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Abstract: 

Though the past few decades, the development of new luminescent materials has received a 

lot of attention due to their applications as fluorescent sensors, in biological microscopy and 

in optoelectronic devices. Most of these applications are relied on intramolecular charge 

transfer (ICT). Presence of electron withdrawing N-heterocycles such as pyrazine and 

quinoxaline rings appeared therefore particularly interesting to be used as electron-attracting 

part in π-conjugated structures. Moreover, presence of nitrogen atoms with lone electron pairs 

allows to the pyrazine and the quinoxaline ring to act as effective and stable complexing agent 

or as base that can be protonated. This review reports luminescent small molecules and 

oligomers including a pyrazine or quinoxaline ring in their scaffold highlighting their 

applications related to photoluminescence and electroluminescence. 
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1. Introduction  
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Diazines which belong to the most important heterocycles containing nitrogen are six-

membered aromatics with two nitrogen atoms. Three different structures can be distingued 

according to the relative position from the nitrogen atoms: pyridazine (1,2-diazine) [1], 

pyrimidine (1,3-diazine) [2] and pyrazine (1,4-diazine) [3]. Quinoxaline, also called 

benzopyrazine is a heterocyclic compound containing a ring complex made up of a benzene 

ring and a pyrazine ring [4]. Pyrazine and quinoxaline derivatives have been intensively 

studied because the 1,4-diazine core is found in many natural and man-made compounds [5]. 

Alkylpyrazines, produced from proteins by fermentation are for example the constituents of 

the aroma of coffee [6], some cheeses [7] or roasted meat [8]. The more complex 

imidazopyrazine moiety is found in the scaffold of the Coelenterazine, a bioluminescent 

compound isolated from the jellyfish Aequorea Vistoria [9]. Moreover numerous pyrazine 

and quinoxaline derivatives exhibit a large range of biological activities and are used for 

pharmaceuticals or phytosanitary applications [10]. Besides their medicinal uses, pyrazine and 

quinoxaline derivatives have found technical applications as dyes, electroluminescent 

materials, organic semi-conductors and as suitable ligands in coordination chemistry. We 

report herein the main results dealing with this kind of applications during the last two 

decades. 

The elaboration of electro-optical (EO) and nonlinear optical (NLO) materials has 

attracted considerable attention because of their wide range of potential applications in optical 

data processing technologies. The synthesis of extended π-conjugated systems has been the 

key to provide organic materials with such properties. These compounds are often based on a 

push-pull system, which is constituted by an electron-donating group (D) and an electron-

withdrawing group (A) linked through a π-conjugated spacer. The molecular properties of the 

chromophores depend on the strength of the “push-pull” effects which are function of the 

ability of the donor to provide electrons and the acceptor to withdraw electrons.   
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Pyrazine and quinoxaline, which are highly π-deficient aromatic heterocycles, can be 

used as electron withdrawing part in push-pull structures for intramolecular charge transfer 

(ICT). Such important ICT along the backbone of the molecule can induce luminescence 

properties. The ability of protonation, hydrogen bond formation and chelation of the nitrogen 

atoms of the 1,4-diazine ring are also of great importance: such derivatives could be therefore 

used for the formation of supramolecular assemblies and used as sensors.  

Two general methods for the synthesis of π-conjugated pyrazine derivatives are 

described in the literature. The first method consists of the construction of the pyrazine ring 

by condensation reactions of α-diketones with vicinal diamines [11] but these methods 

disappoint in the preparation of unsymmetrical substituted pyrazines. The second one 

involves the functionalization of the 1,4-diazine ring [12]. The advantages of the latter one are 

a greater versatility and the use of easily available starting materials. Indeed, a large variety of 

halogeno (more particularly chloro), amino and methyl derivatives are commercially available 

and can be used as building blocks to elaborate π-conjugated scaffolds. Among the synthetic 

strategies, the cross-coupling reactions involving halogenated pyrazines and / or quinoxalines 

constitute a method of choice to access such structures. It should be noted that the π-electron-

deficient character of the 1,4-diazine ring makes easier the oxidative addition of palladium to 

a chlorine–carbon bond without the use of specific and expensive ligands [13]. Therefore, a 

wide range of cross-coupling reactions (Suzuki [14], Stille [15], Negishi [16], Sonogashira 

[17], Heck [18] and Corriu-Kumada [19]) have been carried out with halogenated pyrazine or 

quinoxaline building blocks. Another synthetic way to access to vinylpyrazines or 

vinylquinoxalines is the condensation reaction of various aldehydes with methyl derivatives 

[20]. 

Recently we have reviewed the use of pyrimidine and pyridazine as building blocks 

for the synthesis of π-conjugated materials [21]. This article is the last part of this series of 
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papers and has for aim to review the use of pyrazine and quinoxaline moieties in the synthesis 

of fluorescent materials. Only small molecules and oligomers will be described here, this 

review will not treat polymer materials. The first part of this review deals with pyrazine 

derivatives while the second part is dedicated to quinoxaline compounds. Each part will be 

organized by molecule classes. 

 

2. Pyrazine derivatives 

Because the 2,3-dicyanopyrazine ring has specific properties resulting from the two 

strong withdrawing cyano groups, this moiety has been introduced in the scaffold of a wide 

range of fluorophores.  

2.1. Diamino and dicyanopyrazines 

A first family of 2,5-diamino-3,6-dicyanopyrazines was synthesized and studied in 1998 by 

Matsuoka and coworkers [22]. The 2,5-diamino-3,6-dicyanopyrazine 1 absorbs at λabs = 458 

nm and emits at λem = 538 nm with a quantum yield ΦF = 0.3. This compound is an interesting 

intermediate to access other fluorescent dyes. Alkylation of the amino groups leads to 

compounds 2 which present a bathochromic shift of λabs = 449–522 nm and a red fluorescence 

λem = 532–603 nm. On the contrary, acylation of the amino groups (compounds 3) induces a 

hypsochromic shift of λabs (378–403 nm) and of λem (432–488 nm). It is noteworthy that the 

imine 4 has similar λabs (452 nm) and λem (527 nm) than 1 but a higher quantum yield (ΦF = 

0.8) (Scheme 1). 

 

Scheme 1. Structure and photophysical data of compounds 1–4. 
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A series of mono- and diazomethines dyes derived from 1 were also developed by Matsuoka 

and coworkers and have proved to be red light emitters for electroluminescence devices 

(Scheme 2) [23].  

 

Scheme 2. Structure and photophysical data of compounds 5. 

