G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Analysis, vol.2, pp.203-222, 1989.

G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Communications on Pure and Applied Mathematics, vol.20, issue.3, pp.605-641, 1991.
DOI : 10.1002/cpa.3160440602

G. Allaire, Homogenization and Two-Scale Convergence, SIAM Journal on Mathematical Analysis, vol.23, issue.6, pp.1482-151, 1992.
DOI : 10.1137/0523084

URL : https://hal.archives-ouvertes.fr/hal-01111805

G. I. Barenblatt, Y. P. Zheltov, and I. N. Kochina, On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks, Prikl.Mat. i Mekh, vol.24, pp.852-864, 1960.

G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Fluid Flows Through Natural Rocks, 1990.
DOI : 10.1007/978-94-015-7899-8

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, vol.none, issue.01, pp.197-207, 1967.
DOI : 10.1017/S0022112067001375

D. Cioranescu and J. Saint-jean-paulin, Homogenization in open sets with holes, Journal of Mathematical Analysis and Applications, vol.71, issue.2, pp.590-607, 1979.
DOI : 10.1016/0022-247X(79)90211-7

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures et Appl, vol.64, pp.31-75, 1985.

H. I. Ene and D. Poli?evski, Model of diffusion in partially fissured media, Zeitschrift f??r angewandte Mathematik und Physik, vol.53, issue.6, pp.53-1052, 2002.
DOI : 10.1007/PL00013849

I. Gruais and D. Poli?evski, Fluid flows through fractured porous media along Beavers-Joseph interfaces Preprint I, 2013.

V. Girault and P. , Raviart Finite Element Methods for Navier-Stokes Equations, 1986.

U. Hornung, Homogenization and porous media, Interdiscip. Appl. Math, vol.6, 1997.
DOI : 10.1007/978-1-4612-1920-0

W. Jäger and A. Mikeli´cmikeli´c, Modeling Effective Interface Laws for Transport Phenomena Between an Unconfined Fluid and a Porous Medium Using Homogenization, Transport in Porous Media, vol.1, issue.14, pp.489-508, 2009.
DOI : 10.1007/s11242-009-9354-9

J. B. Keller and R. I. , Darcy's law for flow in porous media and the two-space method, Nonlinear partial differential equations in engineering and applied science, Proc. Conf., Univ. Rhode Island, pp.429-443, 1979.

J. Lions, Some methods in the mathematical analysis of systems and their control, 1981.

R. Lipton and M. Avellaneda, Synopsis, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.127, issue.1-2, pp.71-79, 1990.
DOI : 10.1016/0021-9797(68)90307-X

I. P. Jones, Low Reynolds number flow past a porous spherical shell, Proc Camb, Phil. Soc, pp.73-231, 1973.

D. Lukkassen, G. Nguetseng, and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math, vol.2, pp.35-86, 2002.

A. Mikeli´cmikeli´c, Effets inertiels pour unécoulementunécoulement stationnaire visqueux incompressible dans un milieu poreux, C. R. Acad. Sci. Paris Sér. I Math, vol.320, issue.10, pp.1289-1294, 1995.

M. Neuss-radu, Some extensions of two-scale convergence, C.R. Acad

G. Nguetseng, A General Convergence Result for a Functional Related to the Theory of Homogenization, SIAM Journal on Mathematical Analysis, vol.20, issue.3, pp.608-623, 1989.
DOI : 10.1137/0520043

D. Poli?evski, On the homogenization of fluid flows through periodic media, Rend. Sem. Mat. Univers. Politecn. Torino, vol.45, issue.2, pp.129-139, 1987.

D. Poli?evski, Basic homogenization results for a biconnected -periodic structure, Appl. Anal, vol.82, issue.4, pp.301-309, 2003.

D. Poli?evski, The Regularized Diffusion in Partially Fractured Porous Media, Current Topics in Continuum Mechanics, 2003.

P. G. Saffman, On the Boundary Condition at the Surface of a Porous Medium, Studies in Applied Mathematics, vol.30, issue.2, pp.93-101, 1971.
DOI : 10.1002/sapm197150293

E. Sanchez-palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol.127, 1980.

R. E. Showalter and N. J. Walkington, Micro-structure models of diffusion in fissured media, Journal of Mathematical Analysis and Applications, vol.155, issue.1, pp.1-20, 1991.
DOI : 10.1016/0022-247X(91)90023-S

L. Tartar, Incompressible fluid flow in a porous medium. Convergence of the homogenization process