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Cyclometalated Platinum(II) with Ethynyl-Linked Azobenzene Ligands: 

an Original Switching Mode 

Paul Savel,a Camille Latouche,a Thierry Roisnel,a Huriye Akdas-Kilig,a Abdou Boucekkine,*a Jean-Luc 

Fillaut*a 

The photophysical properties of 6-phenyl-2,2′-bipyridyl platinum(II) complexes bearing different σ-alkynyl-linked azobenzene ancillary 5 

ligands were investigated. These complexes exhibit strong, broad, structureless charge-transfer bands in the visible region, which were 

red-shifted when the electron-donating ability of the para substituent on the azo-acetylide ligand increases. When excited at the charge-

transfer absorption band, the complexes exhibit weak green emission, which is assigned to a triplet metal-to-ligand charge 

transfer/intraligand charge transfer emission (3MLCT/3L’LCT). The presence of an amino substituent in the azobenzene moiety opened 

the possibility of protonation which led to the formation of an azonium based derivative and resulted in drastic perturbations of the 10 

molecular orbitals and photophysical properties of the Pt–acetylide complex. These studies are fully supported by DFT and TD-DFT 

calculations. 

 

Introduction 

Among the cyclometalated square-planar platinum(II) complexes, 15 

6-phenyl-2,2′-bipyridyl (C^N^N) platinum acetylide complexes 

attract a great deal of attention owing to their specific 

photophysical properties and potential applications in light-

emitting devices,1 conversion of solar energy,2 nonlinear optical 

devices,3-4 and chemosensors.5-8 These complexes exhibit charge-20 

transfer absorption in the visible region and long-lived, relatively 

intense emission at room temperature in solution.1-2 In addition, 

their photophysical properties can be tuned by structural 

modification of the acetylide or 6-phenyl-2,2′-bipyridyl ligands to 

meet the different requirements for assigned applications. For 25 

instance, Che and co-workers demonstrated the effect of para-

substituents on aryl-acetylide ligands (L’) on the photophysical 

properties of the Pt(II) C^N^N complexes.1 The metal-to-ligand 

charge transfer (1MLCT) (L = C^N^N) absorption band energy 

and the properties of the excited states are highly sensitive to the 30 

electron-donating or electron-withdrawing ability of the para 

substituent on the phenylacetylide ligand. We and others 

demonstrated that the para-position of the phenylacetylide group 

can be utilized for the luminescence sensing of ionic species.5, 7-11 

More recently, our group studied the importance of switching of 35 

reverse charge transfers in these species as a rational approach to 

luminescence sensing of ionic species (cations and anions).7-8, 10, 

12 Such switches result in severe perturbations of the 

photophysical properties of the complexes which are reflected by 

dramatic changes in wavelengths, lifetimes or quantum yields. 40 

In the present work, we focus on the synthesis, characterization 

and photophysical studies of (C^N^N)Pt(II)–ethynyl-linked 

azobenzene complexes. Among several photochromic molecules, 

azobenzene derivatives have been extensively investigated both 

experimentally and theoretically, for their use as molecular 45 

devices i.e. individual molecule optomechanics,13-15 photocontrol 

of magnetic bistability,16 conductivity, 17 macromolecular and 

supramolecular systems,18-23 surface patterning,24-26 holographic 

information storage27-28 as well as photoregulation of 

biomolecules.29 Another interesting feature of the azobenzene 50 

derivatives is that their electronic transitions can be modulated by 

substituents attached to phenyl rings, allowing the tuning of their 

photophysical properties.30 In the case of electron donor 

substituents, as amino groups, there is a substantial red shift 

regarding the lower energy electronic transition in comparison to 55 

azobenzene molecule.31  

Finally, the presence of amino substituents in the azobenzene 

moiety opens the possibility of protonation of distinct basic sites, 

whose equilibrium involves two tautomeric species, namely the 

ammonium and the azonium tautomers.32-35 These 60 

transformations open an interesting possibility for the use of such 

systems in chemical sensors and switches that exploit binding-

induced perturbation of the electronic structure of the extended π-

conjugated system. 

If the synthesis of transition metal complexes with azo 65 

substituents attracts current interest in order to associate the 

photoswitching properties of azobenzene with the 

electrochemical,36 luminescent,37 or magnetic,38-39 properties of 

metal complexes, less attention has been paid to the study of the 

tautomeric (azonium−ammonium) equilibrium in transition metal 70 

based species. The goal of the current study was thus to 

investigate both experimentally and theoretically the 

photophysical properties of (C^N^N)Pt(II)–ethynyl-linked 

azobenzene complexes. In particular, we discuss the perturbation 

of the electronic structure of the extended π-conjugation and 75 



 
photophysical changes of a cyclometalated square-planar 

platinum(II) complex bearing a 4-N,N-dibutylamino-4′-ethynyl-

azobenzene ligand, which revealed to be highly sensitive to acidic 

traces. 

Experimental Section 5 

Synthesis.  

All manipulations were performed using Schlenk techniques 

under an Ar atmosphere. All commercially available starting 

materials were used as received. All solvents were dried and 

purified by standard procedures. The starting complex, [Pt(tBu2-10 

C^N^N)Cl], was prepared according to previously published 

methods. 1a,b were obtained as previously described.40-41  

Physical Measurements and Instrumentation.  

NMR spectra were recorded on AV 400 MHz or AV 500 MHz 

spectrometers.1H and 13C chemical shifts are given versus SiMe4 15 

and were determined by reference to residual 1H and 13C solvent 

signals. High resolution mass spectra (HRMS) were performed 

on a MS/MS ZABSpec TOF at the CRMPO (Centre de Mesures 

Physiques de l’Ouest) in Rennes. UV-vis absorption spectra were 

recorded using a UVIKON 9413 or Biotek Instruments XS 20 

spectrophotometer using quartz cuvettes of 1 cm path-length. 

