M. O. Hengartner, The biochemistry of apoptosis, Nature, pp.407-770, 2000.

M. P. Boldin, E. E. Varfolomeev, Z. Pancer, I. L. Mett, J. H. Camonis et al., A Novel Protein That Interacts with the Death Domain of Fas/APO1 Contains a Sequence Motif Related to the Death Domain, Journal of Biological Chemistry, vol.270, issue.14, pp.270-7795, 1995.
DOI : 10.1074/jbc.270.14.7795

A. M. Chinnaiyan, K. O-'rourke, M. Tewari, and V. M. Dixit, FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis, Cell, vol.81, issue.4, pp.81-505, 1995.
DOI : 10.1016/0092-8674(95)90071-3

H. Hsu, J. Xiong, and D. V. , The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation, Cell, pp.81-495, 1995.

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, Embo J, pp.14-5579, 1995.

P. Li, D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad et al., Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade, Cell, vol.91, issue.4, pp.91-479, 1997.
DOI : 10.1016/S0092-8674(00)80434-1

N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell, vol.66, issue.2, pp.66-233, 1991.
DOI : 10.1016/0092-8674(91)90614-5

H. Loetscher, Y. C. Pan, H. W. Lahm, R. Gentz, M. Brockhaus et al., Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor, Cell, vol.61, issue.2, pp.61-351, 1990.
DOI : 10.1016/0092-8674(90)90815-V

G. Pan, K. O-'rourke, A. M. Chinnaiyan, R. Gentz, R. Ebner et al., The Receptor for the Cytotoxic Ligand TRAIL, Science, vol.276, issue.5309, pp.276-111, 1997.
DOI : 10.1126/science.276.5309.111

H. Walczak, M. A. Degli-esposti, R. S. Johnson, P. J. Smolak, J. Y. Waugh et al., TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL, The EMBO Journal, vol.16, issue.17, pp.16-5386, 1997.
DOI : 10.1093/emboj/16.17.5386

G. Pan, J. H. Bauer, V. Haridas, S. Wang, D. Liu et al., Identification and functional characterization of DR6, a novel death domain-containing TNF receptor, FEBS Letters, vol.233, issue.3, pp.431-351, 1998.
DOI : 10.1016/S0014-5793(98)00791-1

M. R. Alderson, R. J. Armitage, E. Maraskovsky, T. W. Tough, E. Roux et al., Fas transduces activation signals in normal human T lymphocytes, Journal of Experimental Medicine, vol.178, issue.6, pp.178-2231, 1993.
DOI : 10.1084/jem.178.6.2231

P. H. Schulze-osthoff, W. Krammer, and . Droge, Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death, EMBO J, pp.13-4587, 1994.

C. A. Smith, R. G. Farrah, and . Goodwin, The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death, Cell, vol.76, issue.6, pp.76-959, 1994.
DOI : 10.1016/0092-8674(94)90372-7

R. M. Locksley, N. Killeen, and M. J. Lenardo, The TNF and TNF Receptor Superfamilies, Cell, vol.104, issue.4, pp.104-487, 2001.
DOI : 10.1016/S0092-8674(01)00237-9

J. L. Bodmer, P. Schneider, and J. Tschopp, The molecular architecture of the TNF superfamily, Trends in biochemical sciences, pp.19-26, 2002.

V. Edmond, B. Ghali, A. Penna, J. L. Taupin, S. Daburon et al., Precise Mapping of the CD95 Pre-Ligand Assembly Domain, Precise Mapping of the CD95 Pre-Ligand Assembly Domain, p.46236, 2012.
DOI : 10.1371/journal.pone.0046236.g004

URL : https://hal.archives-ouvertes.fr/hal-00873708

G. Papoff, P. Hausler, A. Eramo, M. G. Pagano, G. Di-leve et al., Identification and Characterization of a Ligand-independent Oligomerization Domain in the Extracellular Region of the CD95 Death Receptor, Journal of Biological Chemistry, vol.274, issue.53, pp.274-38241, 1999.
DOI : 10.1074/jbc.274.53.38241

. Lenardo, Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations, Science, pp.288-2354, 2000.

N. Itoh and S. Nagata, A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen, J Biol Chem, vol.268, pp.10932-10937, 1993.

L. A. Tartaglia, T. M. Ayres, G. H. Wong, and D. V. , A novel domain within the 55 kd TNF receptor signals cell death, Cell, vol.74, issue.5, pp.74-845, 1993.
DOI : 10.1016/0092-8674(93)90464-2

A. H. Yin, A. Ding, M. L. Zanin-zhorov, J. Dustin, J. Tao et al., The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice, Science, pp.332-478, 2011.

L. Cabal-hierro and P. S. Lazo, Signal transduction by tumor necrosis factor receptors, Cellular Signalling, vol.24, issue.6, pp.1297-1305, 2012.
DOI : 10.1016/j.cellsig.2012.02.006

F. K. Chan, H. J. Chun, L. Zheng, R. M. Siegel, K. L. Bui et al., A Domain in TNF Receptors That Mediates Ligand-Independent Receptor Assembly and Signaling, Science, vol.288, issue.5475, pp.288-2351, 2000.
DOI : 10.1126/science.288.5475.2351

D. V. Aggarwal, Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin, Nature, pp.312-724, 1984.

R. S. Fitzner, R. J. Johnson, C. J. Paxton, D. P. March, and . Cerretti, A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells, Nature, pp.385-729, 1997.