More recently a comparative study of the photophysical properties of the 2,5-diamino-3,6-

dicyanopyrazine 1 with other diaminodicyanopyrazines was performed in acetonitrile by 

Angulo et al [24].  The compound 1 exhibits red shifted absorption and emission in 

comparison with those of 6. These results could be explained by a more important ICT 

between the nitrile and amino groups due to their opposite position in the symmetrical 

compound 1 (Scheme 3). 

 

 

Scheme 3. Structure and photophysical data of compounds 1 and 6. 
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2.2. Diamino and dicarboxypyrazine derivatives 

Using the 2,5-diamino-3,6-dicarboxypyrazine 7 as starting material, various thioester and  

carbamoyl derivatives 8 and 9 were synthesized and their photophysical properties established 

in CHCl3 (Scheme 4) [25]. 

 

 

Scheme 4. Structure and photophysical data of compounds 7–9. 

 

The solid state spectra of compounds 8 and 9 were evaluated with respect to their molecular 

staking. In the case of the 2,5-diamino-3,6-bis(butoxycarbonyl)pyrazine, the X-ray crystal 

analysis has shown space-filling intermolecular interactions of diaminopyrazines making 

possible the construction of strong three dimensional molecular staking in single crystals, 

which affects their solid state absorption spectra. 

Starting from chromophores 10, easily obtained by reductive amination reaction, Poreddy and 

coworkers have developed hydrophilic red fluorescent N,N’-dialkylated aminopyrazines 11 

and 12 [26]. These compounds absorb and emit at higher wavelengths (~ 50 nm) than their 

corresponding aminopyrazines and could found potential applications in medical diagnostic 

(Scheme 5). 
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Scheme 5. Structure and photophysical data of compounds 10–12. 

 

More recently, the same team has described similar hydrophilic pyrazine dyes 13 and 14 that 

have neutral and anionic groups [27]. These molecules have emission wavelengths λem 

ranging between 557–600 nm and quantum yield around 0.4 in DMSO for the enantiomer of 

13a (Scheme 6). Besides their interesting photophysical properties, some of these compounds 

could be used as fluorescent glomerular filtration rate (GFR) tracer agents.  

 

 

Scheme 6. Structure and photophysical data of compounds 7, 13 and 14. 
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Chromophoric crosslinkers constituted by tetra-functionalized 3,6-diaminopyrazines 15–17 

bearing a set of terminal aliphatic and anilino amine groups were recently synthesized 

(Scheme 7). With these molecules, Wooley et al, have developed dual-emitting photonic 

nano-objects that can sense changes in the environmental pH [28]. 

 

 

Scheme 7. Structure and photophysical data of compounds 15–17. 

 

Compounds 15–17 have demonstrated a morphology-dependent reactivity towards physical or 

chemical change leading to fine tuning of dual-emission over ca. 60 nm (496 to 560 nm) in a 

physiologically relevant pH range.  

Teramae and coworkers have described the selective binding of Amiloride 18 (Scheme 8), a 

2,6-diaminopyrazine derivative, to abasic (AP) site in RNA [29]. A dramatic increase of the 

fluorescence of amiloride at 415 nm was observed selectively in the presence of AP-RNA, 

making such a response applicable to microRNA detection.  
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Scheme 8. Structure and photophysical data of compound 18. 

 

 

2.3. Arylvinyl and aryldicyanopyrazines 

2,3-dicyanopyrazines which are powerful electron acceptors were used as building blocks to 

synthesize chalcone analogues and styryldicyanopyrazines. The chalcone derivatives 20 were 

obtained by the Knoevenagel condensation of 2-acetyl-4-methyl-5,6-dicyanopyrazine 19 with 

various arylaldehydes whereas the styrylpyrazines 21 and 22 have resulted from a similar 

condensation reaction of the methyl group with arylaldehydes (Scheme 9). These compounds 

are highly fluorescent (λem comprised between 479 and 610 nm in CHCl3), showed 

solvatochromism depending from polarity of the solvents and an intramolecular charge 

transfer confirmed by semi-empirical calculations (MOPAC PM3 method) [30]. When the 

pyrazine is substituted by a hydroxyl group, a large negative solvatochromism is observed due 

to tautomerism between the hydroxypyrazine and the pyrazinone forms. 
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Scheme 9. Structure and photophysical data of compounds 19–22. 

 

Di-(arylvinyl)dicyanopyrazines 23 and 24 and V-shaped structures 25 with a benzene or a 

pyridine as central core were also synthesized (Scheme 10) [31]. The physical properties of 

these fluorophores were determined and a reasonable correlation was found between 

calculated (PPP MO) and experimental data. 
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Scheme 10. Structure and photophysical data of compounds 23–25. 

The 2,3-bis(phenylethenyl)-5,6-dicyanopyrazine 26 was studied as fluorescent material in 

solid state [32]. The single crystals of this compound underwent a morphological phase 

transformation (at 174°C) from a yellow crystal to an orange one via a thermal phase 

transition without the crystal state collapsing (Scheme 11). The crystal lattice transformation 

was explained in terms of the lattice contraction and the intermolecular π-π interaction in the 

solid state. 

 

 

Scheme 11. Structure of compound 26 and color change of cristal via a thermal phase 
transition. 
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Matsumoto and coworkers have described the J-aggregate structure of a chloroform solvate of 

the 5-t-butyl-2,3-dicyano-6-[4-(dimethylamino)styryl]pyrazine 27a (Scheme 12) [34]. The 

dye was found to form a two-dimensional brick-wall structure, separated by chloroform 

molecules in the solvated crystals, which emits intense red fluorescence.  

 

 

Scheme 12. Structure and photophysical data of compound 27a. 

 

Moreover, other 2,3-dicyanopyrazine derivatives 27 with ester linkers were designed (Scheme 

13) [35]. These molecules have a similar V-shaped geometry, confirmed by the X-ray 

structure of the central core, with lack of planarity between the two arms. The optical and 

thermal properties of these compounds were evaluated highlighting a blue fluorescence in 

solution (λem 437–445 nm) with low to moderate quantum fluorescence yields (ΦF) from 

0.003 to 0.1 and Stokes shifts of around 6000 cm-1.  
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Scheme 13. Structure and photophysical data of compounds 27. 

 

The [2+2] photocycloaddition of 2,3-dicyanopyrazine derivatives 28 were achieved by 

irradiation at 365 nm under a high-pressure Hg lamp, leading to the photodimers 29 (Scheme 

14) [36]. Spectral changes of UV-visible absorption and fluorescence intensity were examined 

at specific exposure intervals. While the cyclobutane ring of dimers induced a discrete π-

conjugation with aryl substituents showing a hypsochromic shift of absorption and emission 

spectra. For example, change of fluorescence spectra of 28 with R = t-Bu in a thin film under 

irradiation became brighter and was blue shifted from 478 nm to 467 nm 
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Scheme 14. Structure and photophysical data of compounds 28 and 29. 

