C. Anagnostou, M. Dorsch, and M. Rohlfs, Influence of dietary yeasts on Drosophila melanogaster life-history traits, Entomologia Experimentalis et Applicata, vol.27, issue.1, pp.1-11, 2010.
DOI : 10.1111/j.1570-7458.2010.00997.x

L. H. Andersen, T. N. Kristensen, V. Loeschcke, S. Toft, and D. Mayntz, Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster, Journal of Insect Physiology, vol.56, issue.4, pp.336-340, 2010.
DOI : 10.1016/j.jinsphys.2009.11.006

M. Begon, Yeasts and Drosophila The genetics and biology of Drosophila, pp.345-503, 1982.

M. Bownes, A. Scott, and A. Shirras, Dietary components modulate yolk protein gene 505 transcription in Drosophila melanogaster, Development, vol.103, pp.119-128, 1988.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

J. M. Burger, D. S. Hwangbo, V. Corby-harris, and D. E. Promislow, The functional costs and benefits of dietary restriction in Drosophila, Aging Cell, vol.55, issue.1, pp.63-71, 2007.
DOI : 10.1111/j.1474-9728.2005.00147.x

C. P. Chen and V. K. Walker, Cold-shock and chilling tolerance in Drosophila, Journal of Insect Physiology, vol.40, issue.8, 1994.
DOI : 10.1016/0022-1910(94)90093-0

A. K. Chippindale, A. M. Leroi, S. B. Kim, and M. R. Rose, Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction, Journal of Evolutionary Biology, vol.6, issue.2, pp.171-193, 0518.
DOI : 10.1046/j.1420-9101.1993.6020171.x

S. L. Chown and S. W. Nicolson, Insect Physiological Ecology: Mechanisms and Patterns, p.520, 2004.
DOI : 10.1093/acprof:oso/9780198515494.001.0001

H. Colinet and G. Boivin, Insect parasitoids cold storage: A comprehensive review of factors of variability and consequences, Biological Control, vol.58, issue.2, pp.83-95, 2011.
DOI : 10.1016/j.biocontrol.2011.04.014

URL : https://hal.archives-ouvertes.fr/hal-00629730

H. Colinet and D. Renault, Metabolic effects of CO2 anaesthesia in Drosophila melanogaster, Biology Letters, vol.326, issue.1237, pp.1050-1054, 2012.
DOI : 10.1098/rstb.1990.0036

URL : https://hal.archives-ouvertes.fr/hal-00780202

H. Colinet, T. Hance, and P. Vernon, Water relations, fat reserves, survival, and longevity 526 of a cold-exposed parasitic wasp Aphidius colemani (Hymenoptera : Aphidiinae), 2006.

H. Colinet, V. Larvor, M. Laparie, and D. Renault, Exploring the plastic response to cold acclimation through metabolomics, Functional Ecology, vol.105, issue.3, pp.711-722, 2012.
DOI : 10.1111/j.1365-2435.2012.01985.x

URL : https://hal.archives-ouvertes.fr/hal-00717742

H. Colinet, D. Renault, B. Charoy-guével, and E. Com, Metabolic and proteomic 531 profiling of diapause in the aphid parasitoid Praon volucre, PLoS One, vol.7, 2012.

H. Colinet, V. Larvor, R. Bical, and D. Renault, Dietary sugars affect cold tolerance of 533, 2013.

H. Colinet, D. Siaussat, F. Bozzolan, and K. Bowler, Rapid decline of cold tolerance at 535 young age is associated with expression of stress genes in Drosophila melanogaster, J, 2013.

G. R. Davis, Essential dietary amino acids for growth of larvae of the yellow 538 mealworm, Tenebrio molitor L, J. Nutr, vol.105, pp.1071-1075, 1975.

D. Doucet, V. K. Walker, and W. Qin, The bugs that came in from the cold: molecular adaptations to low temperatures in insects, Cellular and Molecular Life Sciences, vol.66, issue.8, pp.1404-1418, 2009.
DOI : 10.1007/s00018-009-8320-6

J. Ellers, B. Ruhe, and B. Visser, Discriminating between energetic content and dietary composition as an explanation for dietary restriction effects, Journal of Insect Physiology, vol.57, issue.12, pp.1670-543, 2011.
DOI : 10.1016/j.jinsphys.2011.08.020

B. Rey, A handbook for uncovering the complete energetic budget in insects: the 546 van Handel's method (1985) revisited, Physiol. Entomol, vol.37, pp.295-302, 2012.

P. F. Ganter, Yeast and Invertebrate Associations, 548 Biodiversity and Ecophysiology of Yeasts, pp.303-370, 2006.
DOI : 10.1007/3-540-30985-3_14

G. J. Hallman and D. L. Denlinger, Temperature sensitivity in insects and applications in 552 integrated pest management, 1998.

V. Kostál, P. ?imek, H. Zahradníková, J. Cimlová, and T. ?ttina, Conversion of the 554 chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism, 2012.

