J. D. Brook, M. E. Mccurrach, H. G. Harley, A. J. Buckler, D. Church et al., Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3??? end of a transcript encoding a protein kinase family member, Cell, vol.68, issue.4, pp.69-385, 1992.
DOI : 10.1016/0092-8674(92)90154-5

J. W. Day and L. P. Ranum, RNA pathogenesis of the myotonic dystrophies, Neuromuscular Disorders, vol.15, issue.1, pp.5-16, 2005.
DOI : 10.1016/j.nmd.2004.09.012

B. M. Davis, M. E. Mccurrach, K. L. Taneja, R. H. Singer, and D. E. Housman, Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts, Proceedings of the National Academy of Sciences, vol.94, issue.14, pp.7388-93, 1997.
DOI : 10.1073/pnas.94.14.7388

K. L. Taneja, M. Mccurrach, M. Schalling, D. Housman, and R. H. Singer, Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues, The Journal of Cell Biology, vol.128, issue.6, pp.995-1002, 1995.
DOI : 10.1083/jcb.128.6.995

A. N. Ladd, N. Charlet, and T. A. Cooper, The CELF Family of RNA Binding Proteins Is Implicated in Cell-Specific and Developmentally Regulated Alternative Splicing, Molecular and Cellular Biology, vol.21, issue.4, pp.1285-96, 2001.
DOI : 10.1128/MCB.21.4.1285-1296.2001

J. W. Miller, C. R. Urbinati, P. Teng-umnuay, M. G. Stenberg, B. J. Byrne et al., Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy, The EMBO Journal, vol.19, issue.17, pp.4439-4487, 2000.
DOI : 10.1093/emboj/19.17.4439

M. Fardaei, K. Larkin, J. D. Brook, and M. G. Hamshere, In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts, Nucleic Acids Research, vol.29, issue.13, pp.2766-71, 2001.
DOI : 10.1093/nar/29.13.2766

L. T. Timchenko, J. W. Miller, N. A. Timchenko, D. R. Devore, K. V. Datar et al., Identification of a (CUG)n Triplet Repeat RNA-Binding Protein and Its Expression in Myotonic Dystrophy, Nucleic Acids Research, vol.24, issue.22, pp.4407-4421, 1996.
DOI : 10.1093/nar/24.22.4407

A. Mankodi, C. R. Urbinati, Q. P. Yuan, R. T. Moxley, V. Sansone et al., Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2, Human Molecular Genetics, vol.10, issue.19, pp.2165-70, 2001.
DOI : 10.1093/hmg/10.19.2165

R. N. Kanadia, K. A. Johnstone, A. Mankodi, C. Lungu, C. A. Thornton et al., A Muscleblind Knockout Model for Myotonic Dystrophy, Science, vol.302, issue.5652, pp.1978-80, 2003.
DOI : 10.1126/science.1088583

R. N. Kanadia, J. Shin, Y. Yuan, S. G. Beattie, T. M. Wheeler et al., Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy, Proceedings of the National Academy of Sciences, vol.103, issue.31, pp.11748-53, 2006.
DOI : 10.1073/pnas.0604970103

J. Han and T. A. Cooper, Identification of CELF splicing activation and repression domains in vivo, Nucleic Acids Research, vol.33, issue.9, pp.2769-80, 2005.
DOI : 10.1093/nar/gki561

A. Kalsotra, X. Xiao, A. J. Ward, J. C. Castle, J. M. Johnson et al., A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart, Proceedings of the National Academy of Sciences, vol.105, issue.51, pp.20333-20341, 2008.
DOI : 10.1073/pnas.0809045105

J. E. Lee, J. Y. Lee, J. Wilusz, B. Tian, and C. J. Wilusz, Systematic analysis of ciselements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells, PLoS One, vol.5, 2010.

L. T. Timchenko, E. Salisbury, G. L. Wang, H. Nguyen, J. H. Albrecht et al., Age-specific CUGBP1-eIF2 Complex Increases Translation of CCAAT/Enhancer-binding Protein beta in Old Liver, Journal of Biological Chemistry, vol.281, issue.43, pp.32806-32825, 2006.
DOI : 10.1074/jbc.M605701200

N. M. Kuyumcu-martinez, G. S. Wang, and T. A. Cooper, Increased Steady-State Levels of CUGBP1 in Myotonic Dystrophy 1 Are Due to PKC-Mediated Hyperphosphorylation, Molecular Cell, vol.28, issue.1, pp.68-78, 2007.
DOI : 10.1016/j.molcel.2007.07.027

N. A. Timchenko, R. Patel, P. Iakova, Z. J. Cai, L. Quan et al., Overexpression of CUG Triplet Repeat-binding Protein, CUGBP1, in Mice Inhibits Myogenesis, Journal of Biological Chemistry, vol.279, issue.13, pp.13129-13168, 2004.
DOI : 10.1074/jbc.M312923200

T. H. Ho, D. Bundman, D. L. Armstrong, and T. A. Cooper, Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy, Human Molecular Genetics, vol.14, issue.11, pp.1539-1586, 2005.
DOI : 10.1093/hmg/ddi162

M. Koshelev, S. Sarma, R. E. Price, X. H. Wehrens, and T. A. Cooper, Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1, Human Molecular Genetics, vol.19, issue.6, pp.1066-75, 2010.
DOI : 10.1093/hmg/ddp570