 

Lee and coworkers have developed dicyanopyrazine dyes 30 containing spiropyran groups 

[37]. These compounds have emission at 484 nm in CHCl3 as well as photochromic properties 

under UV irradiation. The spiropyran part is used due to its ability to exhibit two forms: a 

colorless closed spiro form 30a and a colored open merocyanine form 30b (Scheme 15). Such 

derivatives have potential applications for data storage, electronic devices and optical filters.  

 

 

Scheme 15. Structure and photophysical data of compounds 30. 
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A compound with ICT properties: the 5,6-bis-[4-(naphthalene-1-yl-phenyl-amino)-phenyl]-

pyrazine-2,3-dicarbonitrile 31 (BNPPC) was synthesized by Chew et al (Scheme 16) [38]  

 

 

Scheme 16. Structure and photophysical data of compound 31. 

 

This compound was strongly fluorescent in non-polar and moderately polar solvents, as well 

as in thin solid film. The absorption and emission maxima shifted to longer wavelength with 

increasing solvent polarity. The fluorescence quantum yield also was also improved with 

increasing solvent polarity from non-polar to moderately polar solvents, then decreased with 

further increase of solvent polarity. This indicates that both ‘‘positive’’ and ‘‘negative’’ 

solvatokinetic effects co-exist. Using this material as hole-transporting emitter and host 

emitter has allowed elaboration of green-yellow electroluminescent (EL) devices.  

Condensation reaction of pyrrole and a bis-styryl derivative containing the 2,3-

dicyanopyrazine moiety has allowed Jaung to synthesize pyrazine-linked porphyrins 32 

(Scheme 17) [39]. These systems with a strong ICT revealed specific spectral properties such 

as emission of red fluorescence with a large Stokes Shift (over 7300 cm-1). The 

protonation/deprotonation were shown to affect the spectral properties of the compounds. 
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Scheme 17. Structure and photophysical data of compounds 32. 

 

Starting from the 2,3-dicyanopyrazine derivative 33, Hill and coworkers have described a 

tetrapyrazinoporphyrazine 34 substituted at its periphery with eight antioxidant 3,5-di-t-butyl-

4-hydroxyphenyl groups which behave as a turn-on fluorescent sensor for fluoride anions 

(Scheme 18) [40].   
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Scheme 18. Structure and photophysical data of compounds 33 and 34. 

 

Two series of new stable V-shaped push-pull chromophores 35 with two dimethylamino as 

the donor, a pyrazine-2,3-dicarbonitrile moiety as the acceptor and with systematically 

extended and varied π-linkers were reported by Burĕs et al. (Scheme 19) [41].  

 

 

Scheme 19. Structure and photophysical data of compounds 35. 
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The nature and the length of π-linkers were investigated and the UV/Vis spectra, 

electrochemical data and 2nd order nonlinear optical (NLO) properties of these CT 

chromophores were studied. Compounds 35b with an additional triple bound to separate the 

π-linker from the pyrazine-2,3-dicarbonitrile moiety, are the most planar and exhibit the best 

D-A conjugation and the best NLO properties (βav = 3.1 pm V-1). 

 

2.4. Arylvinyl and arylethynylpyrazines  

Synthesis, absorbance and fluorescence properties of the 2-(4’-hydroxystyryl)pyrazine 36a 

was reported (Scheme 20) [42]. The spectral data of 36a are better than those of the pyridine 

analogous and have exhibited a strong dependence on solvent polarity and pH. Recently, other 

2-(4’aminostyryl)pyrazines 36b and 36c were synthesized. Their optical absorption and 

emission properties have highlighted strong emission in dichloromethane (λem = 511 and 532 

nm respectively) with high Stokes shift (6137 and 6534 cm-1), they have also exhibited an 

important positive emission solvatochromism and presented halochromism properties [43]. 

The second order NLO properties of compound 36b were also reported and compared with 

those of other diazine derivatives. With a value of µβ = 220 10-48 esu, the pyrazine derivative 

36b exhibits a better value than the pyridazine derivative but a lower value than the 

pyrimidine derivative. 

 

 

Scheme 20. Structure and photophysical data of compounds 36. 
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Vinylpyrazine triphenylamine derivative 37 and its dimethylated salt 38 (Scheme 21) were 

described by Aranda and coworkers [44]. The neutral compound 37 revealed strong 

fluorescence in dichloromethane solution (λem = 569 nm, ΦF = 0.94), whereas the 

dimethylated salt 38 is non-luminescent. Nevertheless, this last compound exhibits a strong 

selective interaction for duplex DNA. 

 

 

Scheme 21. Structure and photophysical data of compounds 37 and 38. 

 

Linear and angular distyrylpyrazines 39 and 40 with a donor-acceptor-donor electronic 

structure were synthesized and their fluorescence studied by Schmitt et al (Scheme 22) [45]. 

The materials display a strong solvatochromism of the emission that is reflected by large red 

shifts of their fluorescence emission maxima on increasing the solvent polarity. This behavior 

suggests a highly polar emitting state, which is characteristic of compounds that undergo an 

internal charge transfer upon excitation. Under acidic conditions, the UV-vis spectra are 

altered, and the fluorescence intensity of the neutral compound vanishes. These molecules can 

be used as colorimetric and luminescence polarity and pH sensors. 
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Scheme 22. Structure and photophysical data of compounds 39 and 40. 

 

Electrooptical and theoretical studies of various oligophenylenevinylenes 41-43 with a 

pyrazine central core were carried out (Scheme 23) [46]. The dipole moments of these 

quadrupolar dyes in the ground state are not equal zero, which means that one of the 

functional end groups of these molecules is not on the axis or on the plane with the central 

part of the molecule. The localized excitation effect causes a large change of the dipole 

moments of quadrupolar molecules upon excitation to the Franck–Condon excited state. Due 

to an efficient ICT, the authors claimed that these pyrazine derivatives must have significant 

non-linear optical properties. 
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Scheme 23. Structure and photophysical data of compounds 41–43. 

 

Other divinylpyrazine derivative 44 and 45 were described by Al-Hazmy et al (Scheme 24) 

[47]. The compound 44 with λem = 463 nm in DMF acts as a laser dye upon pumping with 

nitrogen laser (λex = 337 nm). 

 

 

Scheme 24. Structure and photophysical data of compounds 44 and 45. 

