Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications
Nicolas Givaudan, Claudia Wiegand, Barbara Le Bot, David Renault, Frédérique Pallois, Stéphanie Llopis, Françoise Binet

To cite this version:
Nicolas Givaudan, Claudia Wiegand, Barbara Le Bot, David Renault, Frédérique Pallois, et al.. Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological mechanisms and soil ecological implications. Soil Biology and Biochemistry, Elsevier, 2014, 79, pp.49-58. <10.1016/j.soilbio.2014.01.032>. <hal-01005821>

HAL Id: hal-01005821
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01005821
Submitted on 13 Jun 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Acclimation of earthworms to chemicals in anthropogenic landscapes, physiological
mechanisms and soil ecological implications

Nicolas Givaudan a,b,c, Claudia Wiegand a,b,c, Barbara Le Bot b,d,e, David Renault a,b, Frédérique
Pallois a,b, Stéphanie Llopis a,b, Françoise Binet a,b

a) University Rennes 1, UMR CNRS Ecobio 6553, Campus de Beaulieu, 265 Avenue du
Général Leclerc, 35042 Rennes Cedex, France
b) Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes, France
c) University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense M, Denmark
d) EHESP Rennes, Sorbonne Paris Cité, Avenue du Professeur Léon Benard, CS74312, 35043 Rennes Cedex, France
e) Inserm, U 1085, IRSET, LERES, Avenue du Professeur Léon Benard, CS74312, 35043 Rennes Cedex, France

* Corresponding author: at University Rennes 1, UMR CNRS Ecobio 6553, Campus de
Beaulieu, 265 Avenue du Général Leclerc, 35042 Rennes Cedex, France. Phone:
+33223236665, Fax: +3323236828

Email adresses:

nicolas.givaudan@univ-rennes1.fr (N. Givaudan)
wiegand@biology.sdu.dk (C. Wiegand)
Barbara.LeBot@ehesp.fr (B. Le Bot)
david.renault@univ-rennes1.fr (D. Renault)
frederique.pallois@univ-rennes1.fr (F. Pallois)
stephanie.llopis@univ-rennes1.fr (S. Llopis)
francoise.binet@univ-rennes1.fr (F. Binet)
Summary
Because earthworms sustain soil functioning and fertility, there is a need to advance the
knowledge of their adaptation potential to chemicals in anthropogenic landscapes. Our
hypothesis is that there is acclimation to organic chemicals (pesticides) in earthworms that
durably persist under conventional farming in anthropogenic landscapes. The adaptation
capability of two populations of earthworms (Aporrectodea caliginosa) having a different
chemical exposure history, - one originating from 20 years of organic farming
(naïve population) and another from 20 years of conventional farming (pre-exposed
population)- to cope with soil organic pollutant (Opus®, epoxiconazole a worldwide used
fungicide) were investigated. Several complementary metabolic and energetic endpoints
were followed, and cast production was assessed as a behavioral biomarker related to earthworms
ecological role for the soil. Basal metabolism reflected by respiration rate was increased in
both fungicide-exposed worms compared to controls. Glycogen resources were decreased in
the same proportion in the two populations but more rapidly for the naïve (7 days) than for the
pre-exposed population (28 days). Soluble protein and most amino-acids contents increased in
the pre-exposed population only, suggesting a detoxification mechanism. Metabolomic
profiles showed a cut-off between fungicide-exposed and control groups in the pre-exposed
earthworms only, with an increase in most of the metabolites. Exposure to a low dose of
epoxiconazole increased cast production of pre-exposed earthworms, and this resulted in an
increase in pesticide disappearance. As far as we know, this is the first study which evidenced
there is an acclimation to an agricultural chemical in earthworms derived from conventional
farming that also relates to a change in their burrowing behaviour, and for which larger
consequences for the soil ecosystem need to be addressed. This original finding is of major
interest in the frame of ecosystem resilience to global changes. Whether this physiological
adaptation is a general pattern of response against fungicides or other pesticides would need
to be confirmed with other molecules and agricultural contexts.

Keywords
Land-use, Epoxiconazole, Earthworm adaptation, Energy storage, Metabolomic profile, Soil
bioturbation
1. Introduction

Often representing the largest animal biomass, earthworms are present in most terrestrial ecosystems and are considered as efficient ecosystem engineers as they actively modify the physical, chemical and biological properties of the soil (Binet et al., 1998; Bottinelli et al., 2010; Jones et al., 1997; Monard et al., 2008). They sustain several key ecosystem services by enhancing soil structure and nutrient cycling, and play a role in ecosystem services such as water regulation, pollution remediation and primary production (Blouin et al., 2013). In anthropogenic landscapes, soil biodiversity and mainly earthworm communities have to face disturbances by intensive land-use due to agricultural practices such as ploughing and tillage, application of fertilizers and chemical pesticides (Paoletti, 1999; Thompson, 1971). The soil compartment is the primary sink for agricultural pesticides, as they are frequently applied several times a year. Concerning fungicides, a large part either do not reach its plant target, or is washed off from treated foliage, leading to major losses to the soil. Bromilow et al. (1999a) reported in a field study that only 30% of the fungicide sprays were intercepted by the barley crop. The frequent application of agricultural pesticides and the persistence of some of them eventually leads to increasing amounts of residual compounds in the soil, either as free or bound residues (Gevao et al., 2000; Mordaunt et al., 2005), which can be a threat to lumbricids species. It has been shown that abundance and diversity of earthworm communities are dramatically reduced by chemical and mechanical stress (Decaëns and Jiménez, 2002; Smith et al., 2008). Despite these impacts however, worm populations persist in conventionally (with pesticides usage) cropped fields, albeit in reduced numbers. Assuming that immigration rate is low in earthworm populations (Lavelle and Spain, 2001), this suggests that earthworm populations living in pesticide-polluted soils can cope with chronic chemical stress, either via avoidance behaviour or physiological resistance (Posthuma and Van Straalen, 1993).