Luminescence spectra were measured in dilute degassed 

cyclohexane, dichloromethane, acetonitrile or Me-THF solutions 

(10−6 M) using a FS920 steady-state fluorometer (Edinburgh 

Instruments). The spectra shown are corrected for the wavelength 25 

dependence of the detector, and the quoted emission maxima 

refer to the values after correction. Luminescence quantum yields 

were determined using the method of continuous dilution, using 

[Ru(bpy)3]Cl2 as the standard ( = 0.095 in deaerated acetonitrile 

solution)42 and correcting for the refractive index.  30 

Synthesis of 2a. [Pt(tBu2-C^N^N)Cl] (100 mg, 0.174 mmol) was 

added to a suspension of alkyne 1a (53 mg, 0.159 mmol), CuI 

(5.0 mg, 25 μmol) and K2CO3 (200 mg) in 10 mL of 

deoxygenated methanol and methylene chloride (1:3 v/v). The 

mixture was stirred at room temperature overnight. After 35 

evaporation of the solvents, the crude residue was purified by 

column chromatography on silica gel with 

dichloromethane/methanol/triethylamine (98/2/0.5) as eluent to 

give 2a as a red solid (274 mg, 63%).1H NMR (CD2Cl2, 400 

MHz): δ 9.12 (d, J = 5.6 Hz, 1H), 7.94 (s, 1H), 7.91 (d, J = 6.9 40 

Hz, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.1 Hz, 2H), 7.70 

(s, 2H), 7.64 (d, J = 5.6 Hz, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.52 

(d, J = 6.9 Hz, 1H), 7.20-7.10 (m, 4H), 6.74 (d, J = 8.7 Hz), 3.40 

(m, 4H), 1.66 (m, 4H), 1.49 (s, 9H), 1.45 (s, 9H), 1.43 (m, 4H), 

1.00 (t, J = 7.3 Hz, 6H). 13C NMR (CDCl3, 125 MHz): δ 165.13, 45 

163.42, 163.40, 158.10, 154.43, 151.58, 150.54, 150.18, 147.08, 

143.38, 142.35, 138.58, 132.38, 131.24, 130.27, 124.93, 124.55, 

124.09, 123.47, 121.98, 119.09, 115.45, 114.46, 111.12, 109.30, 

107.03, 50.96, 35.97, 35.69, 30.57, 30.35, 29.53, 20.34, 14.00. 

Anal. found: C, 62.59; H, 6.13; N, 7.73. C46H53N5Pt·½H2O Calc.: 50 

C, 62.78; H, 6.18; N, 7.96. m/z (Zabspec-TOF) 909.3585, 

893.3843, 871.4009; ([M+K]+, C46H53N5
195PtK requires 

909.3585 (0 ppm); [M+Na]+, C46H53N5
195PtNa requires 893.3846 

(0 ppm); [M+H]+, C46H54N5
195Pt requires 871.4027 (2 ppm)). 

Synthesis of 2b. The same procedure applied to [Pt(tBu2-55 

C^N^N)Cl] (118 mg, 0.206 mmol), 1b (50 mg, 0.216 mmol), CuI 

(5.0 mg, 25 μmol) and K2CO3 (220 mg, 1.45 mmol) in 10 mL of 

deoxygenated methanol and methylene chloride (1:3 v/v) gave 2b 

as a red solid (181 mg, 47%). 1H NMR (CD2Cl2, 400 MHz): δ 

9.01 (d, J = 5.7 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.94 (d, J = 8.3 60 

Hz, 2H), 7.89 (s, 1H), 7.84 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 7.2 

Hz, 1H), 7.66-7.56 (m, 4H), 7.56 (dd, J = 5.4; 1.2 Hz, 1H), 7.44 

(d, J = 7.2 Hz, 1H), 7.13 (m, 2H), 1.48 (s, 9H), 1.46 (s, 9H). 13C 

NMR (CDCl3, 125 MHz): δ 165.16, 163.80, 163.69, 158.10, 

155.02, 154.40, 151.54, 149.60, 147.11, 142.05, 138.50, 134.00, 65 

133.17, 132.58, 131.34, 124.62, 124.22, 123.71, 123.41, 123.16, 

119.20, 118.74, 115.57, 114.53, 114.27, 112.14, 107.21, 36.02, 

35.74, 30.56, 30.35. Anal. found: C, 60.97; H, 5.51; N, 7.77. 

C39H35N5Pt Calc.: C, 60.93; H, 4.59; N, 9.11. m/z (Zabspec-

TOF), 807.2169, 791.2429, 769.2611; ([M+H]+, C46H53N5
195PtK 70 

requires 807.21719 (0 ppm); [M+Na]+, C46H53N5
195PtNa requires 

791.24325 (0 ppm); [M+H]+, C39H36N5
195Pt requires 769.26131 

(0 ppm)). 

Crystallographic Structure Determinations. (C41H37Cl6N5Pt); 

M = 1007.55. APEXII, Bruker-AXS diffractometer, Mo-Kα 75 

radiation (λ = 0.71073 Å), T = 150(2) K; monoclinic P 21/c 

(I.T.#14), a = 11.8455(3), b = 23.7605(6), c = 15.3741(4) Å, β = 

107.0200(10)°, V = 4137.60(18) Å3. Z = 4, d = 1.617 g.cm-3, μ = 

3.815 mm-1. The structure was solved by direct methods using the 

SIR97 program,43 and then refined with full-matrix least-square 80 

methods based on F2 (SHELXL-97)44 with the aid of the WINGX 

program.45 All non-hydrogen atoms were refined with anisotropic 

atomic displacement parameters. H atoms were finally included 

in their calculated positions. A final refinement on F2 with 9441 

unique intensities and 484 parameters converged at ωR(F2) = 85 

0.1327 (R(F) = 0.0497) for 6939 observed reflections with I > 

2σ(I).  

