis of harmful metabolites depends on their gene pool, the activation of these genes 

by environmental factors remains poorly understood. Therefore, future research projects 

should particularly focus on determining the environmental conditions needed for 

biosynthesis of toxin on a species-by-species basis. Although this is a daunting task, the time 

to begin building such a repository of information is now. If such information could be 

incorporated into future or existing models, it would be a very valuable tool capable of 

predicting blooms toxicity on a localized basis at least.  

 

10.4. Bloom monitoring 

Blooms of cyanobacteria occurring in surface waters need to be accurately monitored 

due to their potential toxicity. Therefore, more efficient and affordable monitoring strategies 
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should be developed for both cyanobacteria (identification and enumeration) and their toxins 

(identification and quantification). Particularly, further development of in situ monitoring 

probes should be a priority. The automation and adaptation of molecular techniques for in situ 

application (e.g., onsite PCR) would offer the capability for constant, real-time monitoring of 

for potentially toxic cyanobacterial species. Similarly, automation and adaptation of ELISA 

methods for onsite remote toxin analysis would be a major breakthrough in bloom 

monitoring.  

Besides in situ technique development, laboratory analysis of cyanotoxins also 

requires further research in order to develop rapid and reliable methods for simultaneous 

quantification of multiple compounds. Improvement of LC-MS or immunological methods 

would significantly decrease the cost of analysis and improve bloom monitoring. 

While blooms are carefully monitored in drinking water resources or surface waters 

used for recreational activities, quantifying their occurrence often remains difficult. Indeed, 

such phenomenons are often managed by local water authorities and are not reported into any 

official national or international database. Consequently, significant amount of information 

may remain inaccessible to scientists who have to rely on published literature, probably 

describing a very low percentage of the blooms monitored worldwide. In addition, numerous 

blooms occurring in water that are not submitted to specific control, such as private ponds, are 

not even reported to local agencies. Therefore, both the occurrence of cyanobacterial blooms 

and their potential health effects may be considerably underestimated. Consequently future 

research should also be undertaken to address this concern. 

 

10.5. Bloom and drinking water treatment 

The present state of the art on the fate of cyanotoxins during drinking water treatment 

clearly indicates that any individual toxin can be efficiently removed or transformed by at 
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least one process. However, no treatment process has been proven to simultaneously remove 

or transform all the cyanotoxins. For instance, although chlorination can transform MCs, CYL 

and STXs, the optimum pH is significantly different and chlorination of drinking water cannot 

ensure the complete transformation of these toxins in a mixture. Consequently, the 

elimination of cyanotoxins during drinking water treatment must be based on a multibarrier 

approach. Therefore, future studies should focus on the removal of a mixture of toxins 

(including less common ones such as ANTX-a(s) or BMAA for which no data are currently 

available) through several treatment processes in series. However, while the concept of 

multibarrier should not be difficult to implement for major water treatment facilities, it may 

not be affordable for small scale units delivering water to a low amount of consumers. In this 

context, some alternative measures, such as toxin removal by home filters, should also be 

considered. 

 

10.6. Regulation and economic impact 

Cyanotoxins might be potential candidates for future regulation in drinking water. For 

example, ANTX-a, CYL and MC-LR were on the third contaminant candidate list released by 

the US EPA. Therefore, future research should investigate the suitability of regulating 

cyanotoxins, considering occurrence and toxicological data but also analytical capabilities and 

economic implications. Indeed, an inappropriate regulation of cyanotoxins in drinking water 

could lead to significant expenses (modification of treatment plants, monitoring programs…) 

sometimes unaffordable for small communities. 

Blooms of cyanobacteria are often associated with a restriction of recreational 

activities and direct consequences on tourism. While some examples have been studied in 

Australia to assess the local economic loss, the overall economic impact of blooms remains 

unknown. As presented in this review, future research should also estimate the cost of blooms 
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considering preventive and remedial measures, monitoring and research programs, water 

treatment and health consequences.  

 

11. Conclusion 

Cyanobacteria are widespread microorganisms, naturally occurring in most of surface 

water. It is well established that high concentration of nutrients is one of the most important 

factor leading to their excessive development. According to the predominant strains, some 

blooms are potentially harmful. Indeed, the gene pool of cyanobacteria determines their 

ability to perform the biosynthesis of a wide range of toxins categorized into hepatotoxins, 

neurotoxins and dermatotoxins. While the biosynthesis pathways have been identified for 

most of them, the activation of the related genes by environmental factors and therefore the 

conditions leading to toxin production remain unknown. 

Humans are potentially exposed to harmful algal blooms through recreational 

activities in contaminated water and through drinking water produced from contaminated 

resources. Therefore, numerous strategies have been tested to prevent or eliminate blooms of 

cyanobacteria. While water recirculation appears to be successful in the short term, a long 

term and sustainable strategy consist in reducing the introduction of nutrients in surface 

waters. Eradication of an occurring bloom by algaecides should be avoided because of the 

subsequent release of toxins. 

In order to protect consumer’s health, drinking water treatment has to remove both 

intracellular and extracellular toxins. While the usual clarification and membrane filtration 

efficiently removes cyanobacteria and intracellular toxins, combining ozonation and 

chlorination should ensure the removal of the most common extracellular toxins. However, 

although individual toxins can be efficiently removed or transformed by at least one treatment 

step during the production of drinking water, no treatment has been proven to simultaneously 
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remove all the cyanotoxins in a mixture. Therefore, the efficient management of cyanotoxins 

in drinking water treatment must be based on a multibarrier approach. 

