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Abstract

We are interested in the asymptotic behaviour of a fluid flow contained in a
microscopic periodic distribution of fissures perturbating a porous medium
where the Darcy law is valid, when the coupling between both systems is
modeled by the Beavers-Joseph interface condition. As the small period
of the distribution tends to zero, the interface condition is preserved on a
microscopic scale under the additional assumption that the permeability co-
efficients behave like the squared period of the distribution which is also
the squared size of the fissures. Moreover, the resulting pressure is purely
macroscopic unlike the velocity field which also depends on the microscopic
variable.

Keywords: Fractured porous media, Stokes flow, Beavers-Joseph interface,
Homogenization, Two-scale convergence.
2000 MSC: 35B27, 76M50, 76S05, 76T99

1. Introduction

The perturbation of a porous medium by fissures containing a Stokes flow
give rise to nontrivial phenomena that cannot be modeled by the laws of fluid
mechanics. Given a microscopic periodically distributed collection of thin
fissures, we are interested in the asymptotic behaviour of a medium where
the Stokes equations of a fluid constrained in the fissures are coupled with
the Darcy equations of the surrounding porous medium through a contact
law of Beavers-Joseph type [6] known as the Saffman’s variant [25]. The
pioneering work by Beavers and Joseph yields the existence of a slip velocity
at the interface between the fluid part and the fluid-saturated porous solid
part. Proper rescaling of the fissures shows that the Beavers-Joseph condition
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influences the asymptotic behaviour of the system as long as the permeability
coefficients obey one of two admissible alternatives. As one of them was
studied in [10], we concentrate on the second alternative, namely the case
where permeability is of the same order of magnitude as the squared period
of the distribution. Our aim is is to show that although this influence is very
small in comparison with the previous case it still plays a nongligeable part
that could not be simply deduced from the first one.

As we use arguments of the homogenization theory, we briefly recall basic
facts about the homogenization of fluids.

An argument favoring the use of periodic homogenization in fluid flows is
that it was already used to justify Darcy’s law [28]. Therefore, the present
framework may be seen as a further development of this theory, although it
does not deal with the formal method of asymptotic expansions [14], [15],
[26] but rather extends the first rigorous proof based on the construction of
a pressure extension due to [28] and followed by contextual variants [1], [16],
[19]. with the restriction that, unlike previous works [1], [12], [28] relying
on specific constructions, the velocity and pressure of the fluid have natural
bounded extensions in the porous medium. We refer to [12] and references
therein for developments about the physics and mathematics of this subject.
However unrealistic, the periodicity assumption allows to concentrate ideas
on the actual process. Homogenization of phenomena in fractured media were
studied later in [22], [1] and [23] that is, when an assumption of nonconect-
edness could be dropped. Several models of fluid flows through fractured
porous media (see [4], [5], [27], [9] and [24]) have been obtained by means
of asymptotic methodswhere a homogeneous porous medium is altered by
a possibly periodic distribution of microscopic fissures. Then, ε-periodicity
allows to use procedures of the homogenization theory.

We consider an incompressible viscous fluid flow in a fractured porous
media represented by a periodically structured domain consisting of two in-
terwoven regions, separated by an interface. The first region represents the
system of fissures which form the fracture, which is connected and where
the flow is governed by the Stokes system. The second region, which is also
connected, stands for the system of porous blocks, which have a certain per-
meability and where the flow is governed by Darcy’s law. These two flows are
coupled on the interface by the Saffman’s variant [25] of the Beavers-Joseph
condition [6], [17] which was confirmed by [13] as the limit of a homogeniza-
tion process. Besides the continuity of the normal component of the velocity,
it imposes the proportionality of the tangential velocity with the tangen-
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tial component of the viscous stress on the fluid-side of the interface. We
prove here the existence and uniqueness of the solution of this model in our
ε-periodic structure.