Computational studies. Density functional theory (DFT) 

calculations were performed using the standard B3LYP 

functional46-48 and a double zeta LANL2DZ basis set,49 90 

augmented with polarization functions on all atoms except 

hydrogen ones (exponents equal to 0.587 and 0.736 respectively 

for the d functions of C and N, and 0.8018 for the f function of 

Pt) with the Gaussian0950 program. The geometries of complexes 

2a, 2b and 2a-H+ in their singlet ground-state have been 95 

optimized and all stationary points were fully characterized as 

true minima on the potential energy hypersurface via analytical 

vibrational frequency calculations. Solvent (CH2Cl2) effects have 

been taken into account using the PCM model.51-52 The 

computations of the electronic absorption spectra using time-100 

dependent DFT (TD-DFT) were carried out at the same level. In 

order to estimate the phosphorescence wavelengths, the relaxed 

triplet states geometries of the complexes have been obtained 

using both TD-DFT and unrestricted DFT computations. 

Drawings of molecular structures and orbitals were done using 105 

the Molekel program53 whilst theoretical absorption spectra were 

plotted using Swizard,54 the half-bandwidths for the Gaussian 

model being taken equal to 2000 cm-1. Percentages compositions 

of molecular orbitals (MOs) were computed using the AOMix 

program.55  110 

 

Results and Discussion 
The synthesis of the azo containing [Pt(tBu2-C^N^N)(CC-C6H4-

N=N-C6H4-R)] (tBu2-C^N^N = 4,4’-di(tert-butyl)-6-phenyl-2,2’-



 
bipyridine; R = NBu2 (2a), R = CN (2b)) was obtained by 

reaction of the [Pt(tBu2-C^N^N)Cl]1 precursor with the 

substituted azo-alkynes 1a,b 1, 40-41 in the presence of a catalytic 

amount of CuI and K2CO3. The complexes were characterized by 
1H and 13C NMR, HRMS, and elemental analysis.  5 

 

 

Scheme 1. Synthetic route to 2a,b. K2CO3, CuI, CH2Cl2/MeOH, 

16h, r.t. (2a: 63 %; 2b: 47 % ). 
 10 

Crystal Structure Determination. Suitable crystals of 2b were 

obtained in a few days upon slow diffusion at room temperature 

of pentane into a CH2Cl2 solution of the complex. An ORTEP 

diagram of complex 2b is shown in Figure 1. The unit cell, data 

collection, and refinement parameters are summarized in Table 15 

S1 (ESI) with selected bond lengths and angles for both structures 

given in Table 1. The complex exhibits a distorted square planar 

coordination geometries around the Pt(II) nucleus. The Pt-N 

distance to the central pyridine, the Pt-C(aryl) and the Pt-

C(acetylide) distances, 1.986(5), 1.990(7) and 1.974(7) Å, 20 

respectively, are slightly shorter than the peripheral Pt-N distance 

of 2.110(6) Å. These values are in the expected range of 2.0 Å 

and are thus consistent with earlier reports of similar structures.1, 7 

The azobenzene moiety is not coplanar with the phenylacetylide 

fragment (dihedral angle C(21)–Pt(1)–C(33)–C(34) 25.49°). 25 

Neither  nor intermolecular Pt….Pt contacts were observed; 

the nearest Pt….Pt distance is 6.757 Å. 

 

 
Figure 1. An ORTEP plot for 2b drawn with thermal ellipsoids at 30 

the 50% probability level. T = 150 K.  
 

Table 1. Selected Bond Lengths (Å) and Angles (deg) for 

Complex 2b 

 35 

Pt(1)-N(1) 1.986(5)   Pt(1)-C(21) 1.990(7)  

C(31)-C(32) 1.184(10)   Pt(1)-N(11) 2.110(6)  

Pt(1)-C(31) 1.974(7)  

 

C(31)-Pt(1)-N(1) 178.7(3) C(31)-Pt(1)-C(21) 97.7(3) 40 

N(1)-Pt(1)-C(21) 81.8(2)  C(31)-Pt(1)-N(11) 102.3(2) 

N(1)-Pt(1)-N(11) 78.2(2)  

 

Photophysical properties. The UV−vis absorption spectra of 

2a,b in dichloromethane solution are presented in Figure 2, and 45 

the band maxima and molar extinction coefficients for each 

complex are compiled in Table 2. The absorption obeys 

Lambert−Beer’s law in the concentration range studied (1 × 10−6 

through 1 × 10−4 mol/L), suggesting no aggregation of the 

complexes within this concentration range. In line with the 50 

previous work on cyclometalated platinum(II) complexes, the 

intense absorption bands around 250-350 nm are assigned to the 

intraligand (IL) π,π* transitions.1 The broad, intense absorption 

bands at 400−550 nm are assigned to mixed 1MLCT (metal-to-

ligand charge transfer)/1L’LCT (ligand-to-ligand charge 55 

transfer)/1ILCT (intraligand charge transfer) transitions 

considering the energy and intensity of these bands, compared to 

those reported in the literature for other platinum C^N^N acetylide 

complexes.3, 7-9, 56 The low-energy absorption bands of the 

complexes appear to show two distinct transitions (2a: 470 and 60 

432 nm; 2b: 450 and 425 nm). The transitions appearing at lower 

energies are influenced significantly by the nature of the para 

substituent on the phenylacetylide ligand L’. The electron-

withdrawing substituent CN induces a blue-shift compared to 

complex 2a (2a: 470 nm; 2b: 450 nm). The involvement of n,π* 65 

and π,π* transitions of this azo containing ligand into these low-

energy absorption bands should also be taken into account 

considering the energy and intensity of such bands in 1a,b and 

similar azobenzene derivatives.57 

 70 



 

