S. Chown and K. Gaston, Macrophysiology for a changing world, Proceedings of the Royal Society B: Biological Sciences, vol.21, issue.1, 2008.
DOI : 10.1016/j.tree.2005.10.018

T. Piersma and J. Van-gils, Towards a fully integrated view In: T PiersmaJA van Gils. The flexible phenotype: a body-centred integration of ecology, physiology, and behaviour, pp.147-184, 2011.

R. Levins, Evolution in changing environments: some theoretical explorations, 1968.

J. Hollander, M. Collyer, D. Adams, and K. Johannesson, Phenotypic plasticity in two marine snails: constraints superseding life history, Journal of Evolutionary Biology, vol.2, issue.6, pp.1861-1872, 2006.
DOI : 10.1666/0094-8373(2003)029<0139:TODOSD>2.0.CO;2

B. Hausdorf, Latitudinal and altitudinal body size variation among north-west European land snail species, Global Ecology and Biogeography, vol.117, issue.5, pp.389-394, 2003.
DOI : 10.1086/284913

L. Madec and A. Bellido, Spatial variation of shell morphometrics in the subantarctic land snail Notodiscus hookeri from Crozet and Kerguelen Islands, Polar Biology, vol.58, issue.12, pp.1571-1578, 2007.
DOI : 10.1007/s00300-007-0318-7

URL : https://hal.archives-ouvertes.fr/hal-00168125

S. Rundle, J. Spicer, R. Coleman, J. Vosper, and J. Soane, Environmental calcium modifies induced defences in snails, Proceedings of the Royal Society B: Biological Sciences, vol.271, issue.Suppl_3, 2004.
DOI : 10.1098/rsbl.2003.0106

A. Bertin, V. Ruíz, R. Figueroa, and N. Gouin, The role of spatial processes and environmental determinants in microgeographic shell variation of the freshwater snail Chilina dombeyana (Brugui??re, 1789), Naturwissenschaften, vol.17, issue.3, pp.225-232, 2012.
DOI : 10.1007/s00114-012-0890-8

S. Chiba, Appearance of morphological novelty in a hybrid zone between two species of land snail, Evolution, vol.59, 2005.

T. Furuhashi, C. Schwarzinger, I. Miksik, M. Smrz, and A. Beran, Molluscan shell evolution with review of shell calcification hypothesis, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.154, issue.3, pp.351-371, 2009.
DOI : 10.1016/j.cbpb.2009.07.011

M. Poulicek, M. Voss-foucart, and C. Jeuniaux, Regressive shell evolution among opisthobranch gastropods, Malacologia, vol.32, pp.223-232, 1991.

G. Cimino and M. Ghiselin, Chemical defense and evolutionary trends in biosynthetic capacity among dorid nudibranchs (Mollusca: Gastropoda: Opisthobranchia), Chemoecology, vol.9, issue.4, pp.187-207, 1999.
DOI : 10.1007/s000490050052

S. Weiner and L. Hood, Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation, Science, vol.190, issue.4218, pp.987-989, 1975.
DOI : 10.1126/science.1188379

S. Watson, L. Peck, P. Tyler, P. Southgate, and K. Tan, Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification, Global Change Biology, vol.6, issue.10, 2012.
DOI : 10.1111/j.1365-2486.2012.02755.x

P. Convey, How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions?, Journal of Thermal Biology, vol.22, issue.6, pp.429-44010, 1997.
DOI : 10.1016/S0306-4565(97)00062-4

Y. Frenot, S. Chown, J. Whinam, P. Selkirk, and P. Convey, Biological invasions in the Antarctic: extent, impacts and implications, Biological Reviews, vol.62, issue.207, pp.45-72, 2005.
DOI : 10.1016/S0169-5347(01)02194-2

L. Chevallier, J. Nougier, and J. Cantagrel, Volcanology on Possession Island, Crozet Archipelago (TAAF) In: C Craddock. Antarctic Geosciences, pp.652-658, 1983.

A. Solem, The subantarctic land snail, Notodiscus hookeri (Reeve, 1854) (Pulmonata, Endodontidae) Proc Malacol Soc Lond 38, pp.251-266, 1968.

P. Pugh and R. Smith, Notodiscus (Charopidae) on South Georgia: some implications of shell size, shell shape, and site isolation in a singular sub-Antarctic land snail, Antarctic Science, vol.3, issue.05, pp.442-448, 2011.
DOI : 10.1093/mollus/58.1.80

R. Dell, Land snails from Subantarctic Islands, Trans Roy Soc N Z, vol.4, pp.167-173, 1964.

V. Smith and M. Steenkamp, Macroinvertebrates and litter nutrient release on a sub-Antarctic Island, South African Journal of Botany, vol.58, issue.2, pp.105-116, 1992.
DOI : 10.1016/S0254-6299(16)30880-8

C. Bhattacharya, A Simple Method of Resolution of a Distribution into Gaussian Components, Biometrics, vol.23, issue.1, pp.115-135, 1967.
DOI : 10.2307/2528285

D. Massiot, F. Fayon, M. Capron, I. King, L. Calvé et al., Modelling one- and two-dimensional solid-state NMR spectra, Magnetic Resonance in Chemistry, vol.320, issue.1, pp.70-76, 2002.
DOI : 10.1002/mrc.984