 

The cross-shaped chromophore 46 with four arms constituted by a phenyl group substituted 

by a donor and linked to the pyrazine core through a vinyl bridge were synthesized and 

compared with its linear analogue 47 with only two branches (Scheme 25) [48]. Their one-

photon and two-photon absorption (TPA) properties were investigated. Compounds 46 and 47 

are fluorescent respectively at 563 nm (ΦF = 0.67) and 518 nm (ΦF = 0.77). The TPA 
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spectrum in toluene of 46 is quite similar to that of the two-branch analogue 47 (δmax = 1250 

GM, λmax = 790 nm). The spectral features observed for these chromophores suggest that 

electronic coupling between the branches is effective but does not lead to significant 

enhancement of the two-photon cross section when the branches extend is in more than one 

dimension. In particular, the type of coupling effective in the four-branch compound 46 

should result in a subadditivity of the two-photon cross section of 47. 

 

 

Scheme 25. Structure and photophysical data of compounds 46 and 47. 

 

Detert et al. have described di(p-aminostyryl)pyrazines 48 with bulky substituents on the 

nitrogen of external amino groups and in the adjacent positions (Scheme 26) [49]. Steric 

congestion around the amino groups modulates the ICT in these fluorophores because the 

orbital overlap between nitrogen and π-system is modulated by the steric hindrance. Strong 

solvatochromism of the fluorescence and huge Stokes shifts results from amplified donor–

acceptor interaction in the excited state. Protonation occurs at the terminal amino groups first, 

followed by protonation of the central pyrazine only in very strongly acidic media. With 
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increasing strength of acid, absorption and emission spectra are first shifted to the blue 

followed by a red shift. 

 

 

Scheme 26. Structure and photophysical data of compounds 48. 

 

Synthesis and fluorescent properties of various bis(arylvinyl)pyrazines were reported by 

Schmidt et al.(Scheme 27) [50]. These compounds were tested as fluorescent probes for in 

vitro and in vivo detection of AD-associated protein deposits in human brain tissue by 

fluorescence microscopy. 

 

 

Scheme 27. Structure and photophysical data of compounds 49. 

 

A series of pyrazine derivatives was reported by Collette et al, where the number and 

substitution pattern of p-dimethylaminostyryl branches on the pyrazine core were 

systematically studied (Scheme 28) [51]. These fluorophores were designed to exhibit large 

changes in emission in response to changes in solvent composition or addition of various 

analyte species. These molecules shared the structural and electronic features common to 

quadupolar two-photon chromophores. Calculations of their second hyperpolarizabilities 
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(γ(−ω;ω,−ω,ω)) and comparison to known two-photon molecules showed that these molecules 

were expected to be good two-photon active molecules. 

 

 

Scheme 28. Structure of compounds 36b, 49a and 50–53. 

 

A four-branched quaternary ammonium pyrazine 54 (TASPI) was reported by Yan et al. [52]. 

This compound can be used for selective thrombin detection. In this detection system, the 

fluorescence of compound is almost eliminated by the DNA aptamer TBA (turn-off). 

However, in the presence of thrombin, it specifically binds to TBA by folding unrestricted 

TBA into an anti-parallel G-quadruplex structure and then releasing the pyrazine derivative, 

resulting in fluorescence recovery (turn-on) (Scheme 29). 
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Scheme 29. Structure of compound 54, Schematic representation of the binding of 
TBA DNA aptamer and thrombin. 

 

A fluorescent sensor 55 containing a pyrazine central core and bis(2-pyridylmethyl)amine 

groups as a binding moiety for Pb2+ was developed (Scheme 30) [53].  Compound 55 shows 

selective response to Pb2+ over other metal ions in pH 7.0 HEPES buffer solution. The 

fluorescence intensity enhancement was ascribed to the complex formation between Pb2+ and 

55 which blocked the photo-induced electron transfer process. 

 

 

Scheme 30. Structure and photophysical data of compound 55. 

 

Wu and coworkers have explored the nature of binding interaction of a fluorescent pyrazine-

Zn probe 56 with calf thymus deoxyribonucleic acid (ct-DNA) (Scheme 31) [54]. Absorption 

titration of DNA with 56 was performed by fluorescence polarization measurements. All 
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results showed that the interaction mode between the complex Zn-56 and the (ct-DNA) was 

electrostatic interaction. 

 

 

Scheme 31. Structure and photophysical data of compound 56. 

 

The synthesis of various push–pull molecules with a central pyrazine unit connected to a 

hexatriene chain terminated by various 4-substituted phenyl groups were reported (Scheme 

32) [55]. These push–pull compounds 57- 59 have interesting light-emitting properties (λem 

ranging from 536 to 780 nm with fluorescence quantum yield up to 0.20 in chloroform) and 

high Stokes shifts. Compounds 57a and 57b were tested for their 2nd order NLO properties 

and promising results were observed (µβ = 1048 10-48 esu) for compound 57b. 
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Scheme 32. Structure and photophysical data of compounds 57–59. 

 

The synthesis of a wide range of other rod-like conjugated molecules 60-64 was also 

described. These compounds incoporate a pyrazine or a bipyrazine core connected to electron 

acceptor (A) or donor (D) groups through π-conjugated linkers as transmitters for the internal 

charge transfer (Scheme 33) [56]. Generally, these derivatives exhibit fluorescence in the red 

region of the spectra. Incorporation of a double bond or a hexatriene chain as linker and a 

bipyrazine unit as an electron-withdrawing central core improves the spectroscopic properties. 
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Scheme 33. Structure and photophysical data of compounds 60–64. 

 

A series of 2,5-di(aryleneethynyl)pyrazine derivatives 65 was synthesized by Zhao et al 

(Scheme 34) [57]. The structure, electrochemical and photophysical properties of derivative 

65a have been compared with those of di(phenylethynyl)benzene 66. The presence of the 

pyrazine ring leads to a significant enhancement of electron-accepting properties, as revealed 

by cyclic voltammetry data and was confirmed by quantum chemical calculations. 

Experiments have established the potential for compound 65b to act as an electron-

transporting material as a blend with MEH-PPV in single layer OLEDs. 
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Scheme 34. Structure and photophysical data of compounds 65 and 66. 

 

2.5. Other pyrazine structures 

Phenylene–2,5-dimethylpyrazinyl co-oligomers 67, 68 and the dipyridylpyrazine derivative 

69 were synthesized by Türksoy et al (Scheme 35) [58]. The absorption spectra in ethanol 

show the lowest energy band at wavelengths characteristic of twisted oligoaryl structures with 

a dihedral angle α determined by X-Ray crystallography. Blue electroluminescence, λmax 444 

nm, is observed for the device structure ITO/PEDOT/68/Ca with no long-wavelength 

emission from π-aggregates or exciton states. 
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Scheme 35. Structure and photophysical data of compounds 67–69. 