 

Figure 2. UV−vis absorption spectra of Pt(II) complexes 2a,b in dichloromethane solution (2.0×10−5 M, 293 K) (__). RT (Cyclohexane) 

(…) and frozen emission spectra (Me-THF) (---) of complexes 2a,b (5 × 10−6 mol/L). The excitation wavelength was 450 nm for 2a and 

2b. 

 5 

Table 2. Photophysical Parameters of 2a,b, 2a-H+  

  λabs a/nm (ε/103 L·mol−1·cm−1) λem a/nm  λem b/nm  λem c/nm  

2a 280 (33.0), 332 (18.0), 432 (40.0), 470 (45.0) 595 600 625  

2a-H+d 280 (32.0), 350 (18.0), 570 (25.0) 580, 630   -   575, 635   

2b 280 (28.0), 330 (15.2), 425 (18.0), 450 (22.1) 585 580, 635, 690 520, 570, 620 

a. Measured at room temperature, in dichloromethane; b. Measured at room temperature, in cyclohexane c. Measured at 77 K 

in Me-THF, 5 × 10−6 mol/L (λexc = 450 nm); d. upon addition of 1.5 eq. of CF3CO2H, in dichloromethane or Me-THF.  

 
10 

Although the transitions occurring in the region of 420−440 nm 

are less sensitive to the effects of para substituents on the azo-

acetylide ligand, a similar trend was observed for these transitions 

(2a: 432 nm; 2b: 425 nm), which likely originate from the dπ (Pt) 

→ π*(C^N^N) MLCT. A similar effect of the para substituent at 15 

the phenylacetylide ligand on the charge-transfer band energy has 

been reported by Che’s group for [Pt(tBu2-C^N^N) (CC-C6H4-

R)] complexes without the 4-phenyl substituent.1 The more 

electron rich acetylide ligand with the electron-donating 

dibutylamino-substituent raises the Pt d orbital energy, which 20 

leads to a decrease of the energy gap between the bipyridine-

based LUMO and the Pt-based HOMO and results in the 

observed red-shift, compared to 2b. 

Continuous irradiation of 2a,b in hexane with 450 nm radiation 

did not result in a trans → cis isomerization. This observation 25 

indicates that the irradiation generates excited states that decay 

without isomerization. This is in line with the above discussion 

and the assumption of a bipyridine-based character of the lowest 

unoccupied MOs of complexes 2a,b.  

The emission characteristics of complexes 2a,b in cyclohexane, 30 

dichloromethane and acetonitrile at room temperature were first 

investigated. Excitation of the complexes in cyclohexane solution 

at their respective charge-transfer band at room temperature 

results in very weak luminescence. 2a is almost non emissive 

(Figure 2a) even at low temperature. Even if also weakly 35 

emissive at room temperature, 2b shows an almost structured 

emission profile (Figure 2b). Its frozen solution emission 

spectrum appears at a shorter wavelength, as frequently observed 

in related complexes. 1, 8, 58 This frozen solution emission has a 

well structured emission profile that spans the range of ca. 500-40 

700 nm (with vibrational progressions of around 1350 cm-1, 

typical of the ring-breathing mode of the 6-phenyl-2,2′-bipyridyl 

ligand).1, 8, 58 Conversely, the spectrum observed from frozen 

solutions of 2a (Me-THF) does not exhibit vibronic structure and 

this complex emits at a longer wavelength, compared to 2b. The 45 

values of the Stokes shift (2b, almost 5800 cm−1 at r.t.) suggest 

that the observed emission from these complexes is from a triplet 

excited state. With reference to the other platinum (tBu2-C^N^N) 

complexes reported in the literature, the emission could be 

tentatively assigned to the 3MLCT/3L’LCT emission.1, 10, 59 The 50 

charge transfer nature of the emitting state is also supported by 

the vibronic feature of the emission spectra at low temperature. 

Finally, the solvents also influence the emission quantum yield 

pronouncedly: as commonly observed in Pt(II) complexes with a 
3MLCT emitting state, 2b is more emissive in less polar solvents : 55 

[(DCM) = 1.8x10-3; (MeCN) =0.2x10-3]. The emission intensity for 

2a is much lower [(DCM) = 0.2x10-3]. This is in line with general 

observations for (tBu2-C^N^N) platinum acetylide complexes 

with a strong electron-donating substituent on the phenylacetylide 

ligand, for which the lifetimes are much shorter and the emission 60 

quantum yields are much lower.1 This could be attributed to the 

presence of a low-lying 3L’LCT state, which adds an additional 

decay pathway. At the opposite, substituents with large electron-

withdrawing abilities raise the L’LCT excited-state energy, thus 

lowering its contribution to the emissive state. 65 

http://pubs.acs.org/doi/full/10.1021/jp107348h#tbl1-fn1
http://pubs.acs.org/doi/full/10.1021/jp107348h#tbl1-fn2
http://pubs.acs.org/doi/full/10.1021/jp107348h#tbl1-fn2
http://pubs.acs.org/doi/full/10.1021/jp107348h#tbl1-fn2


 
Computational results (ground state). The optimized structural 

parameters of 2b in the S0 ground state are in good agreement 

with the X-ray structural analysis data. The computed optimized 

bond lengths of complex 2b are in the range of the observed ones 

for the Pt-C bonds (2.001 Å vs. [1.990] Å for Pt(1)-C(21) and 5 

1.950 Å vs. [1.974] Å for Pt(1)-C(31)) or slightly longer for Pt-N 

ones (2.018 Å vs. [1.986] Å for Pt(1)-N(1) and 2.183 Å vs. 