A chronic exposure to contaminants for generations may allow adaptation to take place, by favouring individuals that are able to face them. Physiological adaptation, e.g. acclimation, implies that individuals have acquired a degree of tolerance after a pre-exposure to chemicals at some point of their life, which can be lost within a generation. Genetic adaptation to xenobiotics implies constitutive and hereditary mechanisms allowing tolerance such as overproduction of specific compounds, (Brausch and Smith, 2009), or alteration of a target or receptor (Fournier and Mutero, 1994). Such adaptations to metals have been studied in terrestrial invertebrates including earthworms (Donker et al., 1993; Gudbrandsen et al., 2007;
However to the extent of our knowledge no attempt has been made to evaluate adaptation processes in earthworms against organic pesticides. Adaptation, either via physiological or genetically-mediated mechanisms, is an expression of the species ecological plasticity allowing protection against stresses. However, it is known to be costly in terms of metabolism and energy usage, especially when it involves over-production of compounds such as protection enzymes (Calow, 1991). Increased metabolic rate or increased energy allocation to detoxification mechanisms can be at the detriment of energy storage, and thus impair other functions such as reproduction and growth (Jansen et al., 2011; Yasmin and D’Souza, 2010). This is particularly important when animals are exposed to low but chronic exposures, such as earthworms in agricultural fields, due to the persistence of residues of pesticides in the soils for several years after application (Gevao et al., 2000). Available energy resources, as measured by main storage compounds, can then reflect energy demands associated with different adaptation strategies. In the earthworm Dendrobaena octaedra, Holmstrup et al. (2011) reported high energetic costs reflected by glycogen depletion of the internal regulation of Al and Ni metals. On a lower level of organization, and possibly on a shorter timescale, metabolomics have recently been used in ecotoxicology studies to investigate the responses of the metabolism to contaminants (Brown et al., 2010; Bundy et al., 2008; Simpson and McKelvie, 2009), and we think they can be a valuable tool to study adaptation to contaminants.

One of the most common cultures in Brittany (France) is winter wheat, with a mean number of 6 pesticides applications per year, the majority of them being fungicides (Agreste, 2006). In particular, members of the triazole family, which act by inhibiting the biosynthesis of ergosterol, have attracted interest because of their high persistency in soils (Bromilow et al., 1999a, 1999b; Passeport et al., 2011), although data available on their toxicity is still scarce. The toxicity of some fungicides, such as benomyl and carbendazim has been investigated in a few studies in earthworms and enchytraeids, another important member of the soil biota. Avoidance behaviour was reported in Enchytraeids following exposure to benomyl and Carbendazim (Amorim et al., 2005). Holmstrup (2000) also reported a decrease of reproductive rate in the earthworm Aporrectodea longa associated with a reduction in the whole earthworm population.

Our aim was to test the hypothesis that earthworms inhabiting soil under conventional land-use have acquired tolerance to face the regularly applied fungicide epoxiconazole. The response of in situ pre-exposed versus naïve earthworms when exposed to an environmentally relevant dose of the fungicide were thus studied. We addressed whether an adaptation was
quantifiable in terms of main energy resources storage and metabolism (respiration and metabolites levels) by comparing these two pre-exposed and naïve earthworms, and if these physiological changes were associated with change of their soil bioturbation ability. Our results evidenced that there is a physiological adaptation to fungicide in the earthworms originated from the conventional cropped field, leading to a change in their burrowing behaviour and impacting the fate of pesticide in soil.

2. Materials and Methods

2.1. Earthworm populations, soil and agricultural context

Earthworms used in this study originated from two agricultural fields, one conventionally cropped and one cropped according to organic agriculture requirements. Both of these fields have been in these agricultural management strategies for more than 20 years and are located in the same agricultural basin (Vézin-le-Coquet, Brittany, France). Soils are slightly acid silt-clay loams (conventional and organic field, respectively: Clay 14.8 % and 16.6 %; Silt 71.6 % and 71%; Sand 13.6 % and 12.4 %; organic matter 1.67 % and 2.55 %; pH (water suspension) 6.4 and 6.9). The conventional field had been cropped under rotations of wheat/maize/leguminous for 20 years, and annually treated with pesticides. The fungicide epoxiconazole was used each year a cereal was planted. Epoxiconazole is a triazole fungicide present in two pesticides formulations (OPUS® and OGAM®) and mainly used on wheat. The organic field has been under rotation with a cereal (2 years) / maize (1 year) / lucerne (3 years) without any pesticides for 20 years, and was not tilled during the lucerne periods. Soil used for the exposure experiment was collected from the first 30 cm of a permanent (since 1960) organic pasture (17.6% clay, 69.3 % silt, 13.1% sand, 4.0 % organic matter, pH (water suspension) 6.0) located in the same area where no initial epoxiconazole residuals were detected (see method in 2.3). Upon retrieval, it was air-dried until it reached 14% of humidity, then sieved to remove all soil particles larger than 2 mm and kept in sealed containers (100 l) until used for the experiment.