 

Fugisawa et al have reported the complexation of 2,3,5,6-tetra(2’-pyridyl)pyrazine (tppz) 70 

and 1-octadecanol with Eu3+ ions through formation of luminescent Langmuir films at the 

air/liquid interface (Scheme 36) [59]. 

 

 

Scheme 36. Structure and photophysical data of compound 70. 

 

Saito and coworkers have reported that 2,5-bis(benzimidazol-2-yl)pyrazine (BBPIP) 71 

exhibited extremely intensive blue-fluorescence with maximum emission at 444 nm and a 

fluorescence quantum yield of 0.90 in DMSO [60]. In order to improve the solubility, 

derivatives 72 with two alkyl chains at the N-1 and N-1’ positions of the two benzimidazole 

moieties were synthesized (Scheme 37) [61]. Compounds 72 exhibit similar blue fluorescence 

with a positive solvatochromism. Compound 72c (n = 3) was used as a microenvironment 
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polarity probe to indicate the variation in polarity around the backbone of the temperature-

sensitive poly(N-isopropylacrylamide) by measuring the spectral change caused by the 

thermal phase transition of the polymer. 

 

 

Scheme 37. Structure and photophysical data of compounds 71 and 72. 

 

Various 5,6-bisarylvinyl-3-pyrazine-1,2,4-triazine derivatives 73 were synthesized by 

Thirumurugan et al and have highlighted good sensor property with Fe(III) ions even in micro 

level concentrations (Scheme 38) [62].  

 

 

Scheme 38. Structure and photophysical data of compound 73. 

 

New fluorescent sensors for Zn2+ utilizing fluorescein as a reporting group and including 

pyridine moieties ZP 74 were first reported (Scheme 38)[63]. More recently, substitution of a 
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pyridine ring by a pyrazine one at each dipicolylamine (DPA) unit led to new ditopic 

fluorescent sensors ZPP 75 (Scheme 39) [64].  

 

 

 

Scheme 39. Structure and photophysical data of compounds 74 and 75. 

 

 

Scheme 40. Structure of compound 75 and its Zinc complexes. 

 

These sensors exhibit a novel two-step fluorescence response toward zinc binding that can be 

applied to quantify chelatable zinc in biological samples (Scheme 40). The authors claim that 

the advantages of incorporating pyrazine into the metal-binding units in this kind of sensor 

can be generally applied to detect zinc, and other metals such as mercury.  

A novel series of fluorescence dyes based on pyrazine-boron complexes 76 bearing a β-

iminoketone ligand were prepared from methylpyrazine and benzoate derivatives (Scheme 



 33 

41) [65]. All synthesized complexes exhibited fluorescence in dichloromethane (λmax: 472–

604 nm) and in the solid state (λmax: 496–624 nm). Unlike common fluorescent boron 

complexes such as BODIPY dyes which have generally low Stokes shifts (400–600 cm-1, in 

most cases), these pyrazine-boron complexes exhibited large Stokes shifts (3690–4900 cm-1). 

This difference could be explained by the flexibility of the scaffold of 76, owing to the 

molecular rotation of the aryl group. 

 

 

Scheme 41. Structure and photophysical data of compounds 76. 

 

The synthesis and luminescence of two iridium (III) pyrazine complexes 77 and 78 were 

investigated by Ge et al (Scheme 42) [66]. Yellow OLEDs were obtained with these 

phosphorescent complexes. The iridium pyrazine complex 77 emits yellow light (λmax = 575 

nm). Efficient OLEDs using the complex 77 as phosphorescent dopant were demonstrated. 

 

 

Scheme 42. Structure and photophysical data of compounds 77–78. 
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Coe and coworkers have synthesized nonlinear optical (NLO) chromophores 79-81 with 

pyrazinyl-pyridinium electron acceptors complexing a known pro-ligand with electron-

donating {RuII(NH3)5}
2+ or trans-{RuII(NH3)4(py)}2+ (py = pyridine) centers (Scheme 43) 

[67]. These cationic complexes were characterized as their PF6 salts. Molecular first 

hyperpolarizability β were determined by using hyper-Rayleigh scattering (HRS) with a 1064 

nm laser exhibiting relatively large β values. Depolarization measurements confirm the 

strongly 2D nature of the NLO responses for the symmetric complexes. The β0 value 

increases on moving from 79 to bimetallic species 80. 

 

 

Scheme 43. Structure and photophysical data of compounds 79–81. 

 

Synthesis, electronic properties, and second-order nonlinear optical (NLO) response of 

asymmetric heteronuclear push-pull bimetallic complexes were reported by Pizzotti et al. 

[68]. The pyrazine moiety was used as polarizable linker, connecting the “W(CO)5” fragment 
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(acting as donor group) and “cis-Rh(CO)2Cl”, “ cis-Re(CO)4Cl”, and BF3 fragments (acting as 

acceptor groups) leading to structures 82-86 (Scheme 44). In this case, the asymmetrical 

pyrazine bimetallic complexes can be considered as organometallic counterparts of classical 

push-pull aromatic chromophores. These derivatives exhibit higher NLO response (assessed 

by EFISH technique and solvatochromic studies) than the related push-pull benzenic 

chromophores, but it is strongly dependent as sign and absolute value on the electronic 

structure of the pull inorganic and in particular organometallic group. So, an opposite sign of 

the response is observed when “cis-Rh(CO)2Cl” (86) is used as acceptor group.  

 

 

Scheme 44. Structure and photophysical data of compounds 82–86. 

 

3. Quinoxalines derivatives 

3.1. Arylvinylquinoxalines  

The push-pull molecule PQX 87 with a quinoxaline as π-deficient moiety, linked to a pyrrole 

ring through an ethenyl linker was designed by Kudo and coworkers (Scheme 45) [69]. This 

compound, soluble in many common solvents, exhibits a full-color solvatochromic 
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fluorescence ( λem = 430-607 nm) and was described as a promising fluorescent sensor for 

binding sites in proteins or other host molecules, especially in aqueous solution. 

 

 

Scheme 45. Structure and photophysical data of compounds 87. 

 

Some of us have also described a series of arylvinylquinoxaline compounds (Scheme 46) 

[43]. In addition to fluorescence solvatochromism and halochromism, these structures exhibit 

second order NLO properties assessed by EFISH measurements. With a value of µβ = 300 10-

48 esu, the quinoxaline derivative 88d exhibits a better value than the pyrimidine, pyrazine and 

pyridazine derivative. 

 

 

Scheme 46. Structure and photophysical data of compounds 88. 

 

 Other fluorescent arylvinylquinoxalines 89 were reported by Bachowska et al. and are 

described as pale blue luminescent structures (Scheme 47) [70]. 
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Scheme 47. Structure of compounds 89. 

