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Abstract 

Rare genetic iron overload diseases are an evolving field due to major advances in genetics and molecular 

biology. Genetic iron overload has long been confined to the classical type 1 hemochromatosis related to the 

HFE C282Y mutation. Breakthroughs in the understanding of iron metabolism biology and molecular 

mechanisms led to the discovery of new genes and subsequently new types of hemochromatosis. To date four 

types of hemochromatosis have been identified: HFE-related or type1 hemochromatosis, the most frequent 

form in Caucasians, and four rare types, named type 2 (A and B) hemochromatosis (juvenile hemochromatosis 

due to hemojuvelin and hepcidin mutation), type 3 hemochromatosis (related to transferrin receptor 2 

mutation), and type 4 (A and B) hemochromatosis (ferroportin disease). The diagnosis relies on the 

comprehension of the involved physiological defect ,that can now be explored by biological and imaging tools, 

which allow non invasive assessment of iron metabolism. A multidisciplinary approach is essential to support 

the physicians in the diagnosis and management of those rare diseases.  

 



 

Introduction 

Since the description of Hemochromatosis by Trousseau in 1865, and the demonstration of its genetic nature 
1
, 

many studies have shed light on its putative pathophysiological mechanism. The first major breakthrough was 

the discovery of the HFE gene 
2
. This made it possible to diagnose the most common form of hereditary 

hemochromatosis (HFE or Type 1 hemochromatosis) due to the p.Cys282Tyr mutation (C282Y) in the HFE gene. 

Further discoveries unraveled iron metabolism regulation and its molecular mechanism, leading to the 

description of new and rarer form of hemochromatosis which are referred as non HFE hemochromatosis. 

Hepcidin, which is coded by the HAMP gene 
3
, plays a central role

4,5
. Mainly secreted by the liver

6,7
, this small 

peptide was shown to interact with ferroportin
8
 (coded by the SLC40A1 gene), the only known cellular iron 

exporter, this interaction inducing ferroportin internalization and degradation. Thus, through its regulation of 

ferroportin, hepcidin can reduce iron export from macrophages and enterocytes into the bloodstream. The 

Transferrin Receptor 2
9,10

 (TFR2, coded by the TFR2 gene) and Hemojuvelin 
11-13

(coded by the HJV gene) are 

critical cofactors in hepcidin secretion regulation. Each of these genes can have mutation leading to different 

peculiar forms of Hemochromatosis, whose phenotypical expression can share common signs or have specific 

features. These discoveries, and the broader availability of genetic testing, enabled a better discrimination of 

HFE and non-HFE related Hemochromatosis from various secondary causes of iron overload. However, if 

physiology needs to be known for enlightening the expression of these conditions, it makes the diagnosis 

workup more complex since the phenotype can be mixed and the appropriate tests to perform difficult to 

choose. This emphasizes the relevant role of referral centers who can provide guidelines, genetic advice, and 

in-house genotyping testing to support physicians for proper evaluation of their patients with suspected rare 

genetic iron overload syndromes. 

 

 

 

 



 

PHYSIOLOGY AND PATHOLOGY 

 

IRON METABOLISM 

 

IRON UPTAKE AND EXPORT 

 

Iron uptake occurs in the proximal part of the duodenum where two forms of iron are available: heme iron, 

mainly found in meat from the degradation of myoglobin and hemoglobin, and non heme iron found in 

vegetable and grains. Heme iron is carried out by endocytosis through the apical membrane of enterocytes, 

possibly by the Heme Carrier Protein 1
14

; the subsequent catabolism pathways are not yet definitely 

demonstrated. Non heme iron is transported into the cytoplasm of enterocytes by Divalent Metal Transporter 

1(DMT1)
15

. Ferroportin (SLCA40A1)
16-18

 is the only known cell iron exporter, located at the basal membrane of 

enterocytes and  at the membrane of macrophages, where it allows iron egress from the cytoplasm to the 

bloodstream with subsequent oxidation by hephaestin 
19

 and  binding to transferrin  (Figure 1). 