The endogeic species *Aporretodea caliginosa* was chosen for this experiment. It is an environmentally relevant species for toxicological tests, since it is commonly found in agricultural fields and reported as a dominant species (Jordan et al., 2004; Lamandé et al., 2003; Nuutinen, 1992; Söchtig and Larink, 1992). Most standard ecotoxicity tests are conducted on epigeic species mainly with *Eisenia fetida* or *Eisenia andrei*, but these species
lack ecological relevance since they are usually absent from agricultural fields (Dittbrenner et al., 2010). Earthworms were collected by hand-sorting at the beginning of Spring 2012 from the two fields. Adults (presence of a fully developed clitellum) and sub-adults (presence of tubercula pubertatis) were used and individual weights were recorded (Table 1). Upon collection, they were brought back to the laboratory and maintained in the soil collected from the field at 25% humidity until start of fungicide exposure. Before the experiment, the earthworms were acclimatized for 14 days in the test soil in the climatic room used for the experiment (Conviron GR96; temperature: 15°C; day/night cycle: 16/8h; humidity: 80 ± 5%).

2.2. Experimental setup
Soil contamination: Epoxiconazole was applied as commercial formulation OPUS® (125 g active ingredient l⁻¹, obtained from BayerCropScience) diluted in distilled water at 0.1 µg g⁻¹ soil, which is equivalent to a predicted field concentration calculated for a field application rate of 125 g ha⁻¹ assuming a single application with an homogenous distribution and no crop interception in the top 5 cm of the soil (Dittbrenner et al., 2010). Soil spiking was conducted by manually adding 175 ml of the diluted pesticide solution or distilled water (for the controls) on each 2 kg of soil at 14% water content (1.75 kg dry weight) reaching a final soil water content of 24%. To insure homogeneity of pesticide distribution in the soil, the solution was added in two parts, the soil being thoroughly mixed, resieved using a 2 mm aperture and redispersed as a fine layer. Soil microcosms consisted of polycarbonate boxes (80mm x 50mm, Caubère, Yebles, France) with a lid pierced with tiny holes to ensure sufficient aeration. The microcosms were filled with 100 g of contaminated or control soil, then 0.2 g of dry grass meal was added to the surface of the soil. Then the microcosms were left two days in a cool dark room to ensure aeration of the soil after re-humidification. Water content was checked again in 3 additional control boxes and adjusted to 25% prior to introduction of animals, then checked again each week.

Experimental design: The experimental design is described in Table 1. It comprised 11 specimens from each population (pre-exposed and naïve) for each treatment (epoxiconazole or control) and sampling time (7 and 28 days) plus an initial control group at day 0 (unexposed). Prior start of exposure, each earthworm was rinsed in tap water, gently dried on filter paper, weighed and placed in individual Petri dishes for 48 hours for gut voiding. Then animals were transferred individually to the exposure microcosms (day 0) according to a size-class procedure, insuring a similar mean earthworm weight in each treatment. Soil was spiked with epoxiconazole at 0.15 µg g⁻¹ soil or control soil. Exposure lasted for 7 and 28 days, with an
initial control group of 11 individuals for each population (unexposed worms) at day 0. At each sampling date, before use of the microcosms for cast production (see 2.5) and pesticide measurements (see 2.3), earthworms were removed from the soil taking care not to break the casts. 5 of them were used for respirometry assessment (2.4), energy resources (2.6), and metabolites measurements (2.7). The other 6 earthworms were used for enzyme activities measurements in another study and will not be considered here. After the worms have been sampled, 8 microcosms were used for cast production measurements, and 3 for pesticide analysis.

In addition, eight uncontaminated soil microcosms without worms were used as controls for the cast production test to assess the potential formation of non-biogenic aggregates at 7 and 28 days. Another 3 soil microcosms were filled with contaminated soil to track the fate of pesticide without the presence of worms. Humidity control was conducted in 3 additional, non-contaminated soil microcosms, in order to adjust humidity when necessary.

<table>
<thead>
<tr>
<th>Microcosms containing one earthworm</th>
<th>worms at start</th>
<th>Sampling days and number of worms sampled</th>
<th>treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-exposed population (conventional field)</td>
<td>33</td>
<td>11 11 11 11</td>
<td>CTRL</td>
</tr>
<tr>
<td>"Naïve" population (organic field)</td>
<td>22</td>
<td>0 11 11 11</td>
<td>EPOXI</td>
</tr>
<tr>
<td>Control microcosms for cast production</td>
<td>33</td>
<td>11 11 11 11</td>
<td>CTRL</td>
</tr>
<tr>
<td>Control microcosms for pesticide dissipation</td>
<td>22</td>
<td>0 11 11 11</td>
<td>EPOXI</td>
</tr>
<tr>
<td>Microcosms without earthworm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control microcosms for humidity check</td>
<td>0</td>
<td>8 8 8 8</td>
<td>CTRL</td>
</tr>
<tr>
<td>Control microcosms for pesticide dissipation</td>
<td>0</td>
<td>3 3 3 3</td>
<td>EPOXI</td>
</tr>
<tr>
<td>Control microcosms for humidity check</td>
<td>0</td>
<td>3 3 3 3</td>
<td>CTRL</td>
</tr>
</tbody>
</table>

Table 1: Experimental design of the laboratory exposure. Out of each group of 11 microcosms containing one earthworm, 5 randomly picked worms were used for respirometry assessment, energy resources, and metabolite measurements.

2.3. Pesticide concentration in soil

Sub-samples of 2g of soil were retrieved the day of the pollution (day 0), and after 7 and 28 days, from three randomly chosen microcosms out of the 11 replicates. They were dried at 30°C overnight, then kept frozen until pesticide analysis. Epoxiconazole in soil sub-samples was measured by liquid chromatography coupled with mass spectrometer (LC-MS) (Waters alliance 2690, Waters, Saint Quentin en Yvelines, France). 2g of soil sample were extracted in 500 ml of mineral water. After 15 min of ultrasound treatment, the sample was mixed by
rotary shaking for one hour, and subjected to another 15 min of ultrasound treatment. 0.25 µg
of triadimenol was added as internal standard and 1 ml of analytical-grade nitric acid (HNO₃)
to acidify the mixture. Then pesticides were extracted from the aqueous mixture in two steps
with 25 ml of HPLC-grade dichloromethane followed by 15 min of agitation. The
dichloromethane extracts were combined and evaporated to a drop (ca. 10 µl), then 500 µl
acetonitrile were added and 0.25 µg of pentabromophenol were added as second internal
standard. The extract was evaporated again to a drop and adjusted to 500 µl with 10%
acetonitrile acidified (0.1 % formic acid).

