E. Hitti and M. F. Lucas, Wavelet basis selection for abrupt changes detection in multicomponent signals [2] I. Abdallah. Représentations temps-fréquence adaptatives de signaux acoustiques basées sur des critères entropiques, Thèse de doctorat, 1998.

F. Wendling, G. Carrault, and J. M. Badier, Segmentation of depth-EEG seizure signals: Method based on a physiological parameter and comparative study, Annals of Biomedical Engineering, vol.21, issue.6, pp.1026-1039, 1997.
DOI : 10.1007/BF02684138

M. Basseville, Detecting changes in signals and systems???A survey, Automatica, vol.24, issue.3, pp.309-326, 1988.
DOI : 10.1016/0005-1098(88)90073-8

F. H. Lopes-da-silva, A. Dijk, and H. Smits, Detection of nonstationarities in EEGs using the autoregressive model an application to EEGs of epileptics, CEAN - Computerized EEG Analysis, pp.180-199, 1975.

V. Krajca, S. Petranek, I. Patakova, and A. Varri, Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering, International Journal of Bio-Medical Computing, vol.28, issue.1-2, pp.71-89, 1991.
DOI : 10.1016/0020-7101(91)90028-D

D. V. Hinkley, Inference about the change-point from cumulative sum tests, Biometrika, vol.58, issue.3, pp.509-523, 1971.
DOI : 10.1093/biomet/58.3.509