The paper is organized as follows. The problem of the flow is introduced in
Section 2. More precisely, considering a microscopic periodic distribution of
fissures we are interested in the behaviour of the equivalent material when the
size of the fissures is of the same order of magnitude as the vanishing period
of the distribution. The porous medium is described by a Darcy model in the
solid part of the system and is coupled with Stokes equations in the fissures
through a law of Beavers-Joseph type, see [6]. An adequate scaling shows that
two cases arise depending on whether the permeability coefficients is of unity
order or behave like the squared period of the distribution. Letting aside
the first alternative which was studied in [10], we concentrate on the second
one which displays new a priori estimates. The homogenization process is
initiated in Section 3 thanks to a priori estimates and compacity arguments of
the two-scale convergence theory (see [3], [18] and [21]) to identify convergent
subsequences.

2. The flow through the ε-periodic structure

Let Ω be an open connected bounded set in RN(N ≥ 2), locally located
on one side of the boundary ∂Ω, a Lipschitz manifold composed of a finite
number of connected components.

Let Yf be a Lipschitz open connected subset of the unit cube Y =]0, 1[N ,
such that the intersections of ∂Yf with ∂Y are reproduced identically on
the opposite faces of the cube and 0 /∈ Y f . The outward normal on ∂Yf is
denoted by ν. Repeating Y by periodicity, we assume that the reunion of all
the Ȳf parts, denoted by RN

f , is a connected domain in RN with a boundary

of class C2. Defining Ys = Y \ Y f , we assume also that the reunion of all the
Ȳs parts is a connected domain in RN .

For any ε ∈]0, 1[ we denote

Zε = {k ∈ ZN , εk + εY ⊆ Ω} (2.1)

Iε = {k ∈ Zε, εk ± εei + εY ⊆ Ω,∀i ∈ 1, N} (2.2)

where ei are the unit vectors of the canonical basis in RN .
Finally, we define the system of fissures by

Ωεf = int
(
∪k∈Iε(εk + εȲf )

)
(2.3)
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and the porous matrix of our structure by Ωεs = Ω\Ω̄εf . The interface
between the porous blocks and the fluid is denoted by Γε = ∂Ωεf . Its normal
is:

νε(x) = ν
(x
ε

)
, x ∈ Γε (2.4)

where ν has been periodically extended to RN .
Let us remark that Ωεs and Ωεf are connected and that the fracture ratio

of this structure is given by

m = |Yf | ∈]0, 1[, as
|Ωεf |
|Ω|

→ m when ε→ 0. (2.5)

To the previous structure we associate a model of fluid flow through a
fractured porous medium by assuming that there is a filtration flow in Ωεs

obeying the Darcy’s law and that there is a viscous flow in Ωεf governed by
the Stokes system. These two flows are coupled by a Saffman’s variant [25]
of the Beavers-Joseph condition [6], [17]. This system is completed by an
impermeability condition on ∂Ω:

divvεs = 0 in Ωεs (2.6)

µεv
εs = Kε(gε −∇pεs) in Ωεs, (2.7)

divvεf = 0 in Ωεf , (2.8)

σεij = −pεfδij + 2µεeij(v
εf ) in Ωεf (2.9)

− ∂

∂xj
σεij = gεi in Ωεf (2.10)

vεs · νε = vεf · νε on Γε, (2.11)

−pεsνεi − σεijνεj = αεµεβ
−1
ε (vεfi − (vεf · νε)νεi ) on Γε, (2.12)

vεs · n = 0 on ∂Ω, n the outward normal on ∂Ω, (2.13)

where vεs, vεf and pεs, pεf stand for the corresponding velocities and pres-
sures, µε > 0 is the viscosity of the fluid, αε ∈ L∞(Ω) is the positive non-
dimensional Beavers-Joseph number, gε ∈ L2(Ω)N is the exterior force and
e(v) denotes the symmetric tensor of the velocity gradient defined by

eij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.
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Finally, the positive tensor of permeability is defined by:

Kε(x) = β2
εK
(x
ε

)
, (2.14)

where K ∈ L∞(Y )N×N and βε > 0 stands for the magnitude of (TrKε)1/2

with respect to ε→ 0.
As usual, we use the notations:

H0(div,Ω) = {v ∈ H(div,Ω), v · ν = 0 on ∂Ω} (2.15)

L2
0(Ω) = {p ∈ L2(Ω),

∫
Ω

p = 0} (2.16)

V0(div,Ω) = {v ∈ H0(div,Ω), divv = 0 in Ω} (2.17)

Next, we define

Hε = {v ∈ H0(div,Ω), v ∈ H1(Ωεf )
N}, (2.18)

the Hilbert space endowed with the scalar product

(u, v)Hε =

∫
Ωεs

uv+

∫
Ωεs

divu divv+ε2

∫
Ωεf

e(u)e(v)+ε

∫
Γε

(γεu−(γενu)νε)γεv (2.19)

where γε and γεν denote respectively the trace and the normal trace operators
on Γε with respect to Ωεf . Its corresponding subspace of incompressible
velocities is

Vε = {v ∈ V0(div,Ω), v ∈ H1(Ωεf )
N} (2.20)

A useful property of the present structure is the existence of a bounded
extension operator similar to that introduced in [7], [8] and [2] in the case of
isolated fractures.

Theorem 2.1. There exists an extension operator Pε : H1(Ωεf ) → H1
0 (Ω)

such that
Pεu = u in Ωεf (2.21)

|e(Pεu)|L2(Ω) ≤ C|e(u)|L2(Ωεf ), ∀u ∈ H1(Ωεf ) (2.22)

where C is independent of ε.

A straightforward consequence, via the corresponding Korn inequality, is
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Lemma 2.2. There exists some constant C > 0, independent of ε, such that

|uε|L2(Ωεf ) + ε|∇u|L2(Ωεf ) ≤ C|u|Hε , ∀u ∈ Hε. (2.23)

Proof. We prove that:

|ey(u)|2Yf + |γu− (γνu)ν|2Γ (2.24)

is a norm on H1(Yf ). Indeed, let

|ey(uk)|2Yf + |γuk − (γνu
k)ν|2Γ → 0 (2.25)

and
|uk|2Yf + |∇yu

k|2Yf = 1. (2.26)

From (2.26), we deduce that, at least for some subsequence and for some
u ∈ H1(Yf ):

uk ⇀ u in H1(Yf ). (2.27)

Moreover, (2.25) implies that

ey(u) = 0 and γu− (γνu)ν = 0.

It follows that u is a rigid displacement with vanishing the tangential trace
on our Γ, that is u ≡ 0. The compactness of the inclusion L2(Yf ) ⊂ H1(Yf )
leads to the strong convergence

uk → u in L2(Yf ).

Applying (2.26) again and Korn’s inequality, we infer that (2.27) is a strong
convergence, which leads to a contradiction between (2.26) and u = 0. Fi-
nally, (2.23) is obtained by rescaling the fact that (2.24) is a norm on H1(Yf ).

Denoting
Aε = (Kε)−1, (2.28)

and using the positivity of Kε, we can assume without loss of genenerality
that

∃a0 > 0 such that Aεij(·) ξiξj ≥ a0|ξ|2, ∀ξ ∈ RN , a.e. in Ω. (2.29)

Rescaling the velocity by

uε =


uεs in Ωεs

uεf in Ωεf

=
µε
β2
ε


vεs in Ωεs

vεf in Ωεf

(2.30)
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then, for any u, v ∈ Hε and q ∈ L2
0(Ω), we define

aε(u, v) =

∫
Ωεs

Aεuv + β2
ε

∫
Ωεf

e(u)e(v) + βε

∫
Γε

αε(γ
εu− (γενu)νε)γεv (2.31)

bε(q, v) = −
∫

Ω

q divv. (2.32)