This sample was analysed by LC-MS using a high-performance liquid chromatography
(Alliance 2695, Waters, Saint Quentin en Yvelines, France) coupled to a quadrupole mass
spectrometer model ZQ (Waters-Micromass, Saint Quentin en Yvelines, France) equipped
with an electrospray source. Epoxiconazole was separated on a X Terra MS C18 column (150
x 2.1 mm, 3.5 mm particle size, Waters, Saint Quentin en Yvelines, France) at 35 °C. A
binary mobile phase gradient (A: ultrapure water with 0.1% formic acid; B: acetonitrile with
0.1% formic acid) was used for pesticide separation. The chromatographic method held the
initial mobile phase composition (82% A, 18% B) constant for 10 min, followed by 70% A / 30% B (10 min), 50% A / 50% B (15 min), 20% A-80% B (5 min), then again 82% A / 18% B
for 10 min. Quantification limit was 2.5 ng.g⁻¹ dry soil and extraction yield was 75 ± 7%. A
standard curve of epoxiconazole was made with several aliquots of 2 g of dry soil (the same
uncontaminated pasture soil used for the microcosms) spiked manually with the purified
compound, air-dried for two hours, and extracted the same way as the real samples for
quantification, relating to the two internal standards. Pesticides analytical standards were
bought from Dr Ehrenstorfer (Augsburg, Germany).

Recovery of epoxiconazole in spiked soil was initially 80% of the desired concentration (0.1
µg.g⁻¹), with a coefficient of variation of 10%, which was considered highly satisfactory, as
we used the commercial formulation of the pesticide. Concentrations of epoxiconazole in soil
(Table 2) were still two thirds of the initial concentration after 28 days, which is consistent
with the long persistencies (half-life > two years) reported in the literature (Bromilow et al.,
1999a, 1999b; Liang et al., 2012).

2.4. Respirometry measurements

After 7 and 28 days of exposure, earthworms were removed from the soil microcosm, rinsed,
gently blotted dry on filter paper, weighed and left 24 hours in a 250 ml glass jar on a moist
filter paper for gut voiding. Thereafter, the glass jar was hermetically closed for two hours, and CO₂ was measured by a Micro-Gas Chromatograph (3000A, SRA Instruments) equipped with a single capillary column Poraplot U and coupled with a thermal conductivity detector. Then the worm was frozen in liquid nitrogen for further measurements of energy resources (2.6) and metabolomics (2.7).

2.5. Cast production

Cast production was measured in the soil of 8 microcosms out of the 11 replicates. The cast production test was conducted according to the protocol of Capowiez et al. (2010) but using a sieve of mesh size 2mm. Soil of the microcosms were dried at 40°C overnight, and sieved by shaking the sieve consistently for 10 s.

2.6. Energy resources measurement

Frozen worms were freeze-dried, and ground to a fine powder by multiple 30 sec agitations with inox beads in 2 ml test tubes in a bead-beater (Retsch MM400, Retsch GbMh, Haan, Germany). Each ground sample was separated in several aliquots, 2 mg for total lipids, 5mg for soluble proteins, and 2 x 10 mg for glycogen and metabolites measurements. Lipid aliquots were extracted according to Folch(1957), lipids in the chloroform extract were assayed by the sulfo-vanillin method with a calibration curve of commercial vegetable oil at 525 nm. Proteins aliquots were homogenized in 0.1 M phosphate buffer (pH 6.5), centrifuged and measured according to Bradford (1976) using a calibration curve of bovine serum albumin. Glycogen was measured according to the method of Nicolaï et al. (2012). Briefly, aliquots were homogenized in 600 µl trichloroacetic acid (4%) and centrifuged at 5000 G (rotor N° 12145, SIGMA, 8000 rpm) for 10 minutes. Then 500 µl of supernatant was recovered and glycogen was precipitated by adding 1.5 ml of ethanol and stirring for 10 minutes. The extract was centrifuged (5000 G) and the ethanol eliminated with a glass pipette. The pellet was washed with 2ml ethanol, then the remaining ethanol was totally evaporated at 70°C. The pellet was redissolved by stirring it overnight in ultrapure water, and centrifuged again. Absorbance was measured at 425 nm with a microplate reader (Fischer Scientific Multiskan FC) after addition of Lugol using a calibration curve of purified glycogen (Oyster type II, Sigma).
2.7. Metabolomics

2.7.1. Sample extraction and derivatization

Metabolite extraction was conducted according to Khodayari et al. (2013). The freeze-dried and ground sample was homogenized in 600 µL of cold (−20 °C) methanol–chloroform (2:1) using a bead-beating device (Retsch MM301, Retsch GmbH, Haan, Germany). 400 µL of ice-cold ultrapure water was subsequently added, and each sample was stirred. After centrifugation at 4000 G for 10 min at 4 °C, 300 µl of the upper aqueous phase, containing polar metabolites, were transferred to new chromatographic vials and vacuum-dried using a Speed Vac Concentrator (MiVac, Genevac Ltd., Ipswitch, England). The dried extracts were then redissolved in 15 µL of 20 mg.mL\(^{-1}\) methoxyaminehydrochloride (Sigma-Aldrich, St. Louis, MO, USA) in pyridine, incubated under automatic orbital shaking at 40°C for 90 min prior to derivatization. Then, 15 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA; Sigma) was added, and derivatization was conducted at 40 °C for 45 min under agitation. The derivatization process was automatized using a CTC CombiPal autosampler (GERSTEL GmbH and Co.K.G, Mülheim an der Ruhr, Germany).