J. Mcgeehan, M. Mitchell, G. Moyer, W. Pahel, L. K. Rocque et al., Cloning of a disintegrin metalloproteinase that processes precursor tumournecrosis factor-alpha, Nature, pp.385-733, 1997.

M. Grell, E. Douni, H. Wajant, M. Lohden, M. Clauss et al., The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor, Cell, vol.83, issue.5, pp.83-793, 1995.
DOI : 10.1016/0092-8674(95)90192-2

O. Micheau and J. Tschopp, Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes, Cell, vol.114, issue.2, pp.114-181, 2003.
DOI : 10.1016/S0092-8674(03)00521-X

URL : https://hal.archives-ouvertes.fr/inserm-00527105

C. Y. Wang, M. W. Mayo, R. G. Korneluk, D. V. Goeddel, A. S. Baldwin et al., NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation, Science, pp.281-1680, 1998.

T. L. Haas, C. H. Emmerich, B. Gerlach, A. C. Schmukle, S. M. Cordier et al., Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNFmediated gene induction, Mol Cell, pp.36-831, 2009.

K. Tanaka and . Iwai, A ubiquitin ligase complex assembles linear polyubiquitin chains, Embo J, vol.25, pp.4877-4887, 2006.

. Walczak, Linear ubiquitination prevents inflammation and regulates immune signalling, Nature, pp.471-591, 2011.

J. E. Sistonen and . Eriksson, Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail, J Biol Chem, vol.280, pp.27345-27355, 2005.

K. Enesa, M. Zakkar, H. Chaudhury, A. Luong-le, L. Rawlinson et al., NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling, J Biol Chem, pp.283-7036, 2008.

D. R. Green, A. Oberst, C. P. Dillon, R. Weinlich, and G. S. Salvesen, RIPK-Dependent Necrosis and Its Regulation by Caspases: A Mystery in Five Acts, Molecular Cell, vol.44, issue.1, pp.44-53, 2011.
DOI : 10.1016/j.molcel.2011.09.003

N. Holler, R. Zaru, O. Micheau, M. Thome, A. Attinger et al., Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule, Nature Immunology, vol.1, issue.6, pp.489-495, 2000.
DOI : 10.1038/82732

P. Fiers and . Vandenabeele, Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor, J Exp Med, vol.187, pp.1477-1485, 1998.

Y. S. Cho, S. Challa, D. Moquin, R. Genga, T. D. Ray et al., Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation, Cell, pp.137-1112, 2009.

E. S. Caspary and . Mocarski, RIP3 mediates the embryonic lethality of caspase-8-deficient mice, Nature, pp.471-368, 2011.

A. Oberst, C. P. Dillon, R. Weinlich, L. L. Mccormick, P. Fitzgerald et al., Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis, Nature, pp.471-363, 2011.

P. S. Welz, A. Wullaert, K. Vlantis, V. Kondylis, V. Fernandez-majada et al., Pasparakis, FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation, Nature, pp.477-330, 2011.
DOI : 10.1038/nature10273

M. Feldmann and R. N. Maini, TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases, Nature Medicine, vol.9, issue.10, pp.1245-1250, 2003.
DOI : 10.1038/nm939

J. Desbarats, R. B. Birge, M. Mimouni-rongy, D. E. Weinstein, J. S. Palerme et al., Fas engagement induces neurite growth through ERK activation and p35 upregulation, Nature Cell Biology, vol.5, issue.2, pp.118-125, 2003.
DOI : 10.1038/ncb916

J. Desbarats and M. K. Newell, Fas engagement accelerates liver regeneration after partial hepatectomy, Nat Med, vol.6, pp.920-923, 2000.

G. T. Zhang, M. J. Belz, P. Smyth, L. Bouillet, A. Robb et al., Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, Nature, pp.461-659, 2009.

W. Ruan, C. T. Lee, and J. Desbarats, A Novel Juxtamembrane Domain in Tumor Necrosis Factor Receptor Superfamily Molecules Activates Rac1 and Controls Neurite Growth, Molecular Biology of the Cell, vol.19, issue.8, pp.3192-3202, 2008.
DOI : 10.1091/mbc.E08-02-0161

L. Seyec, T. Ducret, L. Counillon, J. F. Moreau, P. Hofman et al., The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway, PLoS Biol, pp.9-1001090, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00681970

S. Tauzin, L. Debure, J. F. Moreau, and P. Legembre, CD95-mediated cell signaling in cancer: mutations and post-translational modulations, Cellular and molecular life sciences, pp.69-1261, 2012.

