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a b s t r a c t

Anti-cancer drugs are an important class of pharmaceutical products. Methotrexate (MTX)

is a folic acid antagonist used in high doses as antimetabolite in anti-cancer treatment as

well as in low doses for the treatment of rheumatoid arthritis and adults’ psoriasis. In the

past, several anti-cancer drugs, including methotrexate, have been found in the environ-

ment. Their presence in water, especially if used for the production of drinking water, is

even in low concentrations of particular interest, due to the risk to retrieve them in the

consumed water and their high activity and grave effects. But prior to usage as drinking

water, raw waters are treated and chlorination is a common practice in several countries.

As such a treatment can lead to the formation of organochlorine in water, the study of the

fate of MTX during chlorination in a batch trial was carried out. The reaction was moni-

tored by dissolved organic carbon (DOC) and by fluorescence and UV spectroscopy.

Investigation of by-products formed was done with liquid chromatography/mass spec-

trometry (LC/MS). Under the given experimental conditions, Methotrexate was eliminated

rapidly (t1/2 around 21 min). However, DOC elimination was incomplete. Monitoring with

LC-MS showed the formation of a monochlorinated transformation product of MTX.

In silico analysis of the proposed transformation products for different carcinogenic,

mutagenic and genotoxic endpoints with different software platforms provided no clear

evidence that the possible transformation products after chlorination might be more toxic

than the parent compound. However, since a number of alerts is altered after chlorination,

it cannot be excluded that the toxicity of these transformation products might be modu-

lated compared with the parent compound.

ª 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade the presence of pharmaceuticals, ranging

from nanograms to a few micrograms per liter, has been

reported in the aquatic cycle including surface water, waste-

water and groundwater (Besse and Garric, 2008; Buerge et al.,

2006; Kasprzyk-Hordern et al., 2008; López-Serna et al., 2012;

Osorio et al., 2012; Petrovic et al., 2012; Ratola et al., 2012;

Roberts and Thomas, 2006; Verlicchi et al., 2012) and, to a
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lesser extent, drinking water (De Jongh et al., 2012; Mompelat

et al., 2011; Wang et al., 2011a). Advances in analytical in-

struments have been a key factor driving their increased

detection (Ferrer and Thurman, 2012; Grabic et al., 2012; Gros

et al., 2012).

As for other micro-pollutants, their presence in environ-

mental water, even at these very low concentrations, has

raised particular interest. It points out the need to verify the

efficacy of drinkingwater treatment processes for the removal

of such compounds (Stackelberg et al., 2004; Westerhoff et al.,

2005).

Drinking water treatment consists of several steps

including filtration, flocculation, sedimentation and disinfec-

tion. Some treatment facilities also include ion exchange and

adsorption onto activated carbon. Depending on the country,

disinfection (chlorination, ozonation, UV radiation) is gener-

ally applied before the water enters the distribution system as

drinking water to ensure elimination of potentially dangerous

microbes (Gibs et al., 2007; Stackelberg et al., 2004). Ozonation

and UV radiation are considered as powerful and effective

disinfectant respectively. Contrary to ozonation and UV

treatment whose remanence is very short, chlorination by

treatment with chlorine, chlorine dioxide and sometimes

chloramines is more often used because of its effectiveness in

the treatment plant and its lasting presence and activity in the

distribution network, although formation of harmful trans-

formation products could be observed (Cantor et al., 1998;

Hamidin et al., 2008; Meier et al., 1983).

Among various classes of pharmaceuticals, anti-cancer

drugs are of particular environmental concern because they

are potentially carcinogenic, mutagenic and genotoxic, even

at low concentrations (Zounková et al., 2007) and reveal low

biodegradability (Baumann and Preiss, 2001; Buerge et al.,

2006; Straub, 2010). Methotrexate (MTX) is an analogous of

folic acid and inhibits the enzyme Dihydrofolate reductase. It

is used in chemotherapy at high doses and at low doses in the

treatment of some autoimmune diseases like rheumatoid

arthritis, adult psoriasis or ectopic pregnancy. With intrave-

nous administration, 80e90% of the administered dose is

excreted unchanged in the urine within 24 h (Drug Bank). It

enters the environment via urban wastewaters (Castiglioni

et al., 2006, 2005; Catastini et al., 2008), hospital wastewaters

(Aherne et al., 1985; Yin et al., 2010) and can be detected even

in drinking water (Aherne et al., 1985).