H. Lease and B. Wolf, Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex, Physiological Entomology, vol.75, issue.1, pp.29-38, 2011.
DOI : 10.1111/j.1365-3032.2010.00767.x

L. Bourg and E. , Combined effects of suppressing live yeast and of a cold pretreatment on 559 longevity, aging and resistance to several stresses in Drosophila melanogaster, 2010.

L. Bourg, E. Medioni, and J. , Food restriction and longevity in Drosophila melanogaster, p.562, 1991.

L. Rohellec, M. , L. Bourg, and E. , Contrasted effects of suppressing live yeast from food 564 on longevity, aging and resistance to several stresses in Drosophila melanogaster, 2009.

A. M. Leroi, A. K. Chippindale, and M. R. Rose, Long-Term Laboratory Evolution of a Genetic Life-History Trade-Off in Drosophila melanogaster. 1. The Role of Genotype-by-Environment Interaction, Evolution, vol.48, issue.4, pp.1244-1257, 1994.
DOI : 10.2307/2410382

T. Markow and P. M. Grady, Drosophila: A guide to species identification and use, 2006.

K. J. Min and M. Tatar, Drosophila diet restriction in practice: Do flies consume fewer nutrients?, Mechanisms of Ageing and Development, vol.127, issue.1, pp.93-96, 2006.
DOI : 10.1016/j.mad.2005.09.004

P. J. Moore and A. Attisano, Oosorption in response to poor food: complexity in the trade-off between reproduction and survival, Ecology and Evolution, vol.47, issue.1, pp.37-45, 2011.
DOI : 10.1002/ece3.4

R. L. Baranski and T. J. , A high-sugar diet produces obesity and insulin resistance in 579 wild-type Drosophila, Dis. Model Mech, vol.4, pp.842-849, 2011.

C. Nyamukondiwa and J. S. Terblanche, Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status, Journal of Thermal Biology, vol.34, issue.8, pp.406-414, 2009.
DOI : 10.1016/j.jtherbio.2009.09.002

M. Holmstrup, Metabolomic profiling of rapid cold hardening and cold shock in 585, 2007.

G. C. Packard and T. J. Boardman, The use of percentages and size-specific indices to 587 normalize physiological data for variation in body size: wasted time, p.588, 1999.

P. A. Parsons, Evolutionary Rates: Stress and Species Boundaries, Annual Review of Ecology and Systematics, vol.22, issue.1, pp.1-18, 1991.
DOI : 10.1146/annurev.es.22.110191.000245

L. Partridge, M. D. Piper, and W. Mair, Dietary restriction in Drosophila, Mechanisms of Ageing and Development, vol.126, issue.9, p.592, 2005.
DOI : 10.1016/j.mad.2005.03.023

. Development-core-team, R: a language and environment for statistical computing. 594 R Foundation for Statistical Computing, 2008.

L. Rako and A. A. Hoffmann, Complexity of the cold acclimation response in Drosophila melanogaster, Journal of Insect Physiology, vol.52, issue.1, pp.94-104, 2006.
DOI : 10.1016/j.jinsphys.2005.09.007

J. H. Sang and R. King, Nutritional requirements of axenically cultured Drosophila 599 melanogaster adults, J. Exp. Biol, vol.38, pp.793-809, 1961.

F. H. Simmons and T. J. Bradley, An analysis of resource allocation in response to dietary yeast in Drosophila melanogaster, Journal of Insect Physiology, vol.43, issue.8, pp.779-788, 1997.
DOI : 10.1016/S0022-1910(97)00037-1

S. Sisodia and B. N. Singh, Experimental Evidence for Nutrition Regulated Stress Resistance in Drosophila ananassae, PLoS ONE, vol.7, issue.10, p.46131, 2012.
DOI : 10.1371/journal.pone.0046131.t001

W. Starmer and J. Fogleman, Coadaptation ofDrosophila and yeasts in their natural habitat, Journal of Chemical Ecology, vol.124, issue.7, pp.1037-1055, 1986.
DOI : 10.1007/BF01638995

H. Stocker and P. Gallant, Getting Started, p.610, 2008.
DOI : 10.1007/978-1-59745-583-1_2

K. B. Storey, Metabolism and bound water in overwintering insects, Cryobiology, vol.20, issue.3, pp.365-379, 1983.
DOI : 10.1016/0011-2240(83)90025-1

K. B. Storey and J. M. Storey, Insect cold hardiness: metabolic, gene, and protein 614 adaptation, Can. J. Zool, vol.90, pp.456-475, 2012.

N. Teets and D. Denlinger, Physiological mechanisms of seasonal and rapid cold- 616 hardening in insects, Physiol. Entomol, vol.38, pp.115-116, 2013.

L. Wang and A. G. Clark, Physiological genetics of the response to a high, p.618, 1995.

G. R. Wolfe, D. L. Hendrix, and M. E. Salvucci, A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii, Journal of Insect Physiology, vol.44, issue.7-8, pp.597-603, 1998.
DOI : 10.1016/S0022-1910(98)00035-3

J. Xia and D. S. Wishart, MetPA: a web-based metabolomics tool for pathway analysis and visualization, Bioinformatics, vol.26, issue.18, pp.2342-2344, 2010.
DOI : 10.1093/bioinformatics/btq418