B. C. Trauth, C. Klas, A. M. Peters, S. Matzku, P. Moller et al., Monoclonal antibody-mediated tumor regression by induction of apoptosis, Science, vol.245, issue.4915, pp.245-301, 1989.
DOI : 10.1126/science.2787530

T. Suda, T. Takahashi, P. Golstein, and S. Nagata, Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family, Cell, vol.75, issue.6, pp.75-1169, 1993.
DOI : 10.1016/0092-8674(93)90326-L

Y. Oshimi, S. Oda, Y. Honda, S. Nagata, and S. Miyazaki, Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells, J Immunol, pp.157-2909, 1996.

T. S. Griffith, T. Brunner, S. M. Fletcher, D. R. Green, and T. A. Ferguson, Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege, Science, vol.270, issue.5239, pp.270-1189, 1995.
DOI : 10.1126/science.270.5239.1189

D. Bellgrau, D. Gold, H. Selawry, J. Moore, A. Franzusoff et al., A role for CD95 ligand in preventing graft rejection, Nature, pp.377-630, 1995.

I. Behrmann, H. Walczak, and P. H. Krammer, Structure of the human APO-1 gene, European Journal of Immunology, vol.3, issue.12, pp.3057-3062, 1994.
DOI : 10.1002/eji.1830241221

I. Lang, A. Fick, V. Schafer, T. Giner, D. Siegmund et al., Signaling Active CD95 Receptor Molecules Trigger Co-translocation of Inactive CD95 Molecules into Lipid Rafts, Journal of Biological Chemistry, vol.287, issue.28, pp.287-24026, 2012.
DOI : 10.1074/jbc.M111.328211

F. L. Scott, B. Stec, C. Pop, M. K. Dobaczewska, J. J. Lee et al., The Fas???FADD death domain complex structure unravels signalling by receptor clustering, Nature, vol.11, issue.7232, pp.457-1019, 2009.
DOI : 10.1038/nature07606

D. Esposito, A. Sankar, N. Morgner, C. V. Robinson, K. Rittinger et al., Solution NMR Investigation of the CD95/FADD Homotypic Death Domain Complex Suggests Lack of Engagement of the CD95 C Terminus, Structure, vol.18, issue.10, pp.18-1378, 2010.
DOI : 10.1016/j.str.2010.08.006

L. Wang, J. K. Yang, V. Kabaleeswaran, A. J. Rice, A. C. Cruz et al., The Fas???FADD death domain complex structure reveals the basis of DISC assembly and disease mutations, Nature Structural & Molecular Biology, vol.276, issue.11, pp.17-1324, 2010.
DOI : 10.1038/ni0706-681

J. R. Muppidi, A. A. Lobito, M. Ramaswamy, J. K. Yang, L. Wang et al., Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis, Cell death and differentiation, pp.13-1641, 2006.

M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann et al., Inhibition of death receptor signals by cellular FLIP, Nature, pp.388-190, 1997.

M. Thome, P. Schneider, K. Hofmann, H. Fickenscher, E. Meinl et al., Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature, vol.386, issue.6624, pp.386-517, 1997.
DOI : 10.1038/386517a0

G. Condorelli, G. Vigliotta, A. Cafieri, A. Trencia, P. Andalo et al., PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis, Oncogene, vol.18, issue.31, pp.18-4409, 1999.
DOI : 10.1038/sj.onc.1202831

. Peter, Two CD95 tumor classes with different sensitivities to antitumor drugs, Proc Natl Acad Sci U S A, vol.100, pp.11445-11450, 2003.

B. Chaigne-delalande, W. Mahfouf, S. Daburon, J. F. Moreau, and P. Legembre, CD95 engagement mediates actin-independent and -dependent apoptotic signals, Cell Death and Differentiation, vol.181, issue.12, pp.16-1654, 2009.
DOI : 10.1038/cdd.2009.111

X. M. Yin, Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways, Cell Research, vol.21, issue.3, pp.10-161, 2000.
DOI : 10.1084/jem.182.5.1223

X. M. Yin, K. Wang, A. Gross, Y. Zhao, S. Zinkel et al., Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis, Nature, pp.400-886, 1999.

J. Borner, A. Silke, T. Strasser, and . Kaufmann, XIAP discriminates between type I and type II FAS-induced apoptosis, Nature, pp.460-1035, 2009.

N. Roy, Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. Reed, The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases, The EMBO Journal, vol.16, issue.23, pp.16-6914, 1997.
DOI : 10.1093/emboj/16.23.6914

Q. L. Deveraux, R. Takahashi, G. S. Salvesen, and J. C. , Reed, X-linked IAP is a direct inhibitor of celldeath proteases, Nature, pp.388-300, 1997.

Q. L. Deveraux, N. Roy, H. R. Stennicke, T. Van-arsdale, Q. Zhou et al., IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases, The EMBO Journal, vol.17, issue.8, pp.17-2215, 1998.
DOI : 10.1093/emboj/17.8.2215

Y. Suzuki, Y. Nakabayashi, and R. Takahashi, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.98-8662, 2001.
DOI : 10.1073/pnas.161506698

C. Du, M. Fang, Y. Li, L. Li, and X. Wang, Smac, a mitochondrial protein that promotes cytochrome cdependent caspase activation by eliminating IAP inhibition, Cell, pp.102-135, 2000.