Though the effect of chlorination has been investigated for

a number of pharmaceutical products in wastewater (Bedner

and MacCrehan, 2006; Hey et al., 2012; Lee and von Gunten,

2010; Li and Zhang, 2012), surface water (Meyer et al., 2002;

Shah et al., 2006; Wang et al., 2011b) and pure water (Li

et al., 2011; Mash, 2010; Quintana et al., 2010; Rodil et al.,

2012; Soufan et al., 2012), anti-cancer drugs in general and

MTX in particular have received very low attention despite

their high activity, possible promotion of cancer and terato-

genic risk. The only anti-cancer drug yet investigated is

cyclophosphamide (Besse et al., 2012; Huber et al., 2005;

Kümmerer and Al-Ahmad, 2010; Mompelat et al., 2011).

Experimental toxicity testing of identified transformation

products (TP) is often difficult, since many of them are not

available commercially. Computer models calculating quan-

titative structure activity relationship (QSAR) are important

tools to overcome this limitation. Once structure elucidation

of any TP has been performed, these structures can be

investigated using QSAR programs in order to predict the toxic

potential of TPs for different toxicological endpoints and other

environmental parameters. A set of programs for predicting

biodegradation should be applied in order to take into account

that the available programs might have individual strengths

because of different algorithms and training sets.

The main aim of this study was to monitor the fate of MTX

during chlorination (by using spectroscopic methods) with

regard to the possible formation of transformation products

(by LC/MS).

2. Materials and methods

2.1. General methodology

Chlorinationwas performed during 5 h at 21� 3 �Cwith initial

pH of 8.6 (decreasing to pH 7.6 during reaction due to hydro-

chloric acid production). Experiments were carried out in a

100 mL reactor. Working concentration of MTX was 1 mg/L in

pure water. Chlorine was added as sodium hypochlorite to

ensure a molar ratio MTX:Cl2 of 1:100. The resulting mixture

was stirred during 15e20 s to achieve a homogenous solution.

DOC (NF EN 1484), residual chlorine, and pHweremeasured to

follow the general progress of the chlorination. Samples were

taken and measured by UV-spectrophotometry in order to

simply follow the kinetics of MTX removal. The relative MTX

concentration variation was assessed by fluorescence after

photooxidation of the chlorinated sample. Finally, LC/MS was

used for a preliminary monitoring of possibly formed trans-

formation products.

2.2. Material

For basic measurements, pH was measured with an electrode

(pHenomenal� pH 1000 L). A DPD comparator disk kit CIFEC

was used for residual chlorine quantification. DOC was

measured following chemical oxidation with sodium persul-

fate using a TOC-meter (OI Analytical 1010).

Qualitative assessment of MTX degradation was followed

by UV-spectrophotometry (Lambda 35 Perkin Elmer) using a

100 mm quartz circulation cell connected with a closed loop

circuit. Scan speed of wavelength range (200e400 nm with

step width of 1 nm and a lamp change at 326 nm) was fixed at

1920 nm/min. A spectrum was acquired every minute.

Fluorescence spectra were measured with a Xenius spec-

trofluorometer (Safas, Monaco) equipped with a 1 cm quartz

cell. Fluorescence was measured at 462 nmwith an excitation

wavelength of 380 nm. The photomultiplier (PM) voltage was

generally set at 700 V andmoved to 600 and 500 V according to

the signal saturation.

Photooxidation followed by fluorescence measurement

was used to assess the concentration of MTX during the

chlorination. The photooxidation was performed by using the

OXI50 device of Secomam (Alès, France) equipped with a low

pressure mercury lamp emitting mainly at 185 and 254 nm

and permitting direct photolysis of molecule. For this purpose
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the sample was introduced into a 0.5 cm quartz cuvette (vol-

ume 1 ml) and was irradiated 40 s before fluorimetry analysis.

Preliminary observation of transformation products was

carried out by rapid resolution liquid chromatography coupled

to mass spectrometry in tandem (LC/MS). The system con-

sisted of Agilent LC 1200 Infinity LC equipped with an auto-

sampler, column oven, and pumps. Separationwas performed

on a Zorbax Eclipse Plus C18 column (100 mm � 2.1 mm �
1.8 mm, Agilent Technologies, Prague, Czech Republic), at 50 �C
(column oven). Its profile, at a flow rate of 0.4 mL/min was in

gradient mode and the mobile phases were water acidified

with 0.01% formic acid (phase A) and acetonitrile (phase B).