[2.110] Å for Pt(1)-N(11)). In particular, the computed C(31)-

C(32) bond length (1.243 Å) appears slightly larger than the 

observed one (1.184 Å). This phenomenon has already been 10 

described for similar inorganic complexes.10, 60 The computed 

dihedral angle (C(21)–Pt(1)–C(33)–C(34)) equal to 73.08° 

(25.49° observed) confirms that the azobenzene and 

phenylacetylide moieties are not coplanar. This difference 

between the computed and X-ray dihedral angle can be due to 15 

packing effects; indeed the rotation barrier between the computed 

and X-ray conformations is very weak (< 0.4 kcal.mol-1). The 

computed bond lengths and the (C(21)–Pt(1)–C(33)–C(34)) 

dihedral angle of complex 2a are similar to those of complex 2b. 

The molecular orbital diagram of both complexes is depicted on 20 

Figure 4. As expected, HOMO of 2a exhibits an important 

contribution of the NBu2 group. The HOMO -1 and the HOMO -

3 are almost totally localized on the Pt-C≡C moiety of the 

molecule. The HOMO-4 orbital is mainly localized on the phenyl 

group of the L ligand. The LUMO of complex 2a is localized on 25 

the bipyridine ligand whereas the LUMO +1 is mainly localized 

on the diazo moiety; the same localization appears for LUMO +2 

(not depicted on Figure 4 for clarity). 

Similarly, most of the HOMOs of compound 2b are also 

localized on Pt and on the L’ ligand. However, the LUMO of this 30 

complex is not localized on the L moiety but on the diazo part of 

the L’ one and partly on the nitrile withdrawing group. This 

difference is explained by the strong accepting character of CN in 

para of the azobenzene. 

TD-DFT calculations were performed on both complexes. The 35 

computed absorption wavelengths (λ) and oscillator strengths (f) 

are reported in Table 3 and the simulated spectra of 2a and 2b are 

depicted on Figure 3. A perfect agreement can be observed 

between the computed (293 nm and 341 nm) and experimental 

(280 nm and 332 nm) values for the highest energy bands of 40 

complex 2a (respectively 284 nm and 341 nm vs. 280 nm and 330 

nm for complex 2b). The computed absorption bands at 433 nm 

(HOMO → LUMO +2 (80 %)) for complex 2a and 413 nm 

(HOMO -3 → LUMO (58 %) + HOMO -2 → LUMO +1 (38 %)) 

for complex 2b are in good agreement with experimental values, 45 

at 432 nm (2a) and 425 nm (2b). These bands can be assigned to 

a mix of MLCT and L’LCT for both complexes and to a IL’CT 

excitation, in the case of complex 2a. 

 
Figure 3.Simulated UV-Visible spectra of 2a and 2b.  50 

The lowest energy absorption band experimentally observed at 

470 nm for 2a can be related to calculated excitations at 500 nm 

(HOMO to LUMO) and 533 nm (HOMO to LUMO +1), which 

correspond to charge transfers from the L’ moiety to both L’ and 

L moieties (IL’CT and L’LCT).  55 

Similarly, the lowest energy absorption band experimentally 

observed for 2b can be attributed to a mix of HOMO and HOMO 

-2 to LUMO transitions. The experimental red shift of the lowest 

energy absorption band between complexes 2a and 2b (20 nm 

experimentally) is also well reproduced by the TD-DFT 60 

calculations (35 nm), as expected on the basis of the respective 

HOMO-LUMO gaps. 

The phosphorescence wavelengths of 2a and 2b have been 

computed using TD-DFT, carrying out geometry optimizations of 

the first triplet states of the molecules. In the case of 2b, two low 65 

energy triplet states have been found, respectively at 620 and 580 

nm above the singlet ground state, values which are in agreement 

with the experimental observation. An in-depth investigation of 

these two triplets showed that their relaxed geometries differ, 

more particularly by the C(21)-Pt(1)-C(33)-C(34) dihedral angle 70 

(see Figure 1) respectively equal to 43° and -3° for the first (at 

620 nm) and second (at 580 nm) triplet states, so that the first one 

exhibits a more planar conformation than the second. We remind 

that the computed dihedral angle in question is equal to 73.08° for 

2b in the ground state (X-ray value, 25.49°). The planarity of the 75 

complex is a key factor driving its electronic structure and optical 

properties. As a consequence, the two different geometries lead to 

different frontier MOs (MO diagrams and composition of the 

MOs involved in the transitions are given in figure S1 and table 

S3 of the SI). Moreover, the nature of the two triplet states is 80 

different (see figure S1 of the SI); the second one is a 
3ML’CT/3LL’CT excited state while the first one is mainly a 
3MLCT expected to be more emissive. In the case of 2a, the TD-

DFT computations led us to find a first triplet state at 697 nm 

above the ground state; this value slightly overestimates the 85 

wavelength of the weak emission observed from 600 to 700 nm. 

 

 

 

 90 



 
 

 

 

 

Figure 4. Frontier MO diagrams of 2a and 2b. 5 



 

 
 

Table 3. TD-DFT computed spectra of 2a and 2b [experimental 

wavelengths are reported between square brackets]. 