 

A series of 2,3-bis(arylvinyl)quinoxaline 90 and 2,3-bis(arylvinyl)pyridopyrazine 91 

derivatives have been synthesized by Thirumugan and coworkers (Scheme 48) [71].  

Quinoxaline derivatives show two absorption maxima and three ones for the pyridopyrazines. 

All these compounds present good photophysical properties, stable fluorescence (λem = 431 – 

558 nm) as well as very good fluorescence lifetimes. Moreover, the pyridopyrazine 

derivatives exhibit halochromism. 

  

 

Scheme 48. Structure and photophysical data of compounds 90 and 91. 

 

Various 6,7-bis-(3-methylbutoxyl)quinoxaline derivatives 92 (Scheme 49), with different 

electron-donating arylvinyl moieties were described and studied by Jaung [72] These 
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compounds are fluorescent (λem = 470-567 nm in CHCl3/MeOH 10/1 mixture) with a red-

shifted emission in acidic media. 

 

 

Scheme 49. Structure and photophysical data of compounds 92. 

 

A series of quinoxalines derivatives 93 with a 2,2’,6’,2’’-terpyridine moiety in one arm have 

also been synthesized and studied (Scheme 50) [73]. The absorption and fluorescence 

maximum of these compounds were observed at 398–443 nm and 484–586 nm, respectively. 

These compounds were used as fluorescence probes for transition metal ions such as Co2+, 

Ni2+, Cu2+ and Fe3+. 

 

 

Scheme 50. Structure and photophysical data of compounds 93. 
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3.2. Azomethine Quinoxalines 

The synthesis of a new Schiff base 94, derived from 3-hydroxyquinoxaline-2-carboxaldehyde 

and 2,3-diaminomaleonitrile was reported by Arun et al. and studied as a fluorescent 

bisazomethine dye (Scheme 51) [74]. Like other 2-hydroxyquinoxaline derivatives, it exhibits 

prototropic tautomerism. Compound 94 presents positive absorption and emission 

solvatochromism and a large Stokes shift, making it as a suitable candidate for application as 

fluorescent and charge transport dyes.  

 

 

Scheme 51. Tautomer equilibrium of compound 94. 

 

Another Schiff base, the 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine 95, was 

prepared by the same team (Scheme 52) [75].  Spectroscopic studies have revealed that 95 

exists predominantly in the amide tautomeric form and exhibits both absorption and 

fluorescence solvatochromism with a large Stokes shift. Otherwise, the values of third-order 

non-linear absorption coefficient: β (1.48 x 10-6 cmW-1), imaginary part of the third-order 

non-linear optical susceptibility: Im χ(3) (3.36 x 10-10 esu) and its optical limiting threshold 

(340 MW cm-2), make that 95 could be used for applications in photonic age. 
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Scheme 52. Tautomer equilibrium of coumpond 95. 

 

If substitution of the quinoxaline core with arylvinyl or arylimine moities gave generally good 

fluorescent compounds, other quinoxaline structures bearing aryl moieties with different 

electronic characters have also intensively reported.  

3.3. Arylquinoxalines 

A series of dipolar quinoxaline derivatives substituted with electron-rich terminal N-

hexylcarbazole or triphenylamine moieties 96-98 were synthesized and fully characterized 

(Scheme 53) [76]. As expected, these compounds exhibit excellent blue-green fluorescence 

(λem = 493–560 nm) and are presented as potential emissive and electron-transport materials 

for organic light-emitting diodes.  
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Scheme 53. Structure and photophysical data of compounds 96–98. 

 

Cao et al. have developped ethoxyphenyl and triphenylamine-modified quinoxaline 99 and 

benzoquinoxaline 100 (Scheme 54) [77]. Their linear spectroscopy and two-photon absorption 

properties were investigated. The quinoxaline-type compounds 99 exhibited significantly 

higher fluorescence quantum yields than the benzoquinoxalines-type ones 100. The 

triphenylamine species presented 2PA cross sections values (δ2PA) around 160 GM in the laser 

light wavelength range of 780–820 nm. 

 

 

Scheme 54. Structure and photophysical data of compounds 99 and 100. 
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A series of dipolar compounds featuring quinoxaline 101 or pyridopyrazine 102 cores as 

acceptors and various triarylamines as donors were synthesized by Thomas et al. (Scheme 55) 

[78]. The emission colors of these compounds can be easily tuned from bluish green to orange 

by independent suitable modifications of the amine or quinoxaline units.  

 

 

Scheme 55. Structure and photophysical data of compounds 101–102. 

 

More recently, the same authors have synthesized a series of electroluminescent materials 103 

comprising quinoxaline, triarylamine, and bulky and rigid aromatic fluorophores such as 

carbazole, pyrene, and fluorene (Scheme 56) [79]. These products exhibit a strong green 

fluorescence in film and devices were fabricated using these materials as hole-transporters 

and emitters with intense light emission. 

 

 

Scheme 56. Structure and photophysical data of compounds 103. 
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A series of multi-branched fluorophores with a quinoxaline or with a di- or a 

tetraquinoxalinylethylene as the core and diphenylaminofluorene units incorporated at the 

peripheral positions was synthesized by Lin and coworkers (Scheme 57) [80]. These 

derivatives (104-106) possess good fluorescence quantum yields (ΦF > 0.5 in THF and 

toluene) and a strong solvent effect on emission and life-time behaviors. These compounds 

exhibit two-photon activities and effective optical power limiting properties in the near-IR 

region under the irradiation of nanosecond laser pulses. 

 

 

Scheme 57. Structure and photophysical data of compounds 104–106. 

 

The synthesis and photophysical properties of a series of bipolar compounds 107, 108 

including a quinoxaline unit and substituted triarylamine groups were reported by Burrows 
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and coworkers (Scheme 58) [81]. Incorporation of the bulky dehydroabietic methyl ester 

group in the scaffold of compounds 108 was achieved to improve solubility and to prevent 

crystallization, without affecting their photophysical behaviors. These compounds exhibited 

relatively strong fluorescence, their emission maximum are dependent from the nature of the 

substituents present on the stilbene group. These molecules were evaluated as 

electroluminescent materials: the devices prepared with these materials and with magnesium 

cathodes show efficiencies up to 0.03 cd/A. This result is about one order of magnitude higher 

than the efficiency obtained with the related diphenylstylbeneamines [82].   

 

 

Scheme 58. Structure and photophysical data of compounds 107 and 108. 