The initial composition of the mobile phase was 95% A (5% B)

maintained for 3 min, then 70% A (30% B) maintained for

6 min, then 10% A (90% B) maintained for 1 min, then 90% A

(10% B) maintained for 3 min and finally the initial conditions

for 2 min.

The liquid chromatography was coupled with an

electrospray ionization source to an Agilent 6460 Triple

Quadrupole mass spectrometer equipped with electrospray

jet stream technology operating in positive mode. The in-

strument was operated with the capillary voltage at þ4 kV,

and nozzle voltage at 500 V. Nitrogen was used as nebulizer

gas of 45 psi, a drying gas of 5 l/min at 200 �C and a sheath

gas of 11 l/min at 250 �C. A full scan (5,200 amu/s) ranging

from m/z 50 to 600 with a fragmentor voltage of 150 V was

used for preliminary monitoring of transformation products.

2.3. Chemicals and solvents

Methotrexate was purchased from Sigma Aldrich (St Quentin

Fallavier, France) and was in powder form with purity >99%.

Three years of stability if stored at �20 �C was guaranteed by

certificate. Acetonitrile (HPLC grade) was purchased from J.T

Baker (Atlantic Labo ICS Bruges, France), formic acid (purity of

99%) fromCarlo Erba (Val de Reuil, France). Fenuron (CAS: 101-

42-8; purity>99%) was purchased from VWR (Fontenay sous

Bois, France; certified quality, from Dr. Ehrenstorfer GmbH,

Augsburg, Germany). Sodium sulfite was bought from Merck.

Pure water was produced using a Milli-Q water system (Mil-

lipore, Molsheim, France). Chlorine was supplied from 250 mL

of concentrated sodium hypochlorite (9.6% of active chlorine)

(Oxena, Portes les Valence, France). Stock solutions of MTX

were prepared at a concentration of 50 mg/L in pure methanol

and stored in darkness at 5 �C. Individual working solutions

were prepared freshly at the day of experiments at 1 mg/L in

pure water by dilution of stock solutions. Chlorine solution

was prepared at 1 g/L (free chlorine) by diluting commercial

sodium hypochlorite in pure water. The concentration of re-

sidual chlorine in this solution was verified everyday by so-

dium thiosulfate titration. After chlorination, reaction

between chlorine and MTX was stopped with a molar excess

of sodium sulfite (Na2S2O3/Cl2 ¼ 3/1) before analysis.

2.4. Analysis

Fluorimetric quantification of MTX was based on works

already described in the literature and dealing with the pho-

totransformation (generally, in the presence of H2O2) of MTX

which is originally weakly fluorescent, into the more fluores-

cent substance 2,4-diamino-pteridine-6-carboxylic acid (Lu

and Juna, 1995; Salamoun et al., 1987; Uchiyama et al., 2012).

In our study, due to the power of the UV lamp (irradiation

band at 185 nm) and the presence of chlorine, the photo-

transformation was performed without addition of H2O2

during 40 s. Quantification of MTX was performed by fluo-

rimetry after photooxidation. Confirmation of the measure-

ment specificity was done for several times of chlorination

with HPLC/MS (data not shown).

2.5. In silico analysis of proposed transformation
products

MTX and its possible chlorination TPs were assessed by a set

of in silico predictions for toxicity. This takes into account that

the available programs might have individual strengths

because of different algorithms and training sets. The set of

available programs was Case Ultra V 1.4.5.1 (MultiCASE Inc.)

(Saiakhov et al., 2013), the Oasis Catalogic software V.5.11.6 TB

from Laboratory of Mathematical Chemistry, University

Bourgas, Bulgaria and Leadscope software V. 3.0.11-1 with

training sets from 2012 SAR Genetox Database provided by

Leadscope (Roberts et al., 2000). Structure illustrations were

performed by using MarvinSketch 5.8.0. Simplified molecular

input line entry specification (SMILES) codes from the molec-

ular TP structureswere used for input of molecular structures.

Genotoxicity, mutagenicity and carcinogenicity were

predicted with Case Ultra using the following QSAR

models: Human Carcinogenicity (AOJ), Aneuploidy in Yeast

(A6A), Micronucleus Formation in vivo composite (A7S),

Fig. 1 e Fluorescence of MTX in the presence of chlorine. A: Before photochemical oxidation (PM 700V); B: After

photochemical oxidation (PM 500 and 600V).
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Micronucleus Formation in vivo Mouse (A7T), Chromosomal

Aberrations in vitro composite (A7U), Chromosomal Aberra-

tions in vitro CHO cells (A7T), Rat Carcinogenicity (AOD),

Mouse Lymphoma (ML), Mouse Carcinogenicity (AO8), Muta-

genicity Ames (A2H) (Salmonella Ames mutagenicity updated

from NTP, Genetox, FDA and others. It consists of the Salmo-

nella typhimurium strains TA97, TA98, TA100, TA102, TA104,

TA1535eTA1538 using a different training set compared with

A7B), Unscheduled DNA Synthesis (UDS) Induction (A64).