We see that if the pair (uε, pε) is a smooth solution of the problem (2.6)–
(2.13), then it is also a solution of the following problem: To find (uε, pε) ∈
Hε × L2

0(Ω) such that

aε(u
ε, v) + bε(p

ε, v) =

∫
Ω

gεv, ∀v ∈ Hε (2.33)

bε(q, u
ε) = 0, ∀q ∈ L2

0(Ω) (2.34)

Theorem 2.3. There exists a unique pair (uε, pε) ∈ Hε × L2
0(Ω) solution of

(2.33)–(2.34).

Proof. As H1
0 (Ω) is obviously included in Hε, the following inf-sup condition

is easily satisfied by bε:

∃Cε
1 > 0 such that inf

q∈L2
0(Ω)

sup
v∈Hε

bε(q, v)

|v|Hε|q|L2
0(Ω)

≥ Cε
1 .

The coercivity condition (2.29) implies that

∃Cε
2 > 0 such that aε(v, v) ≥ Cε

2 |v|2Hε
, ∀v ∈ Hε,

that is the Vε-ellipticity of aε. As we also have

Vε = {v ∈ Hε, bε(q, v) = 0, ∀q ∈ L2
0(Ω)}, (2.35)

the proof is completed by Corollary 4.1, Ch. 1 of [11].

In the rest of the paper we shall study the asymptotic behaviour (when
ε→ 0) of (uε, pε), the unique solution of (2.33)–(2.34).

As Aε defined by (2.28) is of ε0-order, we assume that

∃A ∈ L∞per(Y )N
2

such that Aε(x) = A
(x
ε

)
, x ∈ Ω (2.36)

∃g ∈ L2(Ω)N such that gε → g strongly in L2(Ω). (2.37)
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Because |Γε| is of ε−1-order, we expect that macroscopic effects of the
Beavers-Joseph condition will appear only when αεβε is of ε1-order (see [20]).
Therefore, we shall work under the hypothesis:

∃α ∈ C1
per(Y ) and α0 > 0 such that ε−1βεαε(x) = α

(x
ε

)
≥ α0, x ∈ Ω. (2.38)

Thus, for the study of the asymptotic behaviour it remains only the order
of βε to be taken into account.

In the sequel we shall study the case when βε = O(ε). Without loss of
generality we can consider from now on that

∃β > 0 such that β2
ε = ε2β, ∀ε > 0. (2.39)

3. The homogenization process

From now on, for any function ϕ defined on Ω × Y we shall use the
notations

ϕh = ϕ|Ω×Yh , ϕ̃h =
1

|Yh|

∫
Yh

ϕ(·, y)dy, h ∈ {s, f}, (3.1)

ϕ̃ =

∫
Y

ϕ(·, y)dy, that is ϕ̃ = (1−m)ϕ̃s +mϕ̃f . (3.2)

Also, for any sequence (ϕε)ε, bounded in L2(Ω× Y ), we denote

ϕε
2
⇀ ϕ

iff ϕε is two-scale convergent to ϕ ∈ L2(Ω× Y ) in the sense of [3].
Noticing that uε ∈ Vε and setting v = uε in (2.33) we get

|uε|2Hε
≤ C|uε|L2(Ω). (3.3)

Applying (2.23) we find that

{uε}ε is bounded in Vε and in V0(div,Ω), (3.4)

|uε|L2(Ωεf ) + ε|∇uε|L2(Ωεf ) ≤ C, C being independent of ε. (3.5)

It follows that ∃u ∈ L2(Ω× Y )N such that, on some subsequence

uε
2
⇀ u (3.6)
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uε ⇀

∫
Y

u(·, y)dy ∈ V0(div,Ω) weakly in L2(Ω)N (3.7)

Denoting χεf (x) = χf

(x
ε

)
and χεs(x) = χs

(x
ε

)
, where χf and χs are

the characteristic functions of Yf and Ys in Y , we see that (χεsu
ε)ε, (χεfu

ε)ε

and

(
χεf

∂uε

∂xi

)
ε

are bounded in (L2(Ω))N , ∀i ∈ {1, 2, · · · , N}.

