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Abstract 

Due to their geographic location and traditional diet, rich in seafood and marine mammals, 

the Inuit living