2. Hz, H. , and 9. , 23 (s, 9H, H-tBu); 13 C NMR (100 MHz, 25 °C, CDCl 3 ): ? = 164, p.7842

H. Hz, 2. -ar, and H. , 13 (s, 3H, H?Me); Anal. calcd (%) for C 39, p.55

3. , H. -ar, 2. , and H. , Single crystals for X-ray diffraction structure analysis were obtained by slow evaporation of a concentrated solution of 2 in CDCl 3ZnCl (3) White solid, 85% yield. 1 H NMR (300 MHz, 25 °C, CDCl 3 ): ? = 9.5 (d J = 4.8 Hz), 6.94 (t, J = 7.6 Hz, 1H, H-Ar), 6.70 (d, J = 2.8 Hz, 1H, H-Ar-phenol), 4.23 (d, J = 15.2 Hz, 1H, H-Bz), 4.04 (d, J = 16, pp.65-72

. Hz, 14 (d, J = 16.4 Hz, 1H, H-Bz), 1.51 (s, 9H, H-tBu), 1.22 (s, 9H, H-tBu) CDCl 3 ): ? = ?20, p.520

+. [. Cl and . Mecn, Green solid CDCl 3 ) ? 121 peaks, 18H); ?0.7 (2H); magnetic susceptibility (CDCl 3 , 293 K) ? eff = 4.8? B ; ESI MS m/z 516, UV-visible (CH 2 Cl 2 ) ? (?) 603 nm (153 M ?1 cm ?1 ), pp.1-4

1. , H. -ar, 3. , and H. , 31 mmol) in tetrahydrofuran (3 mL) was stirred overnight at 50 °C. Then, the solvent was evaporated and the white solid obtained was washed three times with pentane Complex 4 was dried thoroughly under vacuum and obtained as a white solid, containing 0.1 mole of THF (confirmed by 1 H NMR analysis) (0.150 g, 0.23 mmol, 78%). 1 H NMR (300 MHz, 25 °C, CDCl 3 ): ? = 9, Synthesis of (L 4 )ZnCl, pp.90-96, 2000.

). G. Parkin, Synthetic Analogues Relevant to the Structure and Function of Zinc Enzymes, Chemical Reviews, vol.104, issue.2, pp.699-767, 2004.
DOI : 10.1021/cr0206263

Y. Aida, S. Maekawa, S. Asano, and . Inoue, Immortal polymerization: polymerization of epoxide and .beta.-lactone with aluminum porphyrin in the presence of protic compound, Macromolecules, vol.21, issue.5, pp.1195-1202, 1988.
DOI : 10.1021/ma00183a001

). A. Amgoune, C. M. Thomas, T. Roisnel, and J. Carpentier, Ring-Opening Polymerization of Lactide with Group 3 Metal Complexes Supported by Dianionic Alkoxy-Amino-Bisphenolate Ligands: Combining High Activity, Productivity, and Selectivity, 13 See for instance, pp.169-179, 2006.
DOI : 10.1002/chem.200500856

N. Liu, F. H. Su, T. B. Wen, H. H. Sung, I. D. Williams et al., Selective and Efficient Cycloisomerization of Alkynols Catalyzed by a New Ruthenium Complex with a Tetradentate Nitrogen-Phosphorus Mixed Ligand, Chemistry - A European Journal, vol.73, issue.195, pp.7889-7897, 2010.
DOI : 10.1002/chem.200903441

). A. Beitat, S. P. Foxon, C. Brombach, H. Hausman, F. W. Heinnemann et al., Syntheses, emission properties and intramolecular ligand exchange of zinc complexes with ligands belonging to the tmpa family, Dalton Transactions, vol.124, issue.18, pp.5090-5101, 2011.
DOI : 10.1039/c0dt01339k

G. N. La-mar, W. Horrocks-jr, R. H. Holmb, ). I. Bertini, C. Luchinat et al., NMR of Paramagnetic Molecules: Principles and Applications, Köhler, Magnetism: Molecules to Materials, p.379, 1973.

Y. Mao, E. Zhang, and . Oldfield, Nuclear Magnetic Resonance Shifts in Paramagnetic Metalloporphyrins and Metalloproteins, Journal of the American Chemical Society, vol.124, issue.46, pp.13911-13920, 2002.
DOI : 10.1021/ja020297w

D. C. Kruck, M. Sauer, H. Enders, L. H. Wadepohl, and . Gade, Bis(2-pyridylimino)isoindolato iron(ii) and cobalt(ii) complexes: Structural chemistry and paramagnetic NMR spectroscopy, Dalton Transactions, vol.40, issue.195, pp.10406-10415, 2011.
DOI : 10.1039/c1dt10617a

G. Knör and S. Schindler, the Fermi contact shift and the pseudocontact shift. The Fermi contact shift is the consequence of the spin delocalization on the molecule through the molecular orbitals hosting unpaired electrons. It is proportional to the residual spin density at the nucleus. The pseudocontact shift is caused by a dipolar interaction between the electronic spin magnetic moment created by the unpaired electrons and the spin magnetic moment of the nucleus As it is a spatial interaction, the shift depends strongly on the distance between the nucleus and the paramagnetic moment and the consequence is the farther the nucleus is, the smaller is the pseudocontact shift contribution . Moreover, in covalently bound species, it is considered negligible compared to the Fermi contact shift. The presence of an electronic spin in a molecule also has an influence on the T 1 and T 2 relaxation times and the peak width on the spectrum. The nuclear spin relaxes faster and the peaks are broadened. The phenomena in question are, again, the Fermi contact and the pseudocontact interactions. The predominant term depends on the molecule albeit the pseudocontact term is often the greater. 24 One should not forget that it can be over-or underestimated, The complete equations can be simplified by considering two contributions to the hyperfine shift, pp.5090-5101, 2011.

). D. Mandon, A. Machkour, S. Goetz, R. Welter, J. England et al., Complexes with Tris(2-pyridylmethyl)amine Derivatives Bis-??-Substituted with Bulky Groups. Structures and Spectroscopic Comparative Studies, Inorganic Chemistry, vol.41, issue.21, pp.5364-5372, 2002.
DOI : 10.1021/ic011104t

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, pp.751-767, 1976.
DOI : 10.1107/S0567739476001551

W. Handel, H. Willms, G. B. Jameson, K. J. Berry, B. Moubaraki et al., (d) I. dos Santos Vieira and S. Herres-Pawlis, (a) I. T. Horvath and P. T. Anastas, pp.3317-3327, 2003.

J. Börner, U. Flörke, K. Huber, A. Döring, D. Kuckling et al., Lactide Polymerisation with Air-Stable and Highly Active Zinc Complexes with Guanidine-Pyridine Hybrid Ligands, Chemistry - A European Journal, vol.157, issue.10, pp.2362-2376, 2009.
DOI : 10.1002/chem.200802128

C. M. Amgoune, J. Thomas, and . Carpentier, Yttrium Complexes as Catalysts for Living and Immortal Polymerization of Lactide to Highly Heterotactic PLA, Macromolecular Rapid Communications, vol.39, issue.6, pp.693-697, 2007.
DOI : 10.1002/marc.200600862

URL : https://hal.archives-ouvertes.fr/hal-00341118