CASE Ultra predicts positive or negative structural alerts.

Additional conclusions were “Out of Domain” e when an

unknown structural fragment was found in the test chemical

which excludes it from the chemical space of the training set

of the applied model; “Inconclusive” (IN) e a significant

portion of the test chemical is covered by unknown structural

fragments, “Inconclusive” (IN(P)) e both positive and deacti-

vating alerts were found in the same molecule.

Oasis Catalogic software predicted mutagenicity based on

bacterial mutagenicity (module mutagenicity v.04) in S.

typhimurium (Salmonella Catalogic model, SC).

Leadscope software predicted genotoxicity and mutage-

nicity using the following four QSARmodules: In vitro chromo-

some aberration composite (IVCA) Mammalian mutagenesis

(MM), In vivomicronucleus (IVMN), bacterial mutagenesis (BM).

3. Results and discussion

3.1. Monitoring of MTX

In the presence of chlorine (during the chlorination), MTX

natural fluorescence spectrum is modified (Fig. 1A) with the

appearance of a broad peak between 420 and 520 nm.

ConsequentlyMTX can’t bemeasured directly in fluorescence.

The photooxidation of the mixture MTX/Chlorine produces a

strong increase of the fluorescence, with maximum absorp-

tion at 464 nmwhich was used for MTX quantification. Fig. 1B

illustrates the necessity to modify the voltage of the photo-

multiplier (PM) to avoid signal saturation. The photo-

tochemical reaction coupled with the adjustment of the

fluorescent signal allowed a better sensitivity of the method.

Fig. 1B also demonstrates the absence of interferences of

photooxidation of NaOCl or MTX alone.

Fig. 2 shows that MTX concentration can be accurately

determined by the method under these conditions. The cali-

bration of MTX measurement was performed by comparison

between expected (obtained from standard solutions) and

measured (obtained after fluoro-photooxidation) concentra-

tions. Measured concentrations were obtained from the

response instrument (relative intensity) owing to a pre-

liminary calibration curve obtained at PM 500, 600 and 700

(data not shown).

3.2. Methotrexate chlorination

Fig. 3 shows the decrease of the concentration of MTX during

chlorination of a MTX solution of 1 mg/L in the presence of

chlorine in a molar ratio of 1:100. The experiment was per-

formed in duplicate.

Fig. 3 shows that a treatment of 120 min results in nearly

complete elimination of MTX (99.9% � 0.014%). During this

time the reaction follows a kinetic of 1st order (lnC0/C ¼ f(t) is

linear) and the half life of MTX under the conditions applied

has been calculated as 20.6 min.

Chlorination was monitored by UV spectroscopy. Fig. 4

shows the UV spectra of the solution of 1 mg/L MTX,

Fig. 2 e Comparison of MTX measurement by fluorimetry

with regard to expected (known concentration prepared

from standard solution) concentration (n [ 2).

Fig. 3 e MTX concentration decrease during chlorination

followed by fluorimetry monitoring (n [ 2).

Fig. 4 e UV spectra of chorine, MTX and mixture (1 min

contact time).
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15 mg/L chlorine and of the mixture, whose spectrum is a

combination of the spectra of chlorine and MTX solutions

alone, respectively, with an absorption maximum at 292 nm.

Moreover, methotrexate showed characteristic peaks and

shoulders at 222, 251, 302 (lmax) and 353 nm.

Under the operational conditions of chlorination, DOC

determined at the beginning of the chlorination and for mid-

reaction time, showed no significant decrease of its 0.5 mg/L

initial concentration. Chlorine concentration decreased

slowly during treatment period, between 15 and 20% and pH

dropped one unit from 8.6 to 7.6.