Complex 
λcalc, 

nm ; (f*) 

λmax [exp], 

nm 
Transitions (% weights) 

2a 

550 

(0.69) 553 
500 

[470] 

HOMO    → LUMO (93 %) 

497 
(1.39) 

HOMO     → LUMO +1 (95 %) 

438 
(0.01) 

433 [432] HOMO     → LUMO +2 (80 %) 

357 

(0.07) 
341[332] 

HOMO     → LUMO +3 (37 %) 

HOMO -3 → LUMO +2 (36 %) 

339 

(0.22) 
HOMO -6 → LUMO (80 %) 

295 

(0.16) 
293 [280] 

HOMO     → LUMO +4 (47 %) 

HOMO -8 → LUMO (21 %) 

292 
(0.18) 

HOMO -6 → LUMO +2 (66 %) 

2b 

519 
(1.59) 

518 [450] 

HOMO     → LUMO (95 %) 

491 

(0.04) 
HOMO -2 → LUMO (88 %) 

414 

(0.04) 
413 [425] 

HOMO -3 → LUMO (58 %) 

HOMO -2 → LUMO +1 (38 %) 

352 
(0.13) 

341 [330] 

HOMO -2 → LUMO +2 (82 %) 

342 

(0.22) 
HOMO -6 → LUMO (75 %) 

340 

(0.13) 
HOMO -7 → LUMO (75 %) 

337 
(0.24) 

HOMO -4 → LUMO +1 (89 %) 

292 

(0.20) 
284 [280] 

HOMO -4 → LUMO +2 (70 %) 

285 

(0.12) 

HOMO -11→LUMO (43 %) 

HOMO    → LUMO +5 (31 %) 

 

Protonation studies. The presence of an amino substituent in 2a 

prompted us to study the possibility of protonation of this 5 

compound in dichloromethane. When a dichloromethane solution 

of 2a was treated by an acid (HCl, CF3CO2H), the solution 

immediately assumed a deep blue color. The UV−vis spectra of 

2a dissolved in neat methylene chloride and upon addition of a 

saturated HCl/diethylether are shown in Figure 5, making 10 

obvious the substantial shift of the lowest energy transition after 

addition of the HCl solution.  

The intense band from 380 to 550 nm strongly decreases 

monotonically throughout the sequential addition of the saturated 

HCl/diethylether solution while a new band centred at ca. 555 nm 15 

concomitantly grows in. A well-defined isosbestic point at 502 

nm is observed, suggestive of a ground-state equilibrium of two 

species. Addition of drops of triethylamine results in the recovery 

of the initial absorption spectrum, indicating the reversible nature 

of the protonation of 2a. Let us notice that the addition of a 20 

saturated HCl/diethylether solution to 2b in dichloromethane in 

similar conditions didn’t result in any change. The addition of a 

stronger acid (trifluoroacetic acid) leads to the rapid degradation 

of this product. 

 25 

Figure 5. UV-Vis absorption spectral changes of 2a (10-6 M) in 

CH2Cl2 upon addition of a saturated HCl/diethylether solution.  

 

As in the majority of aminoazobenzenes, the protonated molecule 

2a-H+ can be subject to ammonium–azonium tautomerism. 32-35 30 

Most azonium ions absorb above 500 nm. The band at ca. 555 nm 

was thus tentatively assigned to the azonium form of 2a-H+ as 

the predominant form. 

The protonated 2a-H+ is non-emissive at room temperature 

(Figure 6). Meanwhile, at low temperature, 2a-H+ in 35 

dichloromethane solution produced luminescence at 580 and 630 

nm, upon excitation at 500 nm, with vibrational progressions of 

around 1250 cm-1. The apparent Stokes shift strongly decreases 

from 2a to 2a-H+. Considering that the azonium is a great deal 

more electron-withdrawing than the azobenzene substituent, we 40 

assume that an IL’ excited state derived from the azonium moiety 

becomes lower lying in energy in comparison to the 

MLCT/L’LCT state in the neutral form. The emission is thus 

tentatively assigned as derived from an azonium based 1IL’ 

origin, as the predominant emissive state of the protonated form 45 

2a-H+.  

 
Figure 6. Normalized absorption of 2a and 2a-H+ in CH2Cl2 and 

and emission spectra at 77K in Me-THF. The excitation 

wavelength was 450 nm for 2a and 500 nm for 2a-H+. 50 

http://pubs.acs.org/doi/full/10.1021/jp800217c#fig1


 

Computational studies (2a-H+). In order to determine the 

structure of complex 2a-H+, we considered the three possible 

protonation sites depicted in scheme 2. The geometries of the 

possible isomers were first optimized. Their normal modes of 

vibration were then determined. All optimized structures were 5 

checked to be true minima on the potential energy surface. Their 

electronic relative energies and their Gibbs free energies were 

computed (Scheme 3). In a first step, the calculations have been 

done in vacuum. Isomer 1 was found to be the most stable but its 

energy is very close to that of the isomer 2 (0.2 kcal.mol-1 in 10 

energy, 1.7 kcal.mol-1 in free Gibbs energy). Finally, the third 

protonation site, i.e. on the NBu2 group, appears as the less 

suitable: the total energy of the isomer 3 is higher than that of the 

isomer 1 by ca. 22.0 kcal.mol-1 (23.0 kcal.mol-1 for Gibbs free 

energy).  15 

 
Scheme 2. The three possible protonation sites of 2a. 1 

corresponds to the protonation at N(39); 2: N(40); 3: N(48). 

 

Scheme 3. Relative energies (red) and Gibbs free energies (blue) 20 

of protonated isomers 1, 2 and 3 (vacuum). Between brackets, the 

computed values in solvent. 