Let us denote:

H̃1
per(Yf ) = {ϕ ∈ H1

loc(RN
f ), ϕ is Y -periodic,

∫
Yf

ϕ = 0}. (3.8)

Lemma 3.1. uf ∈ L2(Ω, (H̃1
per(Yf ))

N) and satisfies:

εχεf∇uεi
2
⇀ χf∇yu

f
i . (3.9)

Proof. Using the compacity result of [21], it follows that ∃ηi ∈ L2(Ω× Y )N

such that, on some subsequence we have

εχεf∇uεi
2
⇀ ηi. (3.10)

Next, we easily remark that ηi|Ω×Ys = 0.
Let us introduce

V per
0 (div, Yf ) = {ϕ ∈ Hloc(div,RN

f ), divyϕ = 0 in RN
f ,

ϕ · ν = 0 on Γ, ϕ is Y − periodic}. (3.11)

Let ψ ∈ L2(Ω, V per
0 (div, Yf )); denoting ψε = ψ

(
x, x

ε

)
, we have

ψε ∈ H1(Ωεf )
N and ψενε = 0 on Γε (3.12)∫

Ωεf

ε∇uεi (x)ψε(x)dx = −
∫

Ωεf

εuεi (x)divxψ
(
x,
x

ε

)
dx. (3.13)

Using the two-scale convergences (3.6)-(3.10) we find∫
Ω×Yf

ηi(x, y)ψ(x, y)dxdy = 0, ψ ∈ L2(Ω, V per
0 (div, Yf )). (3.14)

As the orthogonal space of V per
0 (div, Yf ) in L2(Ω× Y ) is:

∇H̃1
per(Yf ) = {∇q, q ∈ H̃1

per(Yf )} (3.15)

9



(see Th.2.7, Ch.I[11]), it follows that there exists w ∈ L2(Ω; H̃1
per(Yf )

N) such
that

ηi(x, y) = χf (y)∇ywi(x, y), ∀i ∈ {1, ..., N}. (3.16)

Further we prove that

wi(x, y) = ufi (x, y)− ũfi (x), ∀i ∈ {1, ..., N},

which complets the proof.

Proposition 3.2. There holds:

divyu
f = 0, in Ω× Yf (3.17)

divyu
s = 0, in Ω× Ys (3.18)

ufn = usn, on Ω× Γ (3.19)

(1−m)divũs +mdivũf = 0, in Ω. (3.20)

Proof. First, let a ∈ {s, f} and let ζ ∈ D(Ω), θ ∈ D(Ω× Ya). Define

θε = θ
(
x,
x

ε

)
.

There holds

0 =

∫
Ωεs

divuε(ζ + εθε) +

∫
Ωεf

divuε(ζ + εθε) =

= −
∫

Ωεs

uε(∇ζ + ε(∇θ)ε +∇yθ
ε)−

∫
Ωεf

uε(∇ζ + ε(∇θ)ε +∇yθ
ε)

→ −
∫

Ω×Yf
uf (∇ζ +∇yθ)−

∫
Ω×Ys

us(∇ζ +∇yθ) =

=

∫
Ω×Yf

divyu
fθ +

∫
Ω×Ys

divyu
sθ +

∫
Ω

(mdivũf + (1−m)divũs)ζ

from which we deduce (3.17), (3.18) and (3.20).
Second, let ζ ∈ D(Ω), θ ∈ D(Ω;C∞per(Y )) and define

θε = θ
(
x,
x

ε

)
.