2.7.2. GC-MS analyses

Gas chromatography coupled with mass spectrometry (GC–MS) was used to measure up to 58 small metabolites belonging to different classes of molecules: amino-acids, polyols, sugars, intermediates of the citric acid cycle and other unclassified biological molecules. The GC–MS system was comprised of a Trace GC Ultra chromatograph, and a Trace DSQII quadrupole mass spectrometer (Thermo Fischer Scientific Inc, Waltham, MA, USA). The injector temperature was set at 250°C. The oven temperature was increased from 70°C to 170°C at 5°C min\(^{-1}\), from 170 to 280°C at 7°C min\(^{-1}\), from 280 to 320°C at 15°C min\(^{-1}\), then the oven remained for 4 min at 320°C. A 30 m fused silica column (TR5 MS, I.D. 2.5 mm, 95% dimethyl siloxane, 5% Phenyl Polysilphenylene–siloxane) was used, with helium as the carrier gas at a rate of 1 mL.min\(^{-1}\). One microliter of each sample was injected using the split mode (split ratio: 25:1). We completely randomized the injection of the samples. The temperature of the ion source was set at 250°C and the MS transfer line at 300°C. Detection was achieved using MS detection in electronic impact (EI). We used the selective ion-monitoring mode (SIM) (electron energy: -70 eV), allowing a precise annotation of the detected peaks. The peaks were identified according to both their mass spectra (two ions) and
their retention times. Metabolite levels were quantified, if above their quantification limits, according to calibration curves made with 58 pure reference compounds, including the internal standard. Chromatograms were integrated using XCalibur v2.0.7 software (Thermo Fischer Scientific Inc, Waltham, MA, USA).

2.8. Statistical analyses

For both populations, the effect of epoxiconazole compared to control groups, or mean differences between populations, either on respiration, energy storage or cast production was tested by student-t-tests at each sampling time. The disappearance of pesticide in the soil was tested by one-way ANOVA with time as factor for soils containing pre-exposed, naïve and no earthworms, followed by post-hoc tests according to the Tukey procedure. On the metabolomics data, two principal component analyses (PCA) were performed on each population as separate datasets on log-transformed and standardized variables. Three axes, explaining 70% of variability, were kept for interpretation. The variables Serine and Threonine were highly correlated (94%) so their arithmetic sum was used in a single variable, so as not to hamper the results of the PCAs. A classification of the metabolites into “functional biochemical groups” was done following Bundy et al (2008) and based on biochemical knowledge. Amino-acids were classified either as lipophilic, hydrophilic or neutral. Regarding the metabolite functional group responses to epoxiconazole, significant differences between control and exposed worms for each metabolite were tested by student-t-tests at 7 and 28 days. Significance level for student-t-tests was set at $p \leq 0.1$. All analyses were conducted using the statistical software of “R 2.12.1” for Macintosh (R Development Core Team, 2008).

3. Results

3.1. Energy dissipation

Fungicide treatment increased CO$_2$ production in both pre-exposed and naïve populations after 7 and 28 days compared to their non-treated controls (Fig 1). Respiration rate in the fungicide-treated group was higher after 7 and 28 days compared to day 0 in the pre-exposed population. Differences became significant between populations at 28 days, where
metabolic rates of the pre-exposed population (both exposed and control groups) were still higher than at the outset, while it remained constant in the naïve population from day 7 to 28.

3.2. Cast production (CP)

The weight of casts (g of dry cast day\(^{-1}\)) correlated linearly and positively to earthworm weights at 7 and 28 days (\(R^2=0.34; p<0.001\) and \(R^2=0.33; p<0.05\), respectively, all modalities mixed). The cast production was then calculated as weight difference of non-biogenic aggregates retained in the sieve from the 8 control (without worms) microcosms to the ones with worms and expressed per gram of fresh worm. Worms from both populations displayed similar patterns with constant CP over time in control soil microcosm and significantly changed CP with fungicide treatment (Figure 2). Application of epoxiconazole transitory enhanced CP (7 days) in pre-exposed worms (\(p<0.01\)), and slightly decreased it, however not significantly, after 28 days in both worm populations.

3.3. Energy resources

Mean glycogen content was decreased by nearly 20 mg in fungicide-treated compared to control groups after 7 days in the naïve earthworms, and after 28 days in the pre-exposed earthworms as shown in (Figure 3-A). At the end of the exposure, the worms originating from the conventional-treated field had a slightly lower glycogen tissue level than the naïve ones. The lipid tissue levels (Figure 3-B) did not show any significant differences between un-exposed and fungicide exposed earthworms or between earthworms originating from the conventional or the organic-treated field. Lipid levels were lower in all treated groups compared to their respective controls, however it did not achieve significance. Protein contents (Figure 3-C) decreased similarly in the 4 groups of worms during the first 7 days. They were then significantly increased by fungicide treatment in both exposed and naïve populations compared to their respective controls after 28 days, with pre-exposed worms having a final protein amount almost twice as high as naïve ones.

3.4. Metabolomics

3.4.1. Metabolic profiles of fungicide-exposed and control populations

Twenty eight metabolites were detected and quantified in the earthworm tissues. From this dataset, 22 were kept for interpretation (table 1).
scores plots on axis 2 and 3 showed that the worms exposed for 28 days formed a separate cluster from the 28 days control worms along axis 2 and 3. This pattern was not observed in the organic population (Figure 4B) along any of the three axes, as it seems the time effect is greater than the fungicide effect. Indeed, the exposed and the control groups move in the same way with time, but are not clearly separated.