HEPCIDIN 

 

Hepcidin (HAMP) is a small peptide, first identified as an antimicrobial peptide
4-6

. Mainly synthesized in the 

liver by hepatocytes, it is also produced at a lower level by adipocytes
20

 and macrophages
21

. Highly expressed 

in iron overload and inflammation 
4,22

, hepcidin was later shown to be the key hormone of iron metabolism 

regulation
7,23,24

. Hepcidin interacts with ferroportin: circulating hepcidin binds to membrane ferroportin and 

causes subsequent ferroportin internalization and degradation 
8
 (Figure 1). As a consequence, cellular iron 

egress is impaired. Hepcidin causes hypoferremia by decreasing cellular release into the plasma
25

, therefore 

regulating body iron availability through influencing iron release by both enterocytes and macrophages. 



HEPCIDIN REGULATION 

 

The regulation of hepcidin expression has been mainly studied at a transcriptional level 
26

. In inflammation, 

hepcidin induction results from the signaling of interleukin-6 through its receptor and STAT3 
27-30

 (signal 

transducer and activator of STAT3). Basal expression is regulated through a bone morphogenetic protein (BMP) 

/SMAD pathway 
12,31-33

. BMP6 
34,35

 is thought to play a major role in association with its coreceptor 

hemojuvelin
11-13

 (HJV), and is also involved in the response of hepcidin expression to iron stores 
36

. Although 

molecular mechanisms remain not fully elucidated, it is currently accepted that HFE, TFR1, TFR2 and HJV form a 

complex at the hepatocyte membrane 
37-39

, which is thought to play a major role in the sensing of iron stores 

according to serum transferrin saturation, with subsequent regulation of hepcidin expression
9,40,41

 (Figure 1). 

TFR2 has been reported to activate signal transduction involving MAP kinase pathway 
42

. A post-traductional 

level of hepcidin activity control, which implicates the furin dependent cleavage process, has been recently 

highlighted 
43,44

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IRON OVERLOAD 

Iron overload arising from mutations in genes involved in iron metabolism are induced by two types of 

mechanisms 

HEPCIDIN DEFICIENCY 

 

Hepcidin deficiency is the key mechanism explaining iron overload in type HFE, HJV, HAMP and TFR2 related 

hemochromatosis. The corresponding mutations lead, through disturbances of signal induction cascades, to 

decreased hepatic synthesis of hepcidin. In HFE hemochromatosis it was demonstrated in mice and confirmed 

in humans that correction of liver hepcidin secretion normalized iron metabolism 
45,46

. Hepcidin deficiency 

leads to a sustained and unregulated activity of ferroportin with a double patho-physiological consequence 
5,47

. 

On one hand, it leads to increased duodenal absorption of iron, and on the other hand, it enhances the release 

by macrophages into the blood of splenic iron originating from erythrophagocytosis. The overall result is 

increased plasma iron concentration associated to increased transferrin saturation. Beyond a certain level of 

transferrin saturation, peculiar biochemical iron species appear, named non-transferrin bound iron (NTBI) 
48,49

. 

NTBI has the property to be very rapidly taken up by the liver 
50

, pancreas and heart, and therefore produces 

parenchymal iron excess (namely hepatocytes for the liver). Moreover, an NTBI component, called labile 

plasma iron (LPI) 
51,52

, which appears whenever plasma transferrin saturation is over 75%, corresponds to a 

potentially damaging iron species due to its high propensity for generating reactive oxygen species. 

 

 

 

 

 

IRON TRANSPORT ANOMALIES 



 

The iron exporter Ferroportin can be involved in two types of diseases. In type A, mutations lead to a loss of 

activity of the protein
53

, and iron overload is related to decreased iron release from the macrophages as a 

consequence of functional deficiency. Conversely, in type B, the mutated ferroportin becomes resistant to 

hepcidin action 
54

, thus despite an increased serum hepcidin level, the resulting “functional hepcidin 

deficiency” produces, through decreased ferroportin degradation, an increased ferroportin activity as in HFE 

hemochromatosis. 

Mutations of the ceruloplasmin gene can hamper its ferroxydase activity (which transforms ferrous iron into 

ferric iron) which is mandatory for iron uptake by circulating transferrin after iron has been exported by 

ferroportin. As a consequence, excessive ferroportin degradation may occur, leading to decreased cellular 

export of iron 
55

. 