X. M. Sun, S. B. Bratton, M. Butterworth, M. Macfarlane, and G. M. Cohen, Bcl-2 and Bcl-xL Inhibit CD95-mediated Apoptosis by Preventing Mitochondrial Release of Smac/DIABLO and Subsequent Inactivation of X-linked Inhibitor-of-Apoptosis Protein, Journal of Biological Chemistry, vol.277, issue.13, pp.277-11345, 2002.
DOI : 10.1074/jbc.M109893200

M. T. Rebillard, J. L. Dimanche-boitrel, J. F. Taupin, P. Moreau, and . Legembre, Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway, Mol Cancer Res, vol.6, pp.604-613, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674377

J. W. Peacock, J. Palmer, D. Fink, S. Ip, E. M. Pietras et al., PTEN Loss Promotes Mitochondrially Dependent Type II Fas-Induced Apoptosis via PEA-15, Molecular and Cellular Biology, vol.29, issue.5, pp.29-1222, 2009.
DOI : 10.1128/MCB.01660-08

A. S. Varadhachary, M. Edidin, A. M. Hanlon, M. E. Peter, P. H. Krammer et al., Phosphatidylinositol 3'-Kinase Blocks CD95 Aggregation and Caspase-8 Cleavage at the Death-Inducing Signaling Complex by Modulating Lateral Diffusion of CD95, The Journal of Immunology, vol.166, issue.11, pp.166-6564, 2001.
DOI : 10.4049/jimmunol.166.11.6564

J. F. Moreau, P. Moreau, and . Legembre, Actin-independent exclusion of CD95 by PI3K/AKT signalling: implications for apoptosis, Eur J Immunol, pp.41-2368, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00680900

H. Renganathan, H. Vaidyanathan, A. Knapinska, and J. W. Ramos, Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD, Biochemical Journal, vol.390, issue.3, pp.390-729, 2005.
DOI : 10.1042/BJ20050378

A. Trencia, A. Perfetti, A. Cassese, G. Vigliotta, C. Miele et al., Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action, Molecular and Cellular Biology, vol.23, issue.13, pp.23-4511, 2003.
DOI : 10.1128/MCB.23.13.4511-4521.2003

A. Strasser, A. W. Harris, D. C. Huang, P. H. Krammer, and S. Cory, Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis, Embo J, pp.14-6136, 1995.

P. Bouscary, V. Varlet, A. Joulin, and . Kahn, Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice, Nat Med, vol.2, pp.80-86, 1996.

I. Rodriguez, K. Matsuura, K. Khatib, J. C. Reed, S. Nagata et al., A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection, Journal of Experimental Medicine, vol.183, issue.3, pp.183-1031, 1996.
DOI : 10.1084/jem.183.3.1031

J. Drappa, A. K. Vaishnaw, K. E. Sullivan, J. L. Chu, and K. B. Elkon, Fas gene mutations in the Canale- Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity, N Engl J Med, pp.335-1643, 1996.

G. H. Fisher, F. J. Rosenberg, S. E. Straus, J. K. Dale, L. A. Middleton et al., Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome, Cell, vol.81, issue.6, pp.81-935, 1995.
DOI : 10.1016/0092-8674(95)90013-6

V. C. Canale and C. H. Smith, Chronic lymphadenopathy simulating malignant lymphoma, The Journal of Pediatrics, vol.70, issue.6, pp.891-899, 1967.
DOI : 10.1016/S0022-3476(67)80262-2

F. Rieux-laucat, S. Blachere, S. Danielan, J. P. De-villartay, M. Oleastro et al., Lymphoproliferative syndrome with autoimmunity: A possible genetic basis for dominant expression of the clinical manifestations, Blood, pp.94-2575, 1999.

T. Vaishnaw, T. A. Grodzicky, M. J. Fleisher, and . Lenardo, The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis, Blood, pp.98-194, 2001.

A. Hennino, M. Berard, P. H. Krammer, and T. Defrance, Flice-Inhibitory Protein Is a Key Regulator of Germinal Center B Cell Apoptosis, The Journal of Experimental Medicine, vol.157, issue.4, pp.193-447, 2001.
DOI : 10.1038/32681

M. Montesinos-rongen, D. Van-roost, C. Schaller, O. D. Wiestler, and M. Deckert, Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation, Blood, vol.103, issue.5, pp.103-1869, 2004.
DOI : 10.1182/blood-2003-05-1465

M. Muschen, K. Rajewsky, M. Kronke, and R. Kuppers, The origin of CD95-gene mutations in B-cell lymphoma, Trends in Immunology, vol.23, issue.2, pp.75-80, 2002.
DOI : 10.1016/S1471-4906(01)02115-9

M. E. Peter, P. Legembre, and B. C. Barnhart, Does CD95 have tumor promoting activities?, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1755, issue.1, pp.1755-1780, 2005.
DOI : 10.1016/j.bbcan.2005.01.001

P. Legembre, B. C. Barnhart, and M. E. Peter, The relevance of NF-?B for CD95 Signaling in Tumor Cells, Cell Cycle, vol.3, issue.10, pp.1235-1239, 2004.
DOI : 10.4161/cc.3.10.1194

. Peter, Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds, EMBO Rep, vol.5, pp.1084-1089, 2004.