3.4.2. Metabolic changes in the worms populations

In the loadings plots of the PCAs (figure 4C and 4D), several coordinated responses were identifiable. In the conventional population (Figure 4C), the 7 variables that have loadings lower than -0.5 on axis 2 form a first cluster containing mostly lipophilic amino-acids. Another cluster is in the lower half of the plot corresponding to variables having low loadings (roughly, <-0.2) on axis 3, composed of the three sugars, succinate, ornithine, the amino-acids glycine and proline and putrescine. On the other hand in the organic population (Figure 4D), we see two clear clusters that could correspond to the incubation time: the top right corner for seven days and the top left corner for 28 days. Day zero would correspond to the sugars Glu and Rib (lower half). The induced changes in metabolite concentrations after exposure was then measured as normalized concentrations in percentage of the control value and compared according to functional groups (Figure 5). In the conventional worms, several metabolites increased after 28 days of epoxiconazole exposure in all four biochemical groups (amino-acids, sugars, organic acids and ornithine-putrescine), up to 7-fold for aspartate, 4-fold for aminobutyrate, and 2-fold for ornithine and putrescine. This general increase in metabolite levels was not observed in the naïve population, which displayed different trends. Indeed, in Figure 5E, certain amino-acids (Asn, Asp, Phe and Val) increased slightly, whereas others dropped below 100% or stayed stable at 28 days. Not much variation was observed in organic acids of the organic earthworms at 28 days, except for aminobutyrate which dropped to 50% of the control value, contrasting to its 4-fold increase in the pre-exposed animals. Putrescine level increased by 2-fold after 28 days in both populations whereas ornithine decreased to below 50% of the control value in the organic population only.

4. Discussion

4.1. Acclimation in energetic processes and metabolism
Animals can tolerate pollutants via biotransformation, excretion or scavenging of free radicals (when pollutants induce oxidative stress). For example, detoxification of several pollutants, e.g. atrazine or paraquat, is mediated via the enzyme Glutathione-S-Transferase. This enzyme, belonging to phase II detoxification mechanisms, acts through binding xenobiotics to glutathione and facilitating its excretion (Anderson and Gronwald, 1991; 2007, 2000).

Another common detoxification pathway to xenobiotics is the group of cytochrome p450 oxidases. This family of enzymes transform the structure of organic chemicals, hence greatly altering their toxicity (Ribera et al., 2001; Rodríguez-Castellanos and Sanchez-Hernandez, 2007). However, no data on epoxiconazole tolerance pathways e.g. detoxification mechanisms was available in the literature.

On the other hand, the literature suggests that there are energetic costs in organisms for coping with pollutants (Fisker et al., 2011; Holmstrup et al., 2011; Wiegand et al., 2007). The way organisms handle energetic processes can therefore inform us on adaptation mechanisms. As an example by measuring the main energy resources, Pook et al (2009) showed that a metal-resistant population of marine harbour ragworm (N. diversicolor) had a lower scope for growth than a reference (non-resistant) population and demonstrated a metabolic cost, or tradeoff, of resistance. Other tradeoffs can be the co-selection of traits along with tolerance to xenobiotics, such as life history traits. Interestingly, in the conventionally cropped field, the worms sampled had a lower initial mean weight but with constant tissue composition compared to the organic worms (Table 1). This could be a result of the selection of smaller individuals, by the global agricultural management of the field, as a possible combined effect of fertilizers, pesticides and tillage (tillage was less frequent in the organic field due to the lucernecropping). This assumption is supported by the fact that the bigger anecic species such as L. terrestris or A. giardiare usually the most impacted in cropped soil (Edwards and Bohlen, 1996).

To investigate such energetic costs, we measured the worm’s metabolic rate ($\mu g CO2 g^{-1}$ worm (fresh weight) hour$^{-1}$) as a proxy of energy dissipation, and the main energy storage compounds which are glycogen (main sugar resource), total proteins and lipids. Metabolic rate was increased in both populations after 7 days of exposure, showing that the fungicide increased metabolic rate, but to a greater extent in the pre-exposed earthworms. Energy dissipation in both control and exposed groups were indeed higher than the naïve earthworms after 28 days. The increase in putrescine and alanine observed in the two populations when exposed suggests a stress response in both groups of earthworms, these two metabolites have previously been suggested as universal biomarkers in metabolomics studies (Groppa and
Benavides, 2008; Rhee et al., 2007; Simpson and McKelvie, 2009). However, the increase in most amino-acids contents in the pre-exposed earthworms after 28 days, which is not observed in the naïve animals, indicates a particular metabolic response. Several studies reported that the available resources in amino-acids were at the centre of metabolic activity during stress responses (Krasensky and Jonak, 2012; Lankadurai et al., 2013; Simpson and McKelvie, 2009). Moreover, the increase in alanine, aspartate, aminobutyrate and succinate observed in the pre-exposed populations could indicate an activation of the alanine, aspartate and glutamate pathway (Kanehisa and Goto, 2000).

The increase in both metabolic rates was reflected by depletion in the lipid and the glycogen resource. However a temporal delay appeared in the glycogen usage, indicating a differential mobilisation of this sugar resource between naïve and pre-exposed earthworms. The naïve earthworms seem to consume glycogen earlier than the pre-exposed group. Glycogen breakdown is reflected by the slight increase of glucose in fungicide-exposed groups of earthworms after 28 days. Soluble proteins were also significantly higher after 28 days in the pre-exposed worms only, which could indicate the higher synthesis of detoxification enzymes such as cytochrome p450 (Lukkari et al., 2004). Metabolic profiles of control and exposed groups in pre-exposed earthworms became distinct after 28 days, indicating that metabolic networks have been rearranged to maintain internal homeostasis and performance of the organisms.