 

The photophysical properties of two polyphenylphenyl compounds CPQ 109 and MPQ 110 

with a quinoxaline core were investigated in aqueous solutions (Scheme 59) [83]. For these 

compounds, the abnormal photoluminescent phenomena observed in THF-water mixtures 

could be explained by combinational effects of intramolecular rotation, intermolecular 

hydrogen bonds, solvent viscosity, hydration and formation of nanoparticles. Based on 

detection of the fluorescence observed during formation of nanoparticles, when CPQ or MPQ 
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and nucleobases are present in aqueous medium, an application as nucleobase sensing was 

reported with a sensitivity of guanine > adenine > thymine ≥ cytosine.  

 

 

Scheme 59. Structure of compounds 109 and 110. 

 

Various 5,8-dithienyl quinoxaline derivatives 111 substituted on the thienyl ring were 

described by Hemgesberg and coworkers (Scheme 60) [84]. Compound 111a is fluorescent 

with high Stokes shift (λabs = 273 nm and λem = 542 nm) and could be used to access 

fluorescent sol-gel precursors. 

 

 

Scheme 60. Structure and photophysical data of compounds 111. 

 

The 2,3-dipyrrole-2’-ylquinoxaline (DPQ) 112 [85] and its derivatives with substituents either 

on the pyrrole ring 113-115 or on the phenyl ring of the quinoxaline moiety, leading to 

extended chromophores 116-119 (Scheme 61), are described as sensors for inorganic anions 
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such as fluoride and pyrophosphate [86]. The quinoxaline derivatives bearing dipyrromethane 

or tripyrromethane substituents 114 and 115 act as better anion receptors than the 

unsubstituted dipyrrolylquinoxaline (DPQ) 111 from which they are derived. The extension of 

the conjugation provides an enhancement of the fluorescence affinity and an increased affinity 

for inorganic anions with a stronger selectivity.  

 

 

Scheme 61. Structure of compounds 112–119. 

 

Quinoxaline-bridged porphyrinoids 120, macrocycles containing dipyrrolylquinoxaline (DPQ) 

subunits, were also reported with the same sensing applications as well as encapsulation of 

CHCl3 in solid state (Scheme 62) [87].  
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Scheme 62. Structure of compounds 120. 

 

Wang and coworkers have described a series of dipyrroloquinoxaline-bridged Schiff bases 

121 as fluorescent sensors for Hg2+ ion [88]. More recently, other Schiff bases 122, 

synthesized and studied by Hu et al. were reported as fluorescent ON/OFF switching system 

(Scheme 63) [89]. These compounds displayed good sensitivity toward transition metal ions 

with Cd(II), Zn(II) turn-on and Cu(II), Hg(II) turn-off in fluorescence.  

 

 

Scheme 63. Structure of compounds 121–122. 

 

3.4. Micellaneaous substituted Quinoxalines 

Synthesis of the 2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine 123 was performed by 

Varsha and coworkers (Scheme 64) [90]. The fluorescent compound 123 (λem = 386 nm, ΦF = 

0.81 in ethyl acetate), exhibits a negative fluorosolvatochromism in polar solvents, and 

presents interesting antibacterial activities. 
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Scheme 64. Structure and photophysical data of compound 123. 

 

Katoh and coworkers have described the strong fluorescence of the 2,3-dimorpholino-6-

aminoquinoxaline (Qx) 124 [91].  Two other fluorescent monomers 125 and 126 

incorporating the quinoxaline skeleton Qx in their scaffold were described by the same group 

(Scheme 65) [92]. Compounds 125 and 126 showed intense solvatochromism in their 

fluorescence. Thermo-responsive copolymers of N-isopropylacrylamide (NIPAM) and a small 

amount of these fluorescent monomers were synthesized and their fluorescence properties 

investigated. Contrary to Qx 124, both compounds 125 and 126 having double bond on their 

structure can thus sense and report microenvironnemental changes in thermo-responsive 

polymers and could be applicable as new intramolecular fluorescent probes. 

 

 

Scheme 65. Structure and photophysical data of compounds 124–126. 

 

Touzani and coworkers have described two 2,3-functionalized quinoxalines 127 (Scheme 66) 

[93].  These compounds exist as the keto-enamine form in both solution and solid state. These 
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structures are slightly fluorescent (λem = 488-523 nm, ΦF = 0.06-0.14 in dichloromethane 

solution) and are presented as interesting ligand for metallo-organic NLO-phores. 

 

 

Scheme 66. Structure and photophysical data of compounds 127. 

 

With the aim of forming a pre-organized molecular cleft, the quinoxaline derivative 128, 

possessing a 2,6-pyridyl-based amidothiourea moiety, was developed by Duke et al. and was 

studied as a fluorescent anion sensor (Scheme 67) [94]. The anion-sensing occurs most likely 

via deprotonation of the amidothiourea receptor, adjacent to the quinoxaline fluorophore. In 

this case, significant changes are observed with a red-shift in the absorption spectra, and in the 

emission spectra with a significative quench due to interaction of 128 with anions such as 

AcO- and OH-. 

 

 

Scheme 67. Structure and photophysical data of compound 128. 
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3.5. Fused Quinoxalines 

Two quinoxaline derivatives reported by Benzeid et al. (Scheme 68) have proved their ability 

to stain amyloid fibers, such as aggregated lysozyme and Aβ(1-40)-peptide by a fluorescence 

‘‘turn on’’ mechanism [95].  Thienoquinoxaline 129 allowed the detection of lysozyme and 

Aβ(1-40) fibers at λ = 555  and 532 nm, respectively, with excitation at λ = 450 nm. Styryl-

quinoxaline 130 stained lysozyme and Aβ(1-40) fibers with fluorescence at λ = 579 and 567 

nm, respectively, upon excitation at λ = 453 nm. The apparent Kd values for Aβ(1-40) fibers 

were 77 and 294 nM for 129 and 130, respectively. Due to their unique fluorescence 

properties compared to other dyes reported in the field, they can be considered as additional 

staining tools for the detection and studies of peptide/protein aggregation. 

 

 

Scheme 68. Structure and photophysical data of compounds 129 and 130. 

 

A series of 6H-indolo[2,3-b]quinoxaline compounds 131-136, containing triarylamines with 

aromatic units such as phenyl, naphthyl, pyrene, anthracene, or fluorene were synthesized by 

Thomas et al. ( Scheme 69) [96].    

For the derivatives 131-134, in which the amines were directly anchored on the 6H-

indolo[2,3-b]quinoxaline nucleus, the absorption data are significantly influenced by the 
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nature of the diarylamine segment and they displayed green or yellow emission (λem = 544 – 

586 nm, ΦF = 0.01-0.08). For the derivatives 135 and 136, with an insertion of a conjugating 

aromatic linker between the amine and the indoloquinoxaline unit, a hyperchromism and a 

bathochromic shift of the absorption values are observed, due to an extended conjugation. 