There holds

0 =

∫
Ω

divuε(ζ + εθε) = −
∫

Ω

uε(∇ζ + ε(∇θ)ε +∇yθ
ε) +

∫
Γε

[uεn](ζ + εθε) =
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= −
∫

Ω

uε(∇ζ+ε(∇θ)ε+∇yθ
ε)→ −

∫
Ω×Yf

uf (∇ζ+∇yθ)−
∫

Ω×Ys
us(∇ζ+∇yθ) =

=

∫
Ω×Yf

divyu
fθ+

∫
Ω×Ys

divyu
sθ+ |Y |

∫
Ω

(divũf + divũs)ζ −
∫

Ω×Γ

(ufn− usn) θ

= −
∫

Ω×Γ

(ufn − usn) θ

which yields (3.19) and achieves the proof.

The same arguments as in [10] yield:

Proposition 3.3. There exists a constant C > 0 independent of ε such that

|pε|L2(Ω) + |∇pε|L2(Ωεs) ≤ C. (3.21)

Lemma 3.4. There exists p ∈ L2
0(Ω × Y ) with ps = p̃s ∈ H1(Ω) and pf =

p̃f ∈ L2(Ω) such that, up to some subsequence, we have:

pε
2
⇀ p. (3.22)

Moreover: ps = pf = p and thus p ∈ H̃1(Ω).

Proof. The same arguments as in [10] yield ps = p̃s ∈ L2(Ω). Let

Qε : H1(Ωεs)→ H1(Ω)

denote the continuous extension operator introduced in [7]. From (3.21), we
deduce that, at least for some subsequence, ∃z ∈ H1(Ω) such that

Qεp
ε ⇀ z in H1(Ω).

Noticing that χεsQεp
ε = χεsp

ε in Ω, we deduce that that z = p̃s in H1(Ω),
which yields

ps = p̃s ∈ H1(Ω). (3.23)

Using (2.9)–(2.10) and noticing that Murat-Tartar inequality together with
Korn’s inequality yield, for some constant C > 0 independent of ε:

|v|L2(Ωεf ) ≤ C|e(v)|L2(Ωεf ), ∀v ∈ H1
0 (Ωεf )

we find that there exists a constant C > 0 such that

|∇pε|H−1(Ωεf ) ≤ Cε.
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Theorem 3.2 of [23] yields the existence of pf ∈ L2(Ω) such that, on some
subsequence:

χεfp
ε 2
⇀ χfp

f . (3.24)

To conclude, let ϕ ∈ D(Ω), ψ ∈ C∞per(Y )N such that∫
Γ

ψ · ν 6= 0

and set
vεi (x) = εϕ(x)ψi

(x
ε

)
, ∀i ∈ {1, · · · , N}.

Using vε in the variational formulation (2.33)–(2.34) and passing to the limit
as ε→ 0 yields∫

Ω

(pf (x)− ps(x))ϕ(x)dx

(∫
Γ

ψ · ν
)

= 0, ∀ϕ ∈ D(Ω)

that is, ps = pf . We conclude thanks to (3.23).

4. The homogenized problem

Consider the Hilbert space:

X = {u ∈ L2(Ω×Y ), uf ∈ L2(Ω, H̃1
per(Yf )), (ũs, ũf ) ∈ H0(div,Ω)2, divyu = 0}

endowed with the scalar product:

(u, v)X =

∫
Ω×Ys

u v+

∫
Ω

divũ divṽ+

∫
Ω×Yf
ey(u)ey(v)+

∫
Ω×Γ

α(y)(γuγv−γνuγνv)

and set:
X0 = {u ∈ X, divũ = 0}, M = L2

0(Ω).