B. C. Barnhart, P. Legembre, E. Pietras, C. Bubici, G. Franzoso et al., CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells, The EMBO Journal, vol.158, issue.15, pp.23-3175, 2004.
DOI : 10.1074/jbc.271.46.29393

M. Kimura and A. Matsuzawa, : A Novel Mutant Gene, International Reviews of Immunology, vol.33, issue.3, pp.193-210, 1994.
DOI : 10.3109/08830189409061727

T. Takahashi, M. Tanaka, C. I. Brannan, N. A. Jenkins, N. G. Copeland et al., Generalized lymphoproliferative disease in mice, caused by a point mutation in the fas ligand, Cell, vol.76, issue.6, pp.76-969, 1994.
DOI : 10.1016/0092-8674(94)90375-1

R. Watanabe-fukunaga, C. I. Brannan, N. G. Copeland, N. A. Jenkins, and S. Nagata, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature, vol.356, issue.6367, pp.356-314, 1992.
DOI : 10.1038/356314a0

M. Adachi, R. Watanabe-fukunaga, and S. Nagata, Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice., Proceedings of the National Academy of Sciences, vol.90, issue.5, pp.90-1756, 1993.
DOI : 10.1073/pnas.90.5.1756

J. L. Chu, J. Drappa, A. Parnassa, and K. B. Elkon, The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn, Journal of Experimental Medicine, vol.178, issue.2, pp.178-723, 1993.
DOI : 10.1084/jem.178.2.723

A. Matsuzawa, T. Moriyama, T. Kaneko, M. Tanaka, M. Kimura et al., A new allele of the lpr locus, lprcg, that complements the gld gene in induction of lymphadenopathy in the mouse, Journal of Experimental Medicine, vol.171, issue.2, pp.171-519, 1990.
DOI : 10.1084/jem.171.2.519

A. Strasser, P. J. Jost, and S. Nagata, The Many Roles of FAS Receptor Signaling in the Immune System, Immunity, vol.30, issue.2, pp.30-180, 2009.
DOI : 10.1016/j.immuni.2009.01.001

S. Martin, D. Uhlig, H. K. Kohler, M. Eltzschig, W. Wehrmann et al., Irradiation-induced pneumonitis mediated by the CD95/CD95-ligand system, J Natl Cancer Inst, pp.98-1248, 2006.

S. Kobayashi, T. Hirano, M. Kakinuma, and T. Uede, Transcriptional repression and differential splicing of Fas mRNA by early transposon (ETn) insertion in autoimmune lpr mice, Biochem Biophys Res Commun, pp.191-617, 1993.

J. Wu, T. Zhou, J. He, and J. D. Mountz, Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene, Journal of Experimental Medicine, vol.178, issue.2, pp.178-461, 1993.
DOI : 10.1084/jem.178.2.461

S. E. Dale, M. E. Straus, P. H. Peter, S. Krammer, M. J. Fesik et al., Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia, Proc Natl Acad Sci, pp.96-4552, 1999.

J. R. Orlinick, K. B. Elkon, and M. V. Chao, Separate domains of the human fas ligand dictate selfassociation and receptor binding, J Biol Chem, pp.272-32221, 1997.

J. L. Chu, P. Ramos, A. Rosendorff, J. Nikolic-zugic, E. Lacy et al., Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome, Journal of Experimental Medicine, vol.181, issue.1, pp.181-393, 1995.
DOI : 10.1084/jem.181.1.393

I. N. Lavrik, A. Golks, D. Riess, M. Bentele, R. Eils et al., Analysis of CD95 Threshold Signaling: TRIGGERING OF CD95 (FAS/APO-1) AT LOW CONCENTRATIONS PRIMARILY RESULTS IN SURVIVAL SIGNALING, Journal of Biological Chemistry, vol.282, issue.18, pp.282-13664, 2007.
DOI : 10.1074/jbc.M700434200

A. Mende, Martin-Villalba, Yes and PI3K bind CD95 to signal invasion of glioblastoma, Cancer Cell, vol.13, pp.235-248, 2008.

M. Malleter, S. Tauzin, A. Bessede, R. Castellano, A. Goubard et al., CD95L Cell Surface Cleavage Triggers a Prometastatic Signaling Pathway in Triple-Negative Breast Cancer, Cancer Research, vol.73, issue.22, pp.73-6711, 2013.
DOI : 10.1158/0008-5472.CAN-13-1794

URL : https://hal.archives-ouvertes.fr/hal-00873634

H. Grassme, A. Jekle, A. Riehle, H. Schwarz, J. Berger et al., CD95 Signaling via Ceramide-rich Membrane Rafts, Journal of Biological Chemistry, vol.276, issue.23, pp.276-20589, 2001.
DOI : 10.1074/jbc.M101207200

J. R. Muppidi and R. M. Siegel, Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death, Nature Immunology, vol.5, issue.2, pp.182-189, 2004.
DOI : 10.1038/ni1024

A. J. Stel, B. Ten-cate, S. Jacobs, J. W. Kok, D. C. Spierings et al., Fas Receptor Clustering and Involvement of the Death Receptor Pathway in Rituximab-Mediated Apoptosis with Concomitant Sensitization of Lymphoma B Cells to Fas-Induced Apoptosis, The Journal of Immunology, vol.178, issue.4, pp.178-2287, 2007.
DOI : 10.4049/jimmunol.178.4.2287

L. Jannin, N. Dubrez-daloz, E. Latruffe, and . Solary, Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells, J Biol Chem, pp.278-41482, 2003.