 

As one can see, in types HFE, HJV, TFR2, HAMP, and type B ferroportin hemochromatosis, cellular iron excess is 

due to an hepcidin deficiency with increased entry of excessive plasma iron into cells (predominantly 

parenchymal cells) whereas, in types A ferroportin disease and in hereditary aceruloplasminemia, cellular iron 

overload is related to decreased iron egress from cells with low circulating iron. These two different 

mechanisms have important implications both for the phenotypic expression of the diseases and for their 

therapeutic approaches.  

 

 

 

 

 

 

 

 



ETIOLOGY 

Actors of iron metabolism can suffer genetic alterations leading to perturbations of its physiological 

equilibrium. According to theinvolved genes and subsequent affected mechanisms, the phenotypes differ, thus 

dividing hemochromatosis in different subtypes. 

HFE-RELATED (TYPE 1) HEMOCHROMATOSIS 

 

HFE related hemochromatosis 
56

 is the classical, and first described form, of genetic iron overload. The HFE 

gene located on chromosome 6 codes for the membrane protein HFE, a MCH-Like protein whose definite role 

at the membrane remains unclear. Associated with β2-globulin, TFR1 and potentially TFR2 and HJV, it plays a 

critical role in iron load sensing to regulate hepcidin secretion
9,37-40

. However, the definite subsequent signaling 

cascade, although interacting with the BMP/SMAD pathway, remains to be determined. Alterations in the 

protein can eventually lead to a decreased and unregulated hepcidin secretion, promoting iron absorption and 

iron overload 
57-61

. The paramount role of liver in this alteration of iron metabolism has been proven by its 

evolution after liver transplantation in humans
46

. 

The most frequent and classical mutation of this gene is the p.Cys282Tyr (C282Y) mutation, which can lead to 

iron overload when present in the homozygous state 
62

. The mutation prevalence is high in Caucasian 

populations 
63,64

 (10% of the subjects are heterozygous, 3 to 5 subjects per thousand are homozygous), but 

almost absent in the non Caucasian populations 
65

. Other genotypes than C282Y homozygosity cannot explain 

overt hemochromatosis : C282Y heterozygosity, H63D heterozygosity or homozygosity and compound 

heterozygosity C282Y/H63D do not result in clinically significant iron overload in the absence of cofactors 

accounting for disturbed iron metabolism (alcoholism or metabolic syndrome) 
66,67

. However some patients 

with compound heterozygosity C282Y/H63D may have, even without known cofactors, increased transferrin 

saturation and serum ferritin suggesting mild to moderate iron overload. Although they won’t develop overt 

iron overload, and because many patients with C282Y homozygosity will also have only mild to moderate iron 

overload, the clinical relevance of compound heterozygosity is still debated. Moreover there is currently no 

data to define, biologically or clinically, what is a significant iron overload advocating for further diagnosis 



workup. Thus the role of compound heterozygosity in the diagnosis remains elusive in clinical guidelines
68,69

. 

Other rare (private) mutations of the HFE gene have been described associated to those frequent genotypes, 

thus explaining cases of iron overload 
70

.  

The phenotypic expression of C282Y homozygosity is quite variable, and the full-blown form of the disease 

(especially with cirrhosis) is rare 
71-74

. Given that C282Y homozygosity is necessary but not sufficient for iron 

overload development, the role of modifying factors, impacting iron metabolism or hepcidin secretion, has 

been advocated. These factors can be acquired (diet 
75,76

, alcohol 
77,78

, hepatic dysfunction 
59

, metabolic 

syndrome 
20,79,80

), or genetic (gender-related
63,64,71,81

 or iron genes-related factors: well documented in mice 
82-

84
, the modifying role of associated genes of iron metabolism appears more mitigated in humans 

85-89
). 

JUVENILE (TYPE 2) HEMOCHROMATOSIS 

Described before the availability of genetic testing 
90

 this rare disease encompasses two entities characterized 

by the usual young age at diagnosis. Type 2A hemochromatosis is due to mutation of the hemojuvelin (HJV) 

gene 
91

 on chromosome 1 and type 2B is due to mutations of the hepcidin (HAMP) gene 
92

 itself, located on 

chromosome 19. Both are autosomal recessive diseases. It is a particularly severe form of hemochromatosis, 

usually affecting young patients (<30 years old), often associated with cardiac involvement and central 

endocrine impact (hypogonadotropic hypogonadism). Iron overload is massive and liver fibrosis is frequent 

although cardiac and endocrine manifestations are at the forefront. The major and early impact of HJV 

mutations on metabolism emphasizes its critical role in hepcidin secretion regulation. Hemojuvelin is expressed 

in muscle and liver, but iron metabolism is under the sole regulation of hepatocyte expressed hemojuvelin 
93

. 