Overall, all these findings show that pre-exposition of earthworms over generations in the conventional farming system has led to physiological adaptation, as evidenced by their higher reaction to the fungicide. Other studies have shown that separation of metabolic signatures (PCA analyses) increase with higher doses of the pollutants, e.g DDT, endosulfan or copper (Bundy et al., 2008; Simpson and McKelvie, 2009). It is likely that, in our study, fungicide recommended application rate corresponds to a low sublethal dose and the differences in metabolic signatures would become clearer with higher concentrations of the pesticide. Nevertheless, the differences observed demonstrate an impact even at this environmentally realistic level. As both populations were selected from fields under long term (20 to 25 years) conventional and organic farming, an adaptation mechanism on the genetic level could be assumed, but would need to be proven.

4.2. The link with earthworm burrowing and the pesticide fate in soil
Several studies aimed to correlate biochemical or cellular responses in earthworms to pollutants with ecologically important endpoints. For example, Maboeta et al. (2001) showed that there was a link between decrease in the abundance of field populations of the earthworm *Microchaetus sp.* and decrease in the animals’ neutral red retention time (a biomarker of cellular damage). By showing a strong reduction of earthworm growth by pesticides, (1992) postulated that these contaminants were likely to cause a delay in sexual maturity in juveniles and have eventually have an impact on earthworm abundance in the field. However, pesticide impacts on burrowing behavior have only poorly been studied because of the difficulty to visualize or estimate burrowing activity, and few studies have tried to link pollutant impacts at low levels of organisation (cellular, biochemical) with earthworm burrowing (Capowiez et al., 2010; Gupta and Sundararaman, 1991). With regard to the ecological importance of earthworms through the burrowing of the soil, it is likely that, when attempting to assess the ecosystem services rendered by earthworms to the soil, earthworm burrowing behaviour is as important as population numbers as it can have drastic impacts for soil functioning (Capowiez & Bérard 2006).

Here, the low dose application of fungicide resulted in an increase in cast production after seven days, which is consistent with the recent results of Dittbrenner et al (2010), where cast production was increased only at the lowest concentration of the pesticide, but decreased at higher doses. The impacts of pesticides on soil bioturbation have been investigated in a few articles using 2D and 3D (X-ray tomography) terraria, cast production method and the avoidance behaviour test. Most of them, except for the paper of Dittbrenner et al (2010), have shown a decrease in activity or an impact on the characteristics of the burrow systems, e.g length, depth, and branching rate (Pelosi et al., 2013). Interestingly, in the present study, the increase in cast production was only observed in the pre-exposed earthworms. Therefore it could suggest that tolerance to this environmentally realistic level of fungicide is associated with a compensatory increased activity. This increase in burrowing behaviour could be induced by the metabolic changes observed in energetic depletion and metabolites rearrangements, similarly to the phenomenon of hormesis (Zhang et al., 2009). An alternative hypothesis would be that it is related to avoidance behaviour, but unsuccessful, as the earthworm is confined to the microcosm, resulting in an increased amount of casts. It is also known that geophagous earthworms are able to alter their burrowing behaviour and display different behaviours (in terms of soil ingestion) when they are feeding on organic matter in the soil or moving through the soil (possibly as part of an avoidance response)(Capowiez and Bérard, 2006; Hugnes et al., 1996). This may lead to reduced cast production in contaminated
soils rather than increased cast production but it is dependent on the level of contamination
and the contaminant (Dittbrenner et al., 2010).

The fate of pesticides in soil can be affected by earthworms bioturbation via several
mechanisms. It increases pesticides sorption on soil particles on the long-term, leading to the
formations of non-extractable residues. Therefore it can increase the pesticide persistence, as
it was previously shown for atrazine (Binet et al., 2006; Farenhorst et al., 2000). On the other
hand, earthworms’ activity was also reported to stimulate microorganisms activity, and
enhance the activity of atrazine- or MCPA-specific bacterial degraders, accelerating its
mineralisation (Liu et al., 2011; 2011, 2008). *A. caliginosa* also participated in the breakdown
of four fungicides (folpet, fosetyl-Al, metalaxyl, myclobutanil) and two insecticides
(Chlorpyrifos-Ethyl and λ-Cyhalothrin)(Schreck et al., 2008). In our study, pesticide
concentration is lower in the microcosms containing earthworms from the conventional field
(Table 2). The increase in bioturbation observed in these earthworm’s microcosms suggest that
they play a part in the pesticide’s disappearance either by enhancing sorption or by enhancing
microbial mineralization of epoxiconazole.

5. Conclusion

This study shows that an environmentally realistic concentration of epoxiconazole applied as
OPUS® induced distinct physiological changes in two populations of the earthworm *A. caliginosa*. Biological responses in energy storage and metabolic profiles differed between
earthworms derived from conventional farming and those from organic farming, indicating
that an acclimation mechanism to the agricultural pesticide occurs in the long-term pre-
exposed animals. The acclimation in pre-exposed animals was also evidenced by their higher
reaction to the chemical, with increased metabolic rate and burrowing activity compared to the
naïve animals, which ecological consequence is a lower pesticide concentration in the soil.
This original finding is of major interest in the frame of ecosystem resilience to global
changes. Whether this physiological adaptation is a general pattern of response against
fungicides or other pesticides would need to be confirmed with other molecules and
agricultural contexts.