 

 

Scheme 69. Structure and photophysical data of compounds 131–136. 

 

Gemma and coworkers have studied a class of pyrroloquinoxaline and imidazoloquinoxaline 

hydrazones 137 and 138 as fluorescent probes for Aβ1-42 fibrils (Scheme 70) [97]. All these 

compounds were able to bind amyloid fibrils formed in vitro and some of them displayed an 

increase of their fluorescence upon binding, allowing the stain of amyloid structures. The 
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described pyrrolo(imidazo)quinoxalines could be useful for studying amyloid structures in 

vitro. Moreover, their experimentally proven ability to cross the blood–brain barrier in mouse 

opens the possibility of developing these compounds as potential amyloid imaging agents for 

in vivo applications. 

 

 

Scheme 70. Structure of compounds 137 and 138. 

 

Diimidazo[1,2-a:2’,1’-c]quinoxalines 139 were described by Matsumoto et al. (Scheme 71) 

[98]. These derivatives exhibit blue fluorescence with high quantum yield (λem = 415–454 

nm, ΦF = 0.47-0.93). They were also applied to organic light-emitting devices (OLED) as 

emitters, in which the diphenyl derivative emits a nearly pure blue light.  

 

 

Scheme 71. Structure and photophysical data of compounds 139. 

 

A series of substituted 2-phenylbenzo[g]quinoxalines 140 with a rotatable para-substituted 

phenyl moiety were synthesized and used as fluorophore for viscosity-sensitive probes 

(Scheme 72) [99].  The fluorescence properties of these compounds were investigated in the 

media of the ethylene glycol–glycerol mixture with varied viscosity. Compounds bearing the 
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stronger electron-donating groups show more sensitive fluorescence response to viscosity, 

revealing their potential use in viscosity detection and the key role of the substituted groups. 

These compounds exhibit also solvatochromism and halochromism. 

 

 

Scheme 72. Structure and photophysical data of compounds 140. 

 

Several new 1H-pyrazolo[3,4-b]quinoxaline derivatives 141, 142 with N,N-dialkylamino as 

the electron-donating group were reported (Scheme 73) [100]. Their electroluminescence and 

photoluminescence were investigated. In solution, these compounds show emission at about 

520–540 nm with a fluorescence quantum yield close to unity. EL devices fabricated, using 

these compounds as dopants, highlight green emission with efficiencies of 7.5–9.7 cd.A-1 and 

a narrow bandwidth of 65–70 nm peaking at 530–545 nm. 

 

 

Scheme 73. Structure and photophysical data of compounds 141 and 142. 
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A series of compounds based on the 8-halogeno-5,12-dihydroquinoxalino[2,3-b]quinoxaline 

skeleton 143, were synthesized and studied by Podsiadly and coworkers (Scheme 74) [101].  

These new dyes emit blue light with fluorescence quantum yield ranging from 0.24 to 0.90. 

When combined with pyridinium or iodonium salts, these compounds may have practical 

applications as visible-light photo-initiators for free radical and/or cationic polymerization. 

Their chemical structure is determinant to use these compounds as photoinitiator. Their 

quantum yields of singlet oxygen generation [Φ(1O2)] have been measured, in accordance 

with the “heavy atom effects” the much greater [Φ(1O2)] values was determined for the 6-

bromo-2,3-dichloroquinoxaline.           

 

 

Scheme 74. Structure and photophysical data of compounds 143. 

 

 Bolligarla et al. have synthesized new acceptor–donor–acceptor (A–D–A) compounds 144, 

145 incorporating the electron donor tetrathiafulvalene (TTF) as central unit, which is fused 

with acceptors such as quinoxaline and dipyrido[3,2-a:2’,3’-c]phenazine (dppz) moities 

(Scheme 75) [102]. These compounds exhibit good emission in visible region at room 

temperature with a large dependence on the polarity of the solvent, which indicates that the 

excited state is stabilized in more polar solvents due to the intramolecular charge transfer. 
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Scheme 75. Structure and photophysical data of compound 144 and 145. 

 

Another π-conjugated donor-acceptor based on tetrathiafulvalene (TTF) functionalized with 

quinoxaline was synthesized by Jia et al. (Scheme 76) [103]. Spectroscopic and 

electrochemical behaviors of compound 146 demonstrate that the donor (TTF) unit strongly 

interacts with the electron-accepting pyridine groups through the quinoxaline bridge giving 

weak fluorescence. The interaction of compound 146 with metallic ions induces a progressive 

decrease of its fluorescence. 

 

 

Scheme 76. Structure and photophysical data of compound 146. 

 

4. Conclusion and outlooks 

The research efforts in the field of synthesis and use of luminescent materials have strongly 

increased within the last few years. The considerable interest for these compounds is due to 

their wide range applications in various fields. They can be used as fluorescent sensors 
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(polarity, pH, metal cations, or more particularly to detect explosives), as stain for microscopy 

and diagnostic in medicine, for lighting in organic light-emitting devices (OLEDs) and NLO 

materials. 

The research efforts in the field of pyrazine and quinoxaline luminescent molecules have 

strongly increased during the past decade. Indeed, due to their π-deficient character, 

incorporation of a N-heterocycle such as pyrazine or quinoxaline in the backbone of 

luminescent molecules leads to significant modifications of the photophysical properties of π-

conjugated materials. The electron-deficiency of the pyrazine or the quinoxaline ring can be 

used as a dipolar moiety, which favors the internal charge transfer. As largely illustrated in 

this review, this kind of molecules exhibits important fluorescence solvatochromism and good 

NLO properties.  Quadrupolar (D-π-A-π-D) and octopolar structures with a pyrazine central 

core exhibit also 3rd order NLO properties such as two photon absorptions with high cross 

sections. 

Moreover, presence of nitrogen atoms with lone electron pairs allows to the pyrazine and the 

quinoxaline rings to act as effective and stable complexing agents making of them good 

cation sensors. For the same reasons, pyrazine and quinoxaline derivatives can be protonated 

exhibiting halochromism, that has been illustrated by numerous examples given in this 

review. Specific interactions of some pyrazine compounds with particular forms of DNA and 

specific proteins lead to anticipate their use as promising tools for medical diagnosis of 

diseases such as cancer or Alzheimer disease.  

Another aspect of the luminescence of pyrazine and quinoxaline is the electroluminescence 

properties leading to OLEDs. Some examples are details along the reviews. 

This review emphasizes the great interest to incorporate pyrazine or quinoxaline moieties in 

π-extended conjugated systems, owing to their applications in various fields. The elaboration 
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of new efficient structures with such a target is always topical and constitutes an interesting 

challenge.    
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