At the membrane of the hepatocyte, hemojuvelin act as a BMPs coreceptor modulating the BMP/SMAD 

pathway eventually enhancing hepcidin expression. Mutations of HAMP have obvious direct impact on 

hepcidin synthesis. Moreover, when associated with other form of hemochromatosis, mutations in the 

promoting region of HAMP have been described as a worsening factor of iron overload 
94

. 

 

 

 

 



 

 

 

 

TFR2 RELATED (TYPE 3) HEMOCHROMATOSIS 

 

Type 3 related hemochromatosis is an autosomal recessive disease that can be considered as an 

“intermediate” disease between juvenile and HFE hemochromatosis. Caused by mutations of the transferrin 

receptor 2 gene (TFR2) located on chromosome 7, its clinical picture mimics HFE hemochromatosis although 

patients are usually younger and iron overload more severe
95-101

. Age of onset is usually described to be young 

adulthood (>30 years old) although several report of children with type 3 hemochromatosis do suggest that 

peculiar genotypes or cofactors could lead to more severe and earlier diseases 
100,102

. Cardiac and endocrine 

dysfunctions are less frequent than in juvenile hemochromatosis. Arthropathy is not rare. TFR2 is undoubtedly 

involved in hepcidin expression regulation, but its molecular mechanism remains unclear. TFR2 is 

complementary to HFE for hepcidin regulation according to iron load sensing 
9,40

. Moreover, TFR2 is supposed 

to interact with HFE at the hepatocyte membrane and may modulate the BMP/SMAP pathway through a cross 

talk involving the MAP/Erk signaling pathway 
42

.  

FERROPORTIN DISEASE – TYPE 4 HEMOCHROMATOSIS 

 

This disease is due to mutations of the ferroportin (SLC40A1) gene located on chromosome 2 
103,104

. Unlike 

other types of hemochromatosis, inheritance is autosomal dominant. Although rare, it is more frequent than 

types 2 and 3 hemochromatosis and has been reported worldwide 
105-107

. According to phenotypic expression it 

can be subdivided in two subtypes: i) Type A, the classical form, is characterized by normal or low transferrin 

saturation and liver biopsy shows macrophagic iron deposition ; ii) Type B variant which is more rare, is similar 

to types 1 and 3 hemochromatosis with elevated transferrin saturation and parenchymal iron deposition. 

Overall, the clinical manifestations of ferroportin disease are limited 
108

, with only seldom cases of liver damage 



reported which were frequently associated with cofactors. Liver damage may be more frequent in type B than 

in type A 
109,110

. 

As afore-mentioned, Ferroportin is the only know iron exporter at the cell membrane. In type A ferroportin 

disease, mutations lead to loss of iron-export function and cause iron accumulation within macrophages 

accounting for the predominant spleen iron overload seen by magnetic resonance imaging. Theoretically 

trapped in the macrophages, iron biological availability is low explaining the normal or low transferrin 

saturation and the potentially lower tolerance to venesections than in HFE hemochromatosis. In type B 

ferroportin disease, mutations lead to resistance of ferroportin to hepcidin activity, resulting in an excessive 

cellular iron efflux. Thus, the phenotypic picture mimicks that of type 1 Hemochromatosis with increased 

serum iron and transferring saturation, and parenchymal iron deposition. 

OTHER RARE IRON OVERLOAD DISEASES 

 

Hereditary a(hypo)ceruloplasminemia is due to mutations of the ceruloplasmin gene 
111

, which either totally  

inhibit protein production 
112

 or its ferroxidase activity 
113

. Clinically, iron overload is associated with anemia 

and neurological symptoms. Other rare entities are presenting as anemia and iron overload syndromes: they 

are related to mutations of transferrin (atransferrinemia)
114

, DMT1 (Divalent Metal Transporter1)
115-118

, X linked 

sideroblastic anemia (ALAS2
119

, ABC7
120

) , or glutaredoxin 5 (GRLX5) genes 
121

.  