6. Acknowledgements

The authors are grateful to Gabriel Nédelec and Philippe Leroy (INRA Rennes) and Christian
Mogis (GAEC La Mandardièrè, Pacé) for providing history of cultivation and access to their
agricultural fields. Many thanks to Barbara Martineau (ECOBIO) and to Catherine Rouillon and Claude Briens (LÉRES) for their technical help during the microcosm experiment and the chemical analyses, respectively. The authors are also grateful to Hans Christian Petersen for providing statistical support and for the very constructive comments from both reviewers. This work was funded by the European University of Brittany (UBF) in the frame of the International Chair of Excellency in Agronomy and Environment granted to Claudia Wiegand and to ECOBIO laboratory. It is also part of the LIA “ETSE” sustained by the CNRS-INSEE, the University of South Denmark (SDU) and the University of Rennes 1. The authors declare they have no conflicts of interest.

References

Brown, S.A.E., McKelvie, J.R., Simpson, A.J., Simpson, M.J., 2010. 1H NMR metabolomics of
earthworm exposure to sub-lethal concentrations of phenanthrene in soil. Environ. Pollut. 158, 2117–2123.

concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from
contaminated and uncontaminated forest soil. Environ. Pollut. 159, 190–197.

Hugues, M.S., Bull, C.M., Doube, B.M., 1996. Microcosm investigations into the influence
of sheep manure on the behaviour of the geophagous earthworms Aporrectodea

Jansen, M., Coors, A., Stoks, R., De Meester, L., 2011. Evolutionary ecotoxicology of

Jordan, D., Miles, R., Hubbard, V., Lorenz, T., 2004. Effect of management practices and
cropping systems on earthworm abundance and microbial activity in Sanborn Field: a

Acids Res. 28, 27–30.

Khodayari, S., Moharramipour, S., Larvor, V., Hidalgo, K., Renault, D., 2013. Deciphering
the Metabolic Changes Associated with Diapause Syndrome and Cold Acclimation in the

morphology, infiltration and earthworm community in a loamy soil under different
agricultural managements. CATENA 54, 637–649.

Emerging Approach to Study Organism Responses to Environmental Stressors. Environ.
Rev.

The Netherlands.

Liang, H., Qiu, J., Li, L., Li, W., Zhou, Z., Liu, F., Qiu, L., 2012. Stereoselective dissipation of
epoxiconazole in grape (Vitis vinifera cv. Kyoho) and soil under field conditions.

Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid

responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure:
differences between populations with and without earlier metal exposure. Environ.
Pollut. 129, 377–386.

Monard, C., Martin-Laurent, F., Vecchiato, C., Francez, A.J., Vandenkoonhuyse, P., Binet,
F., 2008. Combined effect of bioaugmentation and bioturbation on atrazine degradation

bacterial diversity and function under biotic control: the soil pesticide degraders as a
case study. ISME J. 5, 1048–1056.

pesticide residues: observations on compound differences, measurement and regulatory

Nicolai, A., Filser, J., Lenz, R., Valérie, B., Charrier, M., 2012. Composition of body storage
compounds influences egg quality and reproductive investment in the land snail Cornu

Yasmin, S., D'Souza, D., 2010. Effects of Pesticides on the Growth and Reproduction of

Fig1
Metabolic rate (µg CO₂ g⁻¹ worm (fresh weight) hour⁻¹) of pre-exposed (square) and naïve (triangle) *A. caliginosa* exposed to Epoxiconazole (solid symbols, full lines) or not exposed (open symbols, dashed lines) at day 0, 7 and 28. Mean values (N=5 worms per group) are presented with standard deviations as error bars. Significant differences are indicated with * between exposed and control worms and # between populations at each sampling time. Different letters (a or b) denote statistical differences between sampling times within the same group.

![Graph of CO₂ production over time](image-url)
Mean cast production (in g dry cast weight g\(^{-1}\) earthworm body mass day\(^{-1}\)) of pre-exposed and naïve *Aporrectodea caliginosa* after exposure to epoxiconazole for 7 and 28 days (n=8). Error bars are standard deviations (SD). * indicates significant differences between exposed and control groups (student-t-test, ° p<0.1, * p<0.05, ** p<0.01) and # between earthworm populations.

Fig3
Glycogen (A), Lipids (B), and Proteins (C) contents (percentage of mean of day 0 value) of pre-exposed and naïve A. caliginosa exposed to Epoxiconazole at day 7 and 28. Mean values (N=5 worm per group) are presented with standard deviations as error bars. Significant differences are indicated with * between exposed and control worms (Student-t-tests, p<0.1).

Fig4
Principal Component Analysis of metabolites data (22 variables) showing relationship between metabolite profiles and epoxiconazole exposure along time. A, B: Scores plots for conventional population (Axes 2 and 3) and organic population (Axes 1 and 2). Data are shown as crosses for both exposed and control groups means ± standard error of the mean (SEM). Exposed and Control groups are joined by time order with dashed lines. C, D: Loadings plots for individual metabolites in the conventional population (axes 2 and 3) and in the organic population (axes 1 and 2). Metabolites are identified by their abbreviations and colored by functional groups listed in supplementary material (Table S4).
Metabolite functional group responses to epoxiconazole, concentrations expressed as percentage of mean control value. A and E: amino-acids (blue=neutral, black=lipophilic, red=hydrophilic) B and F: sugars (blue=glucose, black=mannose, red=ribose) C and G: Krebs’ cycle intermediates (blue = aminobutyrate, black = citrate, red = fumarate, green= lactate, violet= succinate) D and H: amino acids degradation products (black=ornithine, blue=putrescine). * indicates significant differences between exposed and control groups (Student t-tests, p<0.1).