The set of UV spectra acquired during chlorination is

characterized by a strong decrease of the absorbance at 292

and 263 nm and a slight increase of the absorbance at 220 and

360 nm (Fig. 5A). The presence of an isosbestic point at 247 nm

reveals that the chlorination of MTX is a simple reaction be-

tween two absorbing compounds or mixtures of compounds

(Pouet et al., 2004) characterized by a qualitative and quanti-

tative conservation, i.e. with a fixed linear relationship be-

tween reagent(s) and product(s). In Fig. 5A, the reaction of

MTX chlorination is characterized by the decreasing intensity

of the spectrum of the mixture MTX/chlorine and the

Fig. 5 e UV monitoring of MTX chlorination. A: Raw UV spectra; B: modified UV spectra (chlorine contribution subtracted).

Fig. 6 e Behavior of MTX during chlorination in mass spectroscopy. Relative concentration corresponds to the ratio C0/C

(obtained by fluorimetry after photooxidation); chromatograph peak at 7.4 min correspond to internal standard (n [ 2).
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appearance of the spectrum of the residual chlorine and the

transformation product of MTX.

This evolution is related not only to the transformation of

MTX but also to chlorine reduction. Consequently, according

to the additively property of UV absorption spectra, the sub-

traction of the decrease due to chlorine reaction to form the

spectra of themixture allows a better visualization of theMTX

transformation (Fig. 5B). It is characterized by a rapid evolu-

tion of absorbance value at 302 nm during the first 50 min.

Such evolution is in close agreement with the results of the

kinetic study of MTX elimination carried out by fluorimetry

(Fig. 3). 50 min is about 2.5 half-life time and therefore at this

moment only 20% of the initial MTX is present. Moreover, the

new peak observed at 263 nm at the beginning of the reaction

disappeared within the first 40 min. Contrary to the other

peaks and shoulders, absorbance peaks at 220 and 360 nm of

MTX spectrum appear to increase with time until 150min and

then stabilize. The presence of the isosbestic point already

mentioned shows that there is a quantitative relationship

between the MTX and its transformation product (Pouet et al.,

2004).

3.3. Preliminary identification of transformation
products

Considering the removal kinetics and the evolution of UV

spectra (showing shoulder or peak characteristic during the

chlorination), specific chlorination times (5, 20, 150 and

Fig. 7 e Proposed structures of the observed monochlorinated transformation product and the parent compound MTX.
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300 min) were selected for the pre-identification of the

transformation products (TPs). According to spectra variation

at 263 nm (Fig. 5A and B), two contact times (5 and 20 min)

were chosen for the identification of the by-product produced

during the 40 first minutes of chlorination. A 150 min contact

time was chosen in order to identify a potential stable by-

product characterized by the stabilization of absorbance

peaks at 220 and 360 nm. Finally, a contact time of 300 min

was used to identify the compounds present in the mixture at

the end of the reaction. Primary elimination of MTX was

confirmed by LC/MS and only one stable TP seems to be pre-

sent at least until 150 min of chlorination, with a mass spec-

trum corresponding to a chlorinated compound (Fig. 6).

Afterward, the peak intensity of this TP was decreasing.

MTXmass spectra gives a hydrogen adduct as highest peak

(m/z 455). Smaller fragments with m/z 233, 214 etc could be

observed. The transformation product’s highest intensity

mass peak was m/z 489. The retention time was higher, indi-

cating a decrease in polarity.

A first assumption could be that the unknown trans-

formation product could be the monochloro-MTX as the MS

signals differ only by a shift between 455 and 489 of the higher

m/z peak the difference of 34 being likely related to either the

substitution of one hydrogen of the two amine functions by

one chlorine atom or the chlorination of the aromatic ring in

ortho position of the amine substituted position. This

outcome needs to be confirmed with further experiments and

analysis.

Furthermore considering the experimental molar ratio of

1:100 for MTX/chlorine, on the one hand, and the chlorine

dose of few mg/L in drinking water treatment (for a residual

concentration of chlorine of 0.2 mg/L for example), on the

other hand, it can be expected that MTX traces found at the

level of ng/L in tap water could be eliminated under actual

conditions, given a contact time of 1 h at least. However this

would result in the formation of transformation products as

found in this study. They have to be better characterized (in

particular in term of related toxicity) for a sound risk

assessment.

3.4. In silico analysis of proposed transformation
products

The results of the applied QSAR modules were expressed in

different ways depending on the software: For Case Ultra

software, the predicted activities of the test chemicals are

expressed as positive, inconclusive (IN(P)) (because both pos-

itive and deactivating alerts were found in the same mole-

cule), inconclusive (IN) (because a significant portion of the

test chemical is covered by unknown structural fragments),

negative and out of domain (because unknown structural

fragments were found which exclude the tested molecule

from the chemical space of the training set of the applied

model). For Oasis Catalogic software in the Salmonella Cata-

logic module, the results are expressed as mutagenic or not

mutagenic. For Leadscope software, the predicted activity of

the test chemicals is expressed as positive, negative and not in

domain.