 



 

DIAGNOSIS WORK UP 

 

The diagnosis work up of iron overload involves crucial steps to avoid misleading diagnosis due to confounding 

factors, and to optimize resource utilization. Many tools have been made available to help the physicians in this 

sequential strategy. Reference centers can ultimately be of primary importance to discuss difficult cases and 

assess the need for further specific explorations. 

 

CAUSES OF REFERRAL, CLINICAL PRESENTATION  

 

Clinical features associated with iron overload are diverse and can be more or less associated: asthenia, 

impotence due to endocrinopathy, arthropathy and osteopenia, skin darkening, hepatomegaly and  moderate 

transaminase increase, diabetes, cardiomyopathy (cardiac failure or rhythm disturbance). However, due to 

improved knowledge of the disease and more widespread screening, the currently major cause of referral is 

elevated serum ferritin level, detected in the context of suspected iron overload, or uncovered during routine 

biological check-up or work up for other suspected diseases.  

 

TO ASCERTAIN IRON OVERLOAD 

 

The first step is to confirm that elevated serum ferritin is related to iron overload by assessing potential 

confounding factors, thus avoiding unnecessary explorations. This step is crucial and can be difficult as many 

frequent conditions can alter serum ferritin levels. Moreover, some of these causes can be associated with iron 

overload further increasing serum ferritin concentration.  

 



 

CONFOUNDING CAUSES OF HIGH SERUM FERRITIN 

 

ALCOHOL CONSUMPTION 

 

Alcohol can increase serum ferritin levels by different direct means: alcohol itself can induce ferritin synthesis 

122
, and inhibit hepcidin synthesis which can lead to mild iron overload 

78
. Moreover, alcohol can increase 

serum ferritin by indirect means: as hepatocytes are the main storage sites of ferritin, cell lysis related to 

alcoholic liver disease leads to release of ferritin in the bloodstream. Thus, serum ferritin should be interpreted 

with care in case of alcohol consumption and should be, if possible, controlled after a few months of 

abstinence. It should be kept in mind that marked fluctuations of serum ferritin levels are highly suggestive  of  

intermittent phases of excessive alcohol consumption. 

METABOLIC SYNDROME 

 

 The definition of the metabolic syndrome initially suffered of controversy, but is now admitted to be
123

 : 

- Increased waist circumference (94cm in man and 80 in women, with population specific definitions) 

- Increased triglycerides (or specific treatment): > 1.7 mmol/L 

- Reduced HDL cholesterol (or specific treatment): < 1 mmol/L in men and 1.3 mmol/L in women 

- Increased blood pressure (or specific treatment): Systolic ≥130 and/or diastolic ≥85 mm Hg 

- Increased fasting glucose (or specific treatment) : >5.5 mmol/L 



Metabolic syndrome is one of the most frequent causes of hyperferritinemia. Metabolic syndrome can be 

associated with hyperferritinemia (often comprised between 500 and 1200 µg/L) without or with mild iron 

overload 
124

 (insulin resistance associated iron overload or dysmetabolic hepatosiderosis) and is usually 

associated with increased serum hepcidin levels 
125

. However, iron burden remains of lower intensity as 

compared to the pronounced serum ferritin increase. Serum transferrin saturation is usually normal although it 

can sometimes be slightly increased. It leads frequently to an erroneous diagnosis of hemochromatosis. 

INFLAMMATION 

 

In the acute or chronic phase of inflammation, ferritin can be mobilized without iron excess, thus leading to 

high serum ferritin which can range from mild to very high levels. One should think of inflammation especially 

when serum iron is low. Therefore plasma C reactive protein (CRP) should always be part of the work up for 

hyperferritinemia. 

LIVER DAMAGE 

 

Acute or chronic liver injury resulting in hepatocyte damage can lead to increased serum ferritin regardless of 

the underlying cause. Actually, ferritin is mainly stored in hepatocytes and serum ferritin is a only minor part of 

total body ferritin stores and is used as a surrogate marker. Thus, similarly to aspartate amino transferase and 

alanine aminotransferase, intracellular ferritin can be released into the bloodstream secondary to hepatocyte 

injury. The determination of serum transaminase activities is therefore another important parameter to control 

for proper interpretation of hyperferritinemia. 