Even though cyanobacteria and their toxins have been extensively studied, further 

research is required to address several gaps in the actual state of knowledge. For instance, 

there is a major need for models predicting the occurrence of blooms but also their potential 

toxicity. In addition, the impact of a changing climate on blooms also needs to be addressed. 

Moreover, while the fate of common cyanotoxins during water treatment is already 

documented, the fate of uncommon toxins such as BMAA, APTXs or LTXs remains 

completely unknown. Besides, the occurrence of toxic cyanobacteria is also a major research 

topic for economic sciences in order to assess the impact of blooms on local economies. 
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Figure Captions 

Fig. 1:  Origin of toxic cyanobacterial blooms and human exposure. 

Fig. 2:  Overview of literature available on cyanobacteria and cyanotoxins. 

Fig. 3:  Structure of cyanobacterial hepatotoxins. 

Fig. 4:  Structure of cyanobacterial neurotoxins. 

Fig. 5:  Overview of sample preparation and analytical methods for the detection of 

cyanotoxins. 

Fig. 6:  Overview of drinking water treatment and the overall impact on cyanobacteria and 

cyanotoxins. 

Fig. 7:  Parameters to consider when building a new regulation for cyanotoxins in water. 

Fig. 8:  Aspects to consider when assessing the economic impact of blooms. 

 

 

 

 

 

 

 

Table Captions 

Table 1:  Toxicological characteristics of cyanotoxins. 

Table 2:  Literature survey of analytical methods for the detection of cyanotoxins. 

Table 3:  Literature survey of common water treatment processes and the related impact on 

cyanobacteria and their toxins. 

Table 4:  Overview of existing regulation on cyanotoxins in drinking water and recreational 

water (Chorus, 2012). 
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Fig. 1: Origin of toxic cyanobacterial blooms and human exposure. 
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Fig. 2: Overview of literature available on cyanobacteria and cyanotoxins. 
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Fig. 3: Structure of cyanobacterial hepatotoxins. 

 

 

Fig. 4: Structure of cyanobacterial neurotoxins. 
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Fig. 5: Overview of sample preparation and analytical methods for the detection of cyanotoxins. 
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Fig. 6: Overview of drinking water treatment and the overall impact on cyanobacteria and cyanotoxins. 
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Fig. 7: Parameters to consider when building a new regulation for cyanotoxins in water. 

 

 

Fig. 8: Aspects to consider when assessing the economic impact of blooms. 
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Table 1:  Toxicological characteristics of cyanotoxins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Toxin Mode of action
a
 Main effect

a
 LD50 (µg/kg)

a,b
 

MCs Inhibit protein phosphatase Liver failure and hepatic haemorrhage 
25-150 

(for the most toxic) 

NODs Inhibit protein phosphatase Liver failure and hepatic haemorrhage 30-70 

CYL Inhibits protein synthesis Liver and kidney failure 2100 

ANTX-a Binds to nicotinic acetylcholine receptors Muscular paralysis 375 

ANTX-a(s) Inhibits acetylcholinesterase Muscular weakness, dyspnea and convulsions 31 

STXs Bind to sodium channels Ataxia, convulsions and paralysis 
10 

(for the most toxic) 

BMAA Binds to glutamate receptors Neurodegenerative syndrome Not specified 

APTXs Activate protein kinase C Tumour promotion and skin irritation Not specified 

LTXs Activate protein kinase C Tumour promotion and skin irritation 
250 

(immature mice) 

a
 van Apeldoorn et al., 2007     

b
 After intraperitoneal injection into mice 
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Table 2:  Literature survey of analytical methods for the detection of cyanotoxins. 

 

 

 

Toxins Immunological assay Biochemical assay LC-UV LC-fluorescence LC-MS GC-MS Other 

MCs & NODs 1 2 3 4 5 6 7 

CYL 8  9  10  11 

ANTX-a   12 13 14 15 16 

ANTX-a(s)  17   18   

STXs 19   20 21  22 

BMAA   23 24 25 26 27 

1)  An and Carmichael, 1994; Carmichael and An, 1999; Humpage et al., 2012; Kaushik and Balasubramanian, 2012; Lawrence et al., 

2001; Lawton and Edwards, 2008; Lawton et al., 2010; Lindner et al., 2004; Mathys and Surholt, 2004; McElhiney and Lawton, 

2005; Metcalf et al., 2000; Msagati et al., 2006; Rapala et al., 2002; Spoof et al., 2003; T illmanns et al., 2007; Triantis et al., 2010  

2)  Almeida et al., 2006; An and Carmichael, 1994; Bouaïcha et al., 2002; Carmichael and An, 1999; Heresztyn and Nicholson, 2001; 

Kaushik and Balasubramanian, 2012; Lawrence et al., 2001; Lawton and Edwards, 2008; McElhiney and Lawton, 2005; Msagati et 

al., 2006; Ortea et al., 2004; Rapala et al., 2002; Robillot and Hennion, 2004; Triantis et al., 2010; Ward et al., 1997; Wirsing et al., 

1999 

3)  Aranda-Rodriguez et al., 2003; Bateman et al., 1995; Gurbuz et al., 2009; Kaushik and Balasubramanian, 2012; Kaya et al., 2001; 

Lawton et al., 1994; Lawton and Edwards, 2008; Mathys and Surholt, 2004; McElhiney and Lawton, 2005; Meriluoto, 1997; 
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Table 3:  Literature survey of common water treatment processes and the related impact on 

cyanobacteria and their toxins. 
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Table 4:  Overview of existing regulation on cyanotoxins in drinking water and recreational 

water (Chorus, 2012). 
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