The possible structures of the monochlorinated trans-

formation products together with the parent compound

(Fig. 7) were applied in a set of QSARmodels in order to predict

the activity for different carcinogenic, mutagenic and geno-

toxic endpoints (table 1).

The QSAR analysis provided no clear evidence that the six

chlorination TPs might be increased genotoxic or mutagenic

compared with the parent compound. Particularly, predicted

negativity for bacterial mutagenicity based on the Ames test

was confirmed using three different QSAR platforms: A2H

(Case Ultra, Multicase), SC (Mutagenicity module from Oasis

Catalogic), BM (Bacterial mutagenicity from Leadscope).

Table 1 e In silico predicted toxicity of MTX and its TPs.

QSAR carcinogenicity, genotoxicity and mutagenicity

AOJ A6A A7S A7T A7U A7V A0D ML A08 A64 IVCA MM IVMN

MTX e IN þ þ IN(P) � � þ þ IN(P) þ � þ
Chlorine TP1 IN(P) IN þ þ IN(P) � � IN(P) OD IN(P) þ � þ
Chlorine TP2 IN(P) IN þ þ IN(P) � � IN(P) OD IN(P) þ � þ
Chlorine TP3 IN(P) IN þ þ IN(P) � IN(P) IN(P) IN IN(P) þ � þ
Chlorine TP4 IN(P) IN þ þ IN(P) � IN(P) IN(P) IN IN(P) þ � þ
Chlorine TP5 IN(P) IN þ þ IN(P) � IN(P) IN(P) IN IN(P) þ � þ
Chlorine TP6 OD IN þ IN(P) þ � IN(P) IN(P) IN IN þ þ þ
Calculation has been made with the following QSAR modules: Human Carcinogenicity (A0J), Aneuploidy in Yeast (A6A), Micronucleus For-

mation in vivo composite (A7S), Micronucleus Formation in vivo Mouse (A7T), Chromosome Aberrations in vitro composite (A7U), Chromosome

Aberrations in vitro CHO cells (A7V), Rat Carcinogenicity (A0D), Mouse Lymphoma (ML), Mouse Carcinogenicity (A08), UDS Induction (A64),

In vitro chromosome aberration (IVCA), Mammalian mutagenesis (MM) and In vivo micronucleus (IVMN).

Positive (þ), negative (�), inconclusive (IN), inconclusive with positive alert (IN(P)), out of domain (OD).

Table 2 e Positive alerts of MTX and its TPs predicted by
the case ultra modules for micronucleus formation A7S
and A7T.

Compounds Positive alerts

A7S A7T

MTX 7, 92, 176, 184 24, 100

Chlorine TP 1 92, 176, 184 100

Chlorine TP 2 92, 176, 184 100

Chlorine TP 3 7, 92, 176 24, 100

Chlorine TP 4 7, 92, 184 24, 100

Chlorine TP 5 7, 92, 176 24, 100

Chlorine TP 6 184 24, 100

wat e r r e s e a r c h 5 7 ( 2 0 1 4 ) 6 7e7 5 73
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Since the alert combinations for micronucleus activity

were altered in four different chlorination isomers, it cannot

be excluded that the micronucleus activity might be modu-

lated after chlorination (table 2). Of note is that five chlorina-

tion TPs had a positive alert for human carcinogenicity

compared with a negative rating of the parent compound,

although the resulting conclusion of the software was incon-

clusive due to the simultaneous detection of a negative alert.

4. Conclusion

This research demonstrates that a simple experimental

methodology, using basic spectroscopic methods (UV and

fluorimetry) can be useful to monitor the chlorination process

of a methotrexate solution in water. Both chlorine consump-

tion and MTX transformation can easily be followed during

the reaction. A simple kinetic can be proposed with a half life

of 20.6 min for a molar ratio of 1:100 MTX:chlorine. This

finding is relevant with regard to the residence time of water

and the residual chlorine concentration in distribution

network. The monochloro-MTX is likely to be one of the main

stable transformation product formed during chlorination.

Further experiments with the help of high resolution LC/

MSeMS analysis are required to confirm this result and state

on other potential transformation products. The toxicological

properties of this transformation product should be assessed.
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