 

 

 

 

 

 



 

 

 

RARE CAUSES OF ELEVATED SERUM FERRITIN 

 

Some peculiar conditions can be associated with high serum ferritin without iron overload 

 

•  Hereditary Hyperferritinemia-Cataract Syndrome 

 

Mutation in the Iron Responsive Element in the non-coding region of the messenger RNA of the L-Ferritin gene 

(FTL, coding for the light subunit of ferritin) causes hyperferritinemia (which can be very elevated, often above 

1000 µg/L) associated, in the classical form, with an history of familial cataracts, often expressed in young 

subjects and leading to early surgical treatment 
126-128

. Transmission is autosomal dominant. This condition is 

not associated with iron overload and thus there is no indication for venesection therapy. Although long term 

data are scarce, there is currently no data that advocate for a negative consequence of chronically elevated 

serum ferritin in this context. Beside this classical form, mutations in the coding region of the FTL gene have 

been recently described
127

. Those mutations, referred to as Hereditary L Ferritin syndrome in figure 2, lead to 

elevated serum ferritin without iron overload or cataract.  

 

•  Gaucher’s disease 

 

Gaucher’s disease can be associated with high serum ferritin and normal transferrin saturation. It is an 

inherited metabolism anomaly (glucocerebrosidase deficiency) resulting in excessive storage of 

glucocerebroside in the liver, spleen, bone, and bone marrow. The clinical signs are anemia, thrombocytopenia, 

hepatosplenomegaly, and bone pain. Elevated serum ferritin is not at the forefront of the clinical picture and 

should not postpone referral to a referent center.   



 

•  Macrophage activation syndrome 

 

Hyperferritinemia, which is a diagnosis criteria, is massively elevated (>5000 µg/L) in the context of infectious 

(EBV), inflammatory (Still’s syndrome) or hematological diseases. It is associated with general symptoms (fever, 

splenomegaly, cytopenia, high serum triglyceride levels) that need urgent referral for treatment. 

TO QUANTIFY IRON OVERLOAD 

 

Once iron overload is suspected by elevated serum ferritin, and the potential confounding factors have been 

assessed, the next step is to assess body iron stores to quantify iron overload. Serum transferrin saturation 

should first be performed. If elevated HFE related hemochromatosis is the most likely diagnosis in the 

Caucasian population and should thus be confirmed by HFE C282Y testing before further exploration. Lack of 

C282Y homozygosity requires definite evaluation of iron overload. 

Using the paramagnetic property of iron, Magnetic resonance imaging (MRI) is a fast and efficient non invasive 

technique to assess liver iron concentration 
129,130

. It requires an 1,5 Tesla MRI device (which is the most 

frequent) and the algorithm for iron evaluation proposed by the Rennes University is freely accessible on the 

website www.radio.univ-rennes1.fr. 

A region of interest is drawn to compare the T2 signal between liver and paravertebral muscle, hyposignal 

(meaning dark liver as compared to paravertebral muscles), representing higher tissue iron concentrations. The 

very good correlation between hyposignal and hepatic iron overload allows to determine hepatic iron 

concentration with a satisfactory reliability. Moreover, it is highly relevant to evaluate hepatic versus an 

approximation of splenic iron load since a dominant splenic iron excess means preferential macrophagic iron 

deposition, therefore orientating the diagnosis towards transfusional iron excess or ferroportin disease 
131

. 

Alternative methods, using T2 relaxometry have been developed and are found to be more accurate to 

quantify liver iron content at all levels of iron overload
130,132

. However due to hardware requirement and lack of 

standardization they are not yet widely available.  



If MRI is not available or contra-indicated, liver biopsy, using Perls staining, remains a reference method for 

diagnosing iron excess 
133

. Biochemical determination of iron concentration remains the gold standard. 

Moreover, liver biopsy gives definite information regarding parenchymal or mesenchymal localization of iron 

overload which can be helpful in the diagnosis workup (review in Deugnier et al.
134

). However, due to its 

invasive nature, morbidity, cost and the increasing place of MRI, liver biopsy is rarely needed for diagnosing the 

type of iron overload. Indications today are mainly to evaluate iron overload consequences in terms of hepatic 

fibrosis and to search for possible co-factors such as steatohepatitis (alcoholic or not (NASH)). Regarding 

fibrosis evaluation, there is growing evidence that non invasive procedures such as serum markers and/or 

transient elastography, can give relevant information
135,136

.  

 

 

 

PRIMARY OR SECONDARY IRON OVERLOAD 

 

Once iron overload has been identified and quantified, its primary or secondary nature must be determined. 