A. J. Ward, M. Rimer, J. M. Killian, J. J. Dowling, and T. A. Cooper, CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1, Human Molecular Genetics, vol.19, issue.18, pp.3614-3636, 2010.
DOI : 10.1093/hmg/ddq277

M. S. Mahadevan, R. S. Yadava, Q. Yu, S. Balijepalli, C. D. Frenzel-mccardell et al., Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy, Nature Genetics, vol.2, issue.9, pp.1066-70, 2006.
DOI : 10.1016/S1525-0016(03)00068-6

C. Kress, C. Gautier-courteille, H. B. Osborne, C. Babinet, and L. Paillard, Inactivation of CUG-BP1/CELF1 Causes Growth, Viability, and Spermatogenesis Defects in Mice, Molecular and Cellular Biology, vol.27, issue.3, pp.1146-57, 2007.
DOI : 10.1128/MCB.01009-06

URL : https://hal.archives-ouvertes.fr/inserm-00292920

A. V. Philips, L. T. Timchenko, and T. A. Cooper, Disruption of Splicing Regulated by a CUG-Binding Protein in Myotonic Dystrophy, Science, vol.280, issue.5364, pp.737-778, 1998.
DOI : 10.1126/science.280.5364.737

R. S. Savkur, A. V. Philips, and T. A. Cooper, Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy, Nature Genetics, vol.29, issue.1, pp.40-47, 2001.
DOI : 10.1038/ng704

B. N. Charlet, R. S. Savkur, G. Singh, A. V. Philips, E. A. Grice et al., Loss of the Muscle-Specific Chloride Channel in Type 1 Myotonic Dystrophy Due to Misregulated Alternative Splicing, Molecular Cell, vol.10, issue.1, pp.45-53, 2002.
DOI : 10.1016/S1097-2765(02)00572-5

C. S. Bland, E. T. Wang, A. Vu, M. P. David, J. C. Castle et al., Global regulation of alternative splicing during myogenic differentiation, Nucleic Acids Research, vol.38, issue.21, pp.7651-64, 2010.
DOI : 10.1093/nar/gkq614

A. Mankodi, M. P. Takahashi, H. Jiang, C. L. Beck, W. J. Bowers et al., Expanded CUG Repeats Trigger Aberrant Splicing of ClC-1 Chloride Channel Pre-mRNA and Hyperexcitability of Skeletal Muscle in Myotonic Dystrophy, Molecular Cell, vol.10, issue.1, pp.35-44, 2002.
DOI : 10.1016/S1097-2765(02)00563-4

Y. Kino, C. Washizu, Y. Oma, H. Onishi, Y. Nezu et al., MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1, Nucleic Acids Research, vol.37, issue.19, pp.6477-90, 2009.
DOI : 10.1093/nar/gkp681

T. H. Ho, B. N. Charlet, M. G. Poulos, G. Singh, M. S. Swanson et al., Muscleblind proteins regulate alternative splicing, The EMBO Journal, vol.13, issue.15, pp.3103-3115, 2004.
DOI : 10.1017/S1355838299981530

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514918

H. Du, M. S. Cline, R. J. Osborne, D. L. Tuttle, T. A. Clark et al., Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy, Nature Structural & Molecular Biology, vol.11, issue.2, pp.187-93, 2010.
DOI : 10.1016/0092-8674(80)90120-8

X. Lin, J. W. Miller, A. Mankodi, R. N. Kanadia, Y. Yuan et al., Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy, Human Molecular Genetics, vol.15, issue.13, pp.2087-97, 2006.
DOI : 10.1093/hmg/ddl132

D. S. Berger, M. Moyer, G. M. Kliment, E. Van-lunteren, and A. N. Ladd, Expression of a Dominant Negative CELF Protein In Vivo Leads to Altered Muscle Organization, Fiber Size, and Subtype, PLoS ONE, vol.21, issue.20, p.19274, 2011.
DOI : 10.1371/journal.pone.0019274.s005

D. S. Berger, A. N. Ladd, R. S. Yadava, C. D. Frenzel-mccardell, Q. Yu et al., Repression of nuclear CELF activity can rescue CELFregulated alternative splicing defects in skeletal muscle models of myotonic dystrophy, PLoS Curr, 4, RRN1305. 35, pp.61-69, 2008.

G. S. Wang, D. L. Kearney, M. De-biasi, G. Taffet, and T. A. Cooper, Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy, Journal of Clinical Investigation, vol.117, issue.10, pp.2802-2813, 2007.
DOI : 10.1172/JCI32308

N. A. Timchenko, Z. J. Cai, A. L. Welm, S. Reddy, T. Ashizawa et al., RNA CUG Repeats Sequester CUGBP1 and Alter Protein Levels and Activity of CUGBP1, Journal of Biological Chemistry, vol.276, issue.11, pp.7820-7826, 2001.
DOI : 10.1074/jbc.M005960200

F. Marchildon, N. Lala, G. Li, C. St-louis, D. Lamothe et al., CCAAT/Enhancer Binding Protein Beta is Expressed in Satellite Cells and Controls Myogenesis, STEM CELLS, vol.25, issue.12, pp.2619-2649, 2012.
DOI : 10.1002/stem.1248