A. Pines, M. Gibby, and J. Waugh, Proton???Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids, The Journal of Chemical Physics, vol.56, issue.4, pp.1776-1777, 1972.
DOI : 10.1063/1.1677439

S. Lin, P. Tornatore, D. King, S. Weinberger, and D. King, Limited acid hydrolysis as a means of fragmenting proteins isolated upon ProteinChip?? Array surfaces, European Journal of Mass Spectrometry, vol.7, issue.1, pp.131-141, 2001.
DOI : 10.1255/ejms.398

D. Guillaume, A. Neaman, M. Cathelineau, R. Mosser-ruck, and C. Peiffert, Experimental study of the transformation of smectite at 80 and 300??C in the presence of Fe oxides, Clay Minerals, vol.39, issue.1, pp.17-34, 2004.
DOI : 10.1180/0009855043910117

H. Köster, Die röntgenographische Identifizierung der silikatischen Tonminerale und beigemengter Akzessorien in Texturpräparaten, Z Geol Wiss, vol.23, pp.287-300, 1995.

A. Wollenberg, Redundancy analysis an alternative for canonical correlation analysis, Psychometrika, vol.42, issue.2, pp.207-219, 1977.
DOI : 10.1007/BF02294050

J. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, pp.236-244, 1963.
DOI : 10.1007/BF02289263

S. Dray and A. Dufour, The ade4 package: implementing the duality diagram for ecologists, J Stat Softw, vol.22, pp.1-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434575

D. Borcard, P. Legendre, and P. Drapeau, Partialling out the Spatial Component of Ecological Variation, Ecology, vol.73, issue.3, pp.1045-1055, 1992.
DOI : 10.2307/1940179

J. Fournié and M. Chétail, Calcium Dynamics in Land Gastropods, American Zoologist, vol.24, issue.4, pp.857-870, 1984.
DOI : 10.1093/icb/24.4.857

S. Urdy, N. Goudemand, H. Bucher, and R. Chirat, Growth-dependent phenotypic variation of molluscan shells: implications for allometric data interpretation, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol.91, issue.4, 2010.
DOI : 10.1002/jez.b.21338

URL : https://hal.archives-ouvertes.fr/hal-00670113

V. Meenakshi and B. Scheer, Chemical studies of the internal shell of of the slug, Ariolimax columbianus (gould) with special reference to the organic matrix, Comparative Biochemistry and Physiology, vol.34, issue.4, pp.953-9570010, 1970.
DOI : 10.1016/0010-406X(70)91018-2

A. South, Terrestrial slugs: Biology, ecology and control, 1992.

S. Berland, M. A. Duplat, D. Milet, C. Sire, and J. , Coupling Proteomics and Transcriptomics for the Identification of Novel and Variant Forms of Mollusk Shell Proteins: A Study with P. margaritifera, ChemBioChem, vol.270, issue.6, pp.950-961, 2011.
DOI : 10.1002/cbic.201000667

M. Yano, K. Nagai, K. Morimoto, and H. Miyamoto, Shematrin: A family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.144, issue.2, p.16626988, 2006.
DOI : 10.1016/j.cbpb.2006.03.004

C. Ringli, B. Keller, and U. Ryser, Glycine-rich proteins as structural components of plant cell walls, Cellular and Molecular Life Sciences, vol.58, issue.10, pp.1430-1441, 2001.
DOI : 10.1007/PL00000786

Y. Zhong, K. Mita, T. Shimada, and H. Kawasaki, Glycine-rich protein genes, which encode a major component of the cuticle, have different developmental profiles from other cuticle protein genes in Bombyx mori, Insect Biochemistry and Molecular Biology, vol.36, issue.2, p.16431278, 2006.
DOI : 10.1016/j.ibmb.2005.07.005

A. Palmer, Calcification in marine molluscs: how costly is it?, Proceedings of the National Academy of Sciences, vol.89, issue.4, pp.1379-1382, 1992.
DOI : 10.1073/pnas.89.4.1379

A. Palmer, Do carbonate skeletons limit the rate of body growth?, Nature, vol.16, issue.5819, 1981.
DOI : 10.1038/292150a0

A. Tompa and K. Wilbur, Calcium mobilisation during reproduction in snail Helix aspersa, Nature, vol.7, issue.5632, pp.53-54, 1977.
DOI : 10.1038/255232a0

L. Chevalier, L. Coz-bouhnik, M. Charrier, and M. , Influence of inorganic compounds on food selection by the brown garden snail Cornu aspersum (Müller) (Gastropoda: Pulmonata), Malacologia, vol.45, pp.125-132, 2003.

G. Goodfriend, Variation in Land-Snail Shell Form and Size and its Causes: A Review, Systematic Zoology, vol.35, issue.2, pp.204-22310, 1986.
DOI : 10.2307/2413431

A. Ansart and P. Vernon, Cold hardiness abilities vary with the size of the land snail Cornu aspersum, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.139, issue.2, pp.205-211, 2004.
DOI : 10.1016/j.cbpb.2004.09.003

F. Bozinovic, P. Calosi, and J. Spicer, Physiological Correlates of Geographic Range in Animals, Annual Review of Ecology, Evolution, and Systematics, vol.42, issue.1, pp.155-179, 2011.
DOI : 10.1146/annurev-ecolsys-102710-145055