Oral supplementation, although rarely, can lead to iron overload 
137

. It is thus necessary, through careful 

questioning, to ensure that the patient has not undergone prolonged iron supplementation. It is of major 

importance to assess this point in patient seeking sportive performance for professional 
138

 or non-professional 

reasons, as it has been considered that iron supplementation could increase hemoglobin status.  

The main cause of secondary iron overload is represented by hematological conditions. Chronic or rare 

anemias such as thalassemia major, sickle cell disease, myelodysplatic syndromes, and congenital anemias, can 

be associated with iron overload. 

Two, more or less associated, mechanisms can be involved:  

- Increased iron load through repeated transfusions represents, a major cause of iron overload (each 

transfused unit provides 200–250 mg of iron so that significant iron excess develops after 10–20 units). This 



mechanism leads to an increased recycling of red blood cells process with enhanced iron deposition within 

macrophages, mainly in the spleen but also in hepatic Kupffer cells. 

- Hepcidin deficiency. Ineffective erythropoiesis leads, through a yet not clearly defined pathway, to inhibition 

of hepcidin expression. The proposed role of Growth Differentiation Factor 15 
139

is now questioned  since a 

more direct link between erythropoiesis and hepcidin secretion has been recently reported. Indeed, a major 

breakthrough is represented by the discovery of the hormone named erythroferrone which corresponds very 

likely to the long-sought “erythropoietic factor” (Kautz et al, 2013, BioIron, London).   This could explain why 

iron overload can develop in chronic anemia, like thalassaemia, even in the absence of transfusions 
140

, and 

why hepcidin expression is relatively low in those diseases despite transfusional iron excess (which should lead 

to increased hepcidin expression).  

Past history of chemotherapy treatment should also be sought. Growth factor or sometimes multiple 

transfusions used in this context can also lead to iron overload. The long term outcome of “transitional” 

secondary iron overload is not known, but due to the absence of natural and effective iron elimination route, it 

is likely that iron overload can persist for years. 

TO IDENTIFY THE GENETIC ORIGIN OF IRON OVERLOAD 

 

Identification of the genetic cause of primary iron overload is driven by the combination of patient’s clinical and 

biological data that suggest the possible underlying physiological mechanism. 

A precise determination of the suspected disease is highly recommended as most of the genetic studies are not 

performed in routine and are both expensive and time consuming. Thus, a multidisciplinary approach is often 

required in complex cases and the help of referral centers should be sought. 

As an example, in France,  a national reference center, working in a nextwork with several regional competence 

centers, has been established (http://www.centre-reference-fer-rennes.org/) and proposes, on a weekly basis, 

multidisciplinary meetings where difficult cases are discussed in order to support physicians in their diagnosis 

work-up. 



 

PATIENT AND FAMILY DATA 

Patient’s clinical and biological data have to be gathered through the initial phases of work-up. It should be 

emphasized that, due to important between and within-day variations of iron biological parameters (especially 

serum iron and transferrin saturation 
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), repeated measurements should be performed especially to avoid 

false positive results. 

 

Family history is a major point to assess. Careful search for putative diagnosis of iron overload in relatives can 

suggest the presence of a dominant or recessive disease and strengthen the need for genetic exploration. 

 

DECISION TREE 

 

The decision tree is summarized in Figure 2.  

Serum transferrin saturation is the initial key point. 

 

•  Increased transferrin saturation 

 

The most likely diagnosis in Caucasians is HFE related (or type 1) hemochromatosis as confirmed by C282Y 

homozygosity. If there is a family history of dominant transmission the type B ferroportin disease 

(hemochromatosis 4B) should be sought.  

If the C282Y HFE mutation is absent, the next relevant information is the age of presentation: in young patients 

(<30 years old) either type A (hemojuvelin mutations) or type B (hepcidin mutation) juvenile hemochromatosis 

(type 2 hemochromatosis) should be looked for. In older patients, transferrin receptor 2 mutation (or type 3 

hemochromatosis), type B ferroportin disease (hemochromatosis 4B) or private mutations of the HFE gene 

(which require complete sequencing of the gene instead of routine HFE C282Y test) can be evoked. However 



patient with very early presentation of type 3 hemochromatosis have been reported, and conversely patient 

with type 2 hemochromatosis and late presentation have also been reported. Thus if age is a clue for deciding 

which genetic test should be performed at first, if negative an unusual age of presentation must be considered. 