. Solary, Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells, Oncogene, pp.23-8979, 2004.

C. Gajate, E. Del-canto-janez, A. U. Acuna, F. Amat-guerri, E. Geijo et al., Intracellular Triggering of Fas Aggregation and Recruitment of Apoptotic Molecules into Fas-enriched Rafts in Selective Tumor Cell Apoptosis, The Journal of Experimental Medicine, vol.11, issue.3, pp.200-353, 2004.
DOI : 10.1074/jbc.M308352200

C. Gajate and F. Mollinedo, Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts, Blood, vol.109, issue.2, pp.109-711, 2007.
DOI : 10.1182/blood-2006-04-016824

C. Gajate and F. Mollinedo, Cytoskeleton-mediated Death Receptor and Ligand Concentration in Lipid Rafts Forms Apoptosis-promoting Clusters in Cancer Chemotherapy, Journal of Biological Chemistry, vol.280, issue.12, pp.11641-11647, 2005.
DOI : 10.1074/jbc.M411781200

S. Lacour, A. Hammann, S. Grazide, D. Lagadic-gossmann, A. Athias et al., Dimanche-Boitrel, Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells, Cancer Res, pp.64-3593, 2004.

. Janssen-heininger, Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas, J Cell Biol, vol.184, pp.241-252, 2009.

A. Oehm, I. Behrmann, W. Falk, M. Pawlita, G. Maier et al., Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen, The Journal of biological chemistry, pp.267-10709, 1992.

H. Grassme, A. Cremesti, R. Kolesnick, and E. Gulbins, Ceramide-mediated clustering is required for CD95-DISC formation, Oncogene, vol.22, issue.35, pp.22-5457, 2003.
DOI : 10.1038/sj.onc.1206540

J. L. Druhan and . Zweier, S-glutathionylation uncouples eNOS and regulates its cellular and vascular function, Nature, pp.468-1115, 2010.

P. Martinez-ruiz, J. F. Legembre, A. Jeannin, and . Bettaieb, S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells, Gastroenterology, p.140, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00680824

K. Chakrabandhu, Z. Herincs, S. Huault, B. Dost, L. Peng et al., Palmitoylation is required for efficient Fas cell death signaling, The EMBO Journal, vol.89, issue.1, pp.26-209, 2007.
DOI : 10.1038/sj.emboj.7601456

URL : https://hal.archives-ouvertes.fr/hal-00165458

C. Feig, V. Tchikov, S. Schutze, and M. E. Peter, Palmitoylation of CD95 facilitates formation of SDSstable receptor aggregates that initiate apoptosis signaling, Embo J, pp.26-221, 2007.

G. Gradl, P. Grandison, E. Lindridge, Y. Wang, J. Watson et al., The CD95 (Fas/APO-1) receptor is phosphorylated in vitro and in vivo and constitutively associates with several cellular proteins, Apoptosis, pp.1-131, 1996.

I. Daigle, S. Yousefi, M. Colonna, D. R. Green, and H. U. Simon, Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils, Nature Medicine, vol.8, issue.1, pp.61-67, 2002.
DOI : 10.1038/nm0102-61

X. Su, T. Zhou, Z. Wang, P. Yang, R. S. Jope et al., Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis, Immunity, vol.2, issue.4, pp.353-362, 1995.
DOI : 10.1016/1074-7613(95)90143-4

J. S. Kirchhausen and . Bonifacino, Interaction of tyrosine-based sorting signals with clathrin-associated proteins, Science, pp.269-1872, 1995.

K. H. Lee, C. Feig, V. Tchikov, R. Schickel, C. Hallas et al., The role of receptor internalization in CD95 signaling, The EMBO Journal, vol.152, issue.5, pp.25-1009, 2006.
DOI : 10.1038/sj.emboj.7601016

E. A. Atkinson, H. Ostergaard, K. Kane, M. J. Pinkoski, A. Caputo et al., A physical interaction between the cell death protein Fas and the tyrosine kinase p59fynT, J Biol Chem, pp.271-5968, 1996.

J. Wang, T. Koizumi, and T. Watanabe, Altered antigen receptor signaling and impaired Fas-mediated apoptosis of B cells in Lyn-deficient mice, Journal of Experimental Medicine, vol.184, issue.3, pp.831-838, 1996.
DOI : 10.1084/jem.184.3.831

J. Vacher, T. Reiffers, J. F. Ducret, M. D. Moreau, P. Cahalan et al., CD95 triggers Orai1- mediated localized Ca2+ entry, regulates recruitment of protein kinase C (PKC) beta2, and prevents death-inducing signaling complex formation, Proc Natl Acad Sci, vol.108, pp.19072-19077, 2011.