We can present our first homogenization result:

Proposition 4.1. The limit problem reads: Find (v, q) ∈ X ×M such that

a(v, ϕ) + b(q, ϕ) =

∫
Ω

gϕ̃, ∀ϕ ∈ X (4.1)

b(π, v) = 0, ∀π ∈M (4.2)
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where we set

a(v, ϕ) =

∫
Ω×Ys

Avϕ+ β

∫
Ω×Yf

ey(v) : ey(ϕ) +

∫
Ω×Γ

α(y)(γv − (γνv)ν)γϕ (4.3)

b(π, v) = −
∫

Ω

πdivṽ, (4.4)

Proof. Let ϕ ∈ X ∩ C∞(Ω× Y ) and set

ϕε(x) = ϕ
(
x,
x

ε

)
.

Then ϕε ∈ Vε. Passing to the limit in (2.33) with ϕε as the test function,
we obtain (4.1). Notice that the integral on Ω × Γ results from the same
arguments as in [10].
Let π ∈M and set likewise:

πε(x) = π
(
x,
x

ε

)
.

Then, πε ∈ L2
0(Ω) and we may pass to the limit in (2.34) with πε as the test

function to obtain (4.2).

Proposition 4.2. The problem (4.1)–(4.2) is well-posed.

Proof. Let π ∈ M . Using Theorem 4.2 of [10], let v ∈ H1
0 (Ω)N ⊂ X be the

unique solution of π = divv such that |v|H1
0 (Ω) ≤ C|π|L2(Ω).

Noticing that
|v|2X ≤ C|v|2H1(Ω) ≤ C|π|2L2(Ω)

we deduce that:

sup
ϕ∈X

b(π, ϕ)

|ϕ|X |π|Ω
≥ b(π, v)

|v|X |π|Ω
=

|π|2Ω
|v|X |π|Ω

≥ 1

C
.

The coercivity of a(·, ·) follows from the coercivity of the matrix A and that
X may be equipped with the norm (2.24). We conclude as in Theorem 4.2
of [10] using Corollary 4.1, Ch. 1 of [11].

Proposition 4.3. The problem (4.1)–(4.2) equivalently reads: Find u ∈ X0

such that

a(u, ϕ) =

∫
Ω

(g −∇p)ϕ̃, ∀ϕ ∈ X0.
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Consider the cell problem: for every i ∈ {1, · · · , N}, let wi ∈ W , where:

W = {w ∈ L2(Y ), uf ∈ H̃1
per(Yf ), divyw = 0 in Y },

such that∫
Ys

Awiψ + β

∫
Yf

ey(w
i) : ey(ψ) +

∫
Γ

α(γwi − (γνw
i)ν)ψ =

∫
Y

ψi, ∀ψ ∈ W.

Then, using the convention of repeated indices, the solution of the homoge-
nized problem reads:

u(x, y) = wi(y)

(
gi(x)− ∂p

∂xi

)
. (4.5)

We set

Kji =

∫
Y

wij. (4.6)

Proposition 4.4. The effective permeability tensor K is symmetric and pos-
itively defined.

Proof. By definition of wi, the matrix K is symmetric. Introducing wξ =∑N
i=1 ξiw

i for every ξ ∈ RN , we see that K is also positively definite. There-
fore, the positivity is given by the lowest, necessarily positive, eigenvalue of
K.

From (4.5) we get the Darcy’s law

ũ = K(g −∇p), (4.7)

where ũ ∈ H0(div,Ω) and p ∈ H̃1(Ω) is the unique solution of the following
boundary value problem:

div(K∇p) = div(Kg) in Ω, (4.8)

K∇p · n = Kg · n on ∂Ω, (4.9)

where obviously div(Kg) ∈ H−1(Ω).

Proposition 4.5. The problem (4.8)–(4.9) is well-posed.

14



Proof. As K is symmetric and positively defined, (4.8)–(4.9) is a clasical non
homogeneous Neumann problem. The compatibility condition is obviously
satisfied. Then there exists a unique solution in H̃1(Ω).
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[23] D. Polǐsevski, Basic homogenization results for a biconnected ε-periodic
structure, Appl. Anal. 82 (4) (2003) 301–309.
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