The second step of this computational study concerned the 

influence of the solvent (dichloromethane) on the relative 

stability of the different protonated isomers. First, carrying out 25 

geometry optimizations using the PCM model, it was found that 

isomer 1 is definitely more stable than isomer 3, by 16.2 

kcal.mol-1 (18.0 kcal.mol-1 for Gibbs free energy). Interestingly, 

the same optimization process applied to isomer 2, did not permit 

to obtain a converged protonated structure. Thus, we used other 30 

functionals, among them M06, M06-2X, and larger basis sets, but 

in all cases it was not possible to get a correct convergence for 

the geometry of the protonated structure. This suggests that this 

site is not suitable for the protonation, in solution. These results 

confirm that the nitrogen atom N(39) (see figure 1) is the 35 

favoured protonation site thus leading to an azonium. In the 

following, we will only discuss the case of the isomer 1. 

Structurally, the main differences between compound 2a and 2a-

H+ appear on the C(36)-N(39) and N(40)-C(41) bonds whose 

lengths become shorter after protonation (1.413 Å and 1.399 Å 40 

for the neutral species 2a vs. 1.398 Å and 1.363 Å for the 2a-H+) 

whereas the N=N distance becomes slightly longer (1.280 Å vs 

1.296 Å, for complexes 2a and 2a-H+ respectively). 

The HOMO and LUMOs of complexes 2a and 2a-H+ are 

dramatically different (Figure 7). First at all, the HOMO of 2a, 45 

mainly localized on the NBu2 unit disappears. The HOMO of the 

complex 2a-H+ is now mainly localized on the Pt-acetylide 

moiety with a participation of the NBu2 unit, and is similar to the 

HOMO-1 of 2a. The energy remains almost unchanged from the 

HOMO-1 of 2a to the HOMO of 2a-H+. At the same time, we can 50 

notice an important stabilization of the LUMO +1 of complex 2a, 

localized on the di-azo moiety, which becomes the LUMO of 2a-

H+. This strong decrease of the energy leads to a smaller HOMO-

LUMO gap (1.99 vs. 2.32 eV, respectively for complexes 2a-H+ 

and 2a). Conversely, the LUMO of complex 2a becomes the 55 

LUMO +1 for the complex 2a-H+ which keeps approximately the 

same energy as for the neutral species.  

TD-DFT calculations for compound 2a-H+ (Figure 8 and Table 4) 

well reproduce the experimental shift of 100 nm observed for the 

lowest energy absorption bands (experimental values: 470 nm 60 

(2a) vs. 570 nm; computed values: 500-553 nm (2a) vs 625 nm 

(2a-H+)). The absorption band at 570 nm can be assigned to a 

mix of transitions from the HOMO to the LUMO, but also from 

HOMO -3 and the HOMO-4 to the LUMO. It can be described as 

resulting from ML’CT with some IL’CT and LL’CT participation 65 

(Table 4). The emission spectrum of 2a-H+ was then computed 

using TD-DFT calculations at the same level of theory, carrying 

out the geometry optimization of its first singlet excited state in 

CH2Cl2 solution. 

Table 4. TD-DFT computed spectra of 2a-H+ [experimental 70 

wavelengths between square brackets]. 

Complex 
λcalc, nm ; 

(f*) 

λmax [exp], 

nm 
Transitions (% weights) 

2a-H+ 

626 (1.74) 
625 

420 
[570] 

HOMO → LUMO (99 %) 

420 (0.37) 
HOMO -4 → LUMO (70 %) 

HOMO-3 → LUMO (19 %) 

365 (0.09) 
338 [350] 

HOMO-1→ LUMO+2 (83%)  

337 (0.22) HOMO-5→LUMO +1 (82%) 

304 (0.13) 

298 

276 
[280] 

HOMO-1→LUMO +3(83 %) 

302 (0.22) HOMO → LUMO +4 (72 %) 

291 (0.21) HOMO-5→LUMO +2 (79%) 

275 (0.14) HOMO-8→LUMO+1(83  %) 

273 (0.15) HOMO-9→LUMO+1(61  %) 



 

 

Figure 7. Frontier MO diagrams of 2a and 2a-H+ 



 

 
Figure 8. Simulated UV-Visible spectra of 2a and 2a-H+. 

The computed fluorescence wavelength (690 nm), corresponding 

to a mix of 1LL’CT and 1IL’CT states, is in a reasonable 5 

agreement with the experimental value at low temperature (630 

nm). Moreover, it is worth noting that the computed Stokes shift 

for 2a-H+ and the observed one are the same, i.e. 65 nm. 

Altogether, this DFT analysis supports well the hypothesis that 

the azonium tautomer 1 is the predominant species present in the 10 

acidic solution. Interestingly, this specific behavior leads to 

dramatic changes of both the HOMO and LUMO levels of the 

overall system. In this way, it dramatically differs from that of 

platinum acetylide complexes bearing amino moieties on the 

phenylacetylide unit for which the protonation of the amino 15 

substituent dramatically lowers the phenylacetylide-based 

molecular orbital and moves the Pt-based orbital as the HOMO.61-

62 

Conclusions 

The photophysics of two mononuclear cyclometalated 20 

platinum(II) 4,6-diphenyl-2,2′-bipyridyl acetylide complexes 

2a,b was investigated. Lowest energy absorption bands 

correspond to the superimposed absorptions of the (C^N^N) 

platinum acetylide fragment and that of the azobenzene entity. 