A. Penna, N. Khadra, S. Tauzin, P. Vacher, and P. Legembre, The CD95 signaling pathway, Communicative & Integrative Biology, vol.14, issue.2, pp.190-192, 2012.
DOI : 10.1073/pnas.1116946108

URL : https://hal.archives-ouvertes.fr/hal-00873761

B. Z. Stanger, P. Leder, T. H. Lee, E. Kim, and B. Seed, RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death, Cell, vol.81, issue.4, pp.81-513, 1995.
DOI : 10.1016/0092-8674(95)90072-1

A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap et al., Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nature Chemical Biology, vol.57, issue.2, pp.112-119, 2005.
DOI : 10.1016/S0896-6273(03)00601-9

G. Yuan, S. M. Wagner, S. A. Hedrick, A. Gerber, J. Lugovskoy et al., Identification of RIP1 kinase as a specific cellular target of necrostatins, Nat Chem Biol, vol.4, pp.313-321, 2008.

E. W. Lee, J. Seo, M. Jeong, S. Lee, and J. Song, The roles of FADD in extrinsic apoptosis and necroptosis, BMB Reports, vol.45, issue.9, pp.45-496, 2012.
DOI : 10.5483/BMBRep.2012.45.9.186

Y. Lin, A. Devin, Y. Rodriguez, and Z. G. Liu, Cleavage of the death domain kinase RIP by Caspase-8 prompts TNF-induced apoptosis, Genes & Development, vol.13, issue.19, pp.13-2514, 1999.
DOI : 10.1101/gad.13.19.2514

S. Feng, Y. Yang, Y. Mei, L. Ma, D. E. Zhu et al., Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain, Cellular Signalling, vol.19, issue.10, pp.19-2056, 2007.
DOI : 10.1016/j.cellsig.2007.05.016

. Ting, Caspase 8 inhibits programmed necrosis by processing CYLD, Nat Cell Biol, vol.13, pp.1437-1442, 2011.

M. E. Peter, Programmed cell death: Apoptosis meets necrosis, Nature, vol.8, issue.7338, pp.471-310, 2011.
DOI : 10.1038/471310a

A. H. Montel, M. R. Bochan, J. A. Hobbs, D. H. Lynch, and Z. Brahmi, Fas Involvement in Cytotoxicity Mediated by Human NK Cells, Cellular Immunology, vol.166, issue.2, pp.166-236, 1995.
DOI : 10.1006/cimm.1995.9974

P. Saas, P. R. Walker, M. Hahne, A. L. Quiquerez, V. Schnuriger et al., Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain?, Journal of Clinical Investigation, vol.99, issue.6, pp.99-1173, 1997.
DOI : 10.1172/JCI119273

P. M. Stuart, T. S. Griffith, N. Usui, J. Pepose, X. Yu et al., CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival., Journal of Clinical Investigation, vol.99, issue.3, pp.99-396, 1997.
DOI : 10.1172/JCI119173

J. O. Connell, G. C. O-'sullivan, J. K. Collins, and F. Shanahan, The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand, J Exp Med, pp.184-1075, 1996.

J. Allison, H. M. Georgiou, A. Strasser, and D. L. Vaux, Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts, Proc Natl Acad Sci, pp.94-3943, 1997.

S. M. Kang, D. B. Schneider, Z. Lin, D. Hanahan, D. A. Dichek et al., Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction, Nature Medicine, vol.26, issue.7, pp.738-743, 1997.
DOI : 10.1074/jbc.271.47.29969

J. J. Chen, Y. Sun, and G. J. , Regulation of the Proinflammatory Effects of Fas Ligand (CD95L), Science, vol.282, issue.5394, pp.282-1714, 1998.
DOI : 10.1126/science.282.5394.1714

J. D. Bui and R. D. Schreiber, Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes?, Current Opinion in Immunology, vol.19, issue.2, pp.203-208, 2007.
DOI : 10.1016/j.coi.2007.02.001

M. Beneteau, S. Daburon, J. F. Moreau, J. L. Taupin, and P. Legembre, Dominant-Negative Fas Mutation Is Reversed by Down-expression of c-FLIP, Cancer Research, vol.67, issue.1, pp.67-108, 2007.
DOI : 10.1158/0008-5472.CAN-06-1415

URL : https://hal.archives-ouvertes.fr/hal-00188888

T. Vargo-gogola, H. C. Crawford, B. Fingleton, and L. M. Matrisian, Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand, Archives of Biochemistry and Biophysics, vol.408, issue.2, pp.408-155, 2002.
DOI : 10.1016/S0003-9861(02)00525-8

M. Kiaei, K. Kipiani, N. Y. Calingasan, E. Wille, J. Chen et al., Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis, Exp Neurol, pp.205-74, 2007.

V. Kirkin, N. Cahuzac, F. Guardiola-serrano, S. Huault, K. Luckerath et al., The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells, Cell Death and Differentiation, vol.9, issue.9, pp.14-1678, 2007.
DOI : 10.2174/156800906777441771

URL : https://hal.archives-ouvertes.fr/hal-00318941

P. Janssen and . Saftig, ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death, Cell Death Differ, vol.14, pp.1040-1049, 2007.

S. Deperthes, T. Calderara, J. Schulthess, P. Engel, J. Schneider et al., Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex, Mol Cell Biol, pp.23-1428, 2003.

P. Schneider, N. Holler, J. L. Bodmer, M. Hahne, K. Frei et al., Conversion of Membrane-bound Fas(CD95) Ligand to Its Soluble Form Is Associated with Downregulation of Its Proapoptotic Activity and Loss of Liver Toxicity, The Journal of Experimental Medicine, vol.8, issue.8, pp.187-1205, 1998.
DOI : 10.1126/science.2787530

T. Suda, H. Hashimoto, M. Tanaka, T. Ochi, and S. Nagata, Membrane Fas Ligand Kills Human Peripheral Blood T Lymphocytes, and Soluble Fas Ligand Blocks the Killing, The Journal of Experimental Medicine, vol.54, issue.12, pp.186-2045, 1997.
DOI : 10.1172/JCI118789

S. Cursi, A. Rufini, V. Stagni, I. Condo, V. Matafora et al., Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression, The EMBO Journal, vol.272, issue.9, pp.25-1895, 2006.
DOI : 10.1038/sj.emboj.7601085

J. Senft, B. Helfer, and S. M. Frisch, Caspase-8 Interacts with the p85 Subunit of Phosphatidylinositol 3-Kinase to Regulate Cell Adhesion and Motility, Cancer Research, vol.67, issue.24, pp.67-11505, 2007.
DOI : 10.1158/0008-5472.CAN-07-5755

E. J. Steller, I. H. Borel-rinkes, and O. Kranenburg, How CD95 stimulates invasion, How CD95 stimulates invasion, pp.3857-3862, 2011.
DOI : 10.4161/cc.10.22.18290

E. J. Steller, L. Ritsma, D. A. Raats, F. J. Hoogwater, B. L. Emmink et al., The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion, EMBO reports, vol.60, issue.9, pp.12-931, 2011.
DOI : 10.1002/ijc.23090

T. G. Bivona, H. Hieronymus, J. Parker, K. Chang, M. Taron et al., FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR, Nature, pp.471-523, 2011.

G. Bellone, C. Smirne, A. Carbone, K. Mareschi, L. Dughera et al., Production and pro-apoptotic activity of soluble CD95 ligand in pancreatic carcinoma, Clinical cancer research, vol.6, pp.2448-2455, 2000.

M. Malleter, S. Tauzin, A. Bessede, R. Castellano, A. Goubard et al., CD95L cell surface cleavage triggers a pro-metastatic signaling pathway in triple negative breast cancer, Cancer Res, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873634

S. Tagawa, K. Ohga, A. H. Hatake, S. Drummond, and . Nagata, Fas ligand in human serum, Nat Med, vol.2, pp.317-322, 1996.

H. Hashimoto, M. Tanaka, T. Suda, T. Tomita, K. Hayashida et al., Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis, Arthritis and rheumatism, pp.41-657, 1998.

H. Das, S. Imoto, T. Murayama, K. Kajimoto, T. Sugimoto et al., Levels of soluble FasL and FasL gene expression during the development of graft-versus-host disease in DLT-treated patients, British Journal of Haematology, vol.148, issue.4, pp.795-800, 1999.
DOI : 10.1084/jem.181.2.781

Y. Kanda, Y. Tanaka, K. Shirakawa, T. Yatomi, N. Nakamura et al., Increased soluble Fas-ligand in sera of bone marrow transplant recipients with acute graft-versus-host disease, Bone Marrow Transplantation, vol.22, issue.8, pp.22-751, 1998.
DOI : 10.1038/sj.bmt.1701427

A. Tomokuni, T. Otsuki, Y. Isozaki, S. Kita, H. Ueki et al., Serum levels of soluble Fas ligand in patients with silicosis, Clinical and Experimental Immunology, vol.68, issue.3, pp.118-441, 1999.
DOI : 10.1016/S0002-9149(98)00300-2

N. Park, J. W. Brot, H. Heinecke, R. B. Rosen, X. Goodman et al., The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region, The Journal of clinical investigation, pp.121-1174, 2011.

M. Merida and . Izquierdo, Diacylglycerol kinase alpha regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes, Cell death and differentiation, pp.18-1161, 2011.

N. R. Bianco, S. H. Kim, A. E. Morelli, and P. D. Robbins, Modulation of the immune response using dendritic cell-derived exosomes, Methods Mol Biol, pp.380-443, 2007.

A. J. Abusamra, Z. Zhong, X. Zheng, M. Li, T. E. Ichim et al., Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis, Blood Cells, Molecules, and Diseases, vol.35, issue.2, pp.35-169, 2005.
DOI : 10.1016/j.bcmd.2005.07.001

. Tschopp, Characterization of Fas (Apo-1, CD95)-Fas ligand interaction, J Biol Chem, vol.272, pp.18827-18833, 1997.