 

•  Normal or low transferrin saturation  

 

In this case, the most likely diagnosis is the classical form of ferroportin disease (type A) which can be 

confirmed be sequencing. However, given its simplicity, plasma ceruloplasmin levels should also be determined 

despite the rarity of hereditary aceruloplasminemia. The latter diagnosis will of course be more likely in cases 

of anemia and/or neurological symptoms. Ceruloplasmin levels are typically not detectable but, in some cases, 

ceruloplasminemia is only significantly decreased. 

 

 

 

MANAGEMENT OF NON HFE HEMOCHROMATOSIS 

FAMILY SCREENING 

Family screening is very important in the management of patients with genetic iron overload. It can provide 

precious clues in the diagnosis work-up of the patient but  also help to determine if a genetic anomaly is a 

pathogenic mutation or a simple polymorphism by studying the genotype / phenotype correlations within the 

family. Mostly, family screening, following the diagnosis of  a specific mutation in a given patient, allows earlier 

diagnosis thus preventing the development of iron-related organ damage related . 

PHLEBOTOMY 



The mainstay of treatment in genetic iron overload is removal of iron burden. Phlebotomies (venesections) 

remain the most efficient and convenient way to remove iron by forcing the bone marrow to use stored iron 

for intense erythropoiesis. 

Treatment is performed in non-HFE hemochromatosis in a similar way to that of the type 1 form. The initial 

induction phase will remove the excessive iron and the maintenance phase will prevent its recurrence 
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. 

During induction phase, phlebotomy is performed on a weekly basis using a weight based volume of 7ml/Kg up 

to 550ml. Hemoglobin should be monitored on a monthly basis. In case of anemia treatment should be 

postponed until resolution ; if necessary volume and / or frequency of phlebotomy should be reduced. Serum 

ferritin is monitored to assess treatment efficiency. Monitoring frequency relies upon serum ferritin value: 

monthly as long as ferritin remains above the normal range, then fortnightly until the goal of 50µg/L is reached.  

Once iron depletion has been achieved, the aim of maintenance treatment is to prevent recurrence of iron 

overload. Venesection is thus performed every 2-4 months to maintain a serum ferritin value close to 50µg/L.   

Special attention should be given to iron overload related to iron transport anomalies, like ferroportin disease, 

as anemia could occur more frequently. Therefore, hemoglobin levels should be closely monitored and 

phlebotomies should be performed initially less frequently to test for hematological tolerance. 

OTHER THERAPEUTIC ASPECTS 

DIET 

 

Although very commonly questioned by patients, and probably partially involved in the variable expression of 

the disease, no studies showed beneficial effect of dietary modification or alimentary iron avoidance in patient 

undergoing phlebotomy treatment. Thus, it is advised to maintain a healthy diet without stringent restrictions 

regarding iron. However, iron supplemented food should be avoided and it is usually recommended to limit 

vitamin C intake due to its possible toxic effect. 



Special emphasis should be given to alcohol consumption. It has been clearly shown that, like in many liver 

diseases, excessive alcohol consumption increases liver damage 
77

. Moreover, a direct inhibition effect of 

alcohol on hepcidin secretion favors iron overload.  

ORAL CHELATION 

 

Deferasirox (Exjade®) is an oral iron chelator, which, taken once daily, is used in post-transfusional iron 

overload. An international study in HFE hemochromatosis showed satisfactory results regarding safety and 

efficiency 
144

. Although off label, this treatment could be helpful in case of contraindication (anemia) or poor 

tolerance to phlebotomy. Moreover, it could be useful, in addition to venesections, in patients with massive 

iron overload and organ damage requiring very rapid removal of iron burden. 
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LEGENDS TO FIGURE 

Figure 1: Iron metabolism regulation. HCP : Heme carrier protein. DMT1 : Divalent Metal Transporter 1. HJV : 

Hemojuvelin. TFR1 : Transferrin Receptor 1. TFR2 : Transferrin Receptor 2. BMP Receptor : Bone Morphegenic 

Protein receptor. 

 

 

 

 

 

 



Figure 2: Decision tree for diagnosis of genetic iron overload. HC : Hemochromatosis 

 