These broad, moderately intense 1MLCT/1ILCT/1L’LCT 25 

absorption bands at 400−550 nm are shifted in accordance with 

the electron-donating ability of the para substituent on the azo-

containing phenylacetylide ligand. Excitation of these complexes 

in solution at their respective charge-transfer band results in weak 

luminescence that can be assigned to a 3MLCT/3LLCT emission, 30 

to which the azo unit does not interfere. Upon protonation, the 

azo-amino containing complex 2a shows a substantial shift of the 

lowest energy transition, which is related to the formation of a 

preponderant azonium species 2a-H+, whose emission was 

tentatively assigned to a 1IL’ origin. The photophysical properties 35 

of the (C^N^N) platinum acetylide fragment were then masked. 

DFT and TD-DFT calculations allowed us to accurately describe 

the perturbations of both HOMO and LUMOs orbitals of 2a upon 

its protonation, allowing the observed properties to be 

rationalized.  40 

 

 

 

Aknowledgements 

The authors are grateful to GENCI-IDRIS and GENCI-CINES 45 

for an allocation of computing time (Grant No. 2012-080649). 

 

Notes and references 

a Institut des Sciences Chimiques de Rennes UMR 6226 CNRS-

Université de Rennes 1, 35042, Rennes Cedex France  50 

E-mail jean-luc.fillaut@univ-rennes1.fr; abdou.boucekkine@univ-

rennes1.fr 

†Electronic Supplementary Information (ESI) available:  [optimized 
geometries and computed excitation energies; CCDC 949194 contains the 

supplementary crystallographic data for complex 2b. These data can be 55 

obtained free of charge from the Cambridge Crystallographic Database 
Center, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 

336033; e-mail: deposit@ccdc.cam.ac.uk).]. See 

DOI: 10.1039/b000000x/ 

 60 

1. W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, C.-M. Che, N. Zhu and S.-

T. Lee, J. Am. Chem. Soc., 2004, 126, 4958-4971. 

2. J. Schneider, P. Du, P. Jarosz, T. Lazarides, X. Wang, W. W. 

Brennessel and R. Eisenberg, Inorg. Chem., 2009, 48, 4306-

4316. 65 

3. R. Liu, Y. Li, Y. Li, H. Zhu and W. Sun, J. Phys. Chem. A, 2010, 

114, 12639-12645. 

4. J. Yi, B. Zhang, P. Shao, Y. Li and W. Sun, J. Phys. Chem. A, 2010, 

114, 7055-7062. 

5. J. F. Zhang, C. S. Lim, B. R. Cho and J. S. Kim, Talanta, 2010, 83, 70 

658-662. 

6. D. Qiu, J. Wu, Z. Xie, Y. Cheng and L. Wang, J. Organomet. Chem., 

2009, 694, 737-746. 

7. P.-H. Lanoe, J.-L. Fillaut, L. Toupet, J. A. G. Williams, H. Le Bozec 

and V. Guerchais, Chem. Commun., 2008, 4333-4335. 75 

8. P.-H. Lanoë, H. Le Bozec, J. A. G. Williams, J.-L. Fillaut and V. 

Guerchais, Dalton Trans., 2010, 39, 707 - 710. 

9. P.-H. Lanoë, J.-L. Fillaut, V. Guerchais, H. Le Bozec and J. A. G. 

Williams, Eur. J. Inorg. Chem., 2011, 8, 1255-1259. 

10. C. Latouche, P.-H. Lanoe, J. A. G. Williams, V. Guerchais, A. 80 

Boucekkine and J.-L. Fillaut, New J. Chem., 2011, 35, 2196-

2202. 

11. Q. Z. Yang, L. Z. Wu, H. Zhang, B. Chen, Z. X. Wu, L. P. Zhang and 

C. H. Tung, Inorg. Chem., 2004, 43, 5195-5197. 

12. J.-L. Fillaut, H. Akdas-Kilig, E. Dean, C. Latouche and A. 85 

Boucekkine, Inorg. Chem., 2013, 52, 4890-4897. 

13. W. R. Browne and B. L. Feringa, Nature nanotech., 2006, 1, 25-35. 

14. D. Bléger, Z. Yu and S. Hecht, Chem. Commun., 2011, 47, 12260-

12266. 

15. Z. Mahimwalla, K. G. Yager, J.-i. Mamiya, A. Shishido, A. Priimagi 90 

and C. J. Barrett, Polym. Bull., 2012, 69, 967-1006. 

16. S. Venkataramani, U. Jana, M. Dommaschk, F. Sönnichsen, F. 

Tuczek and R. Herges, Science, 2011, 331, 445-448. 

17. X. Zhang, Y. Wen, Y. Li, G. Li, S. Du, H. Guo, L. Yang, L. Jiang, H. 

Gao and Y. Song, J. Phys. Chem. C, 2008, 112, 8288-8293. 95 

18. S. Tamesue, Y. Takashima, H. Yamaguchi, S. Shinkai and A. 

Harada, Angew. Chem., 2010, 122, 7623-7626. 

19. Y. Inoue, P. Kuad, Y. Okumura, Y. Takashima, H. Yamaguchi and 

A. Harada, J. Am. Chem. Soc., 2007, 129, 6396-6397. 

mailto:jean-luc.fillaut@univ-rennes1.fr
mailto:abdou.boucekkine@univ-rennes1.fr
mailto:abdou.boucekkine@univ-rennes1.fr
mailto:deposit@ccdc.cam.ac.uk


 
20. F. Puntoriero, P. Ceroni, V. Balzani, G. Bergamini and F. Vögtle, J. 

Am. Chem. Soc., 2007, 129, 10714-10719. 

21. J. Del Barrio, L. Oriol, R. Alcalá and C. Sánchez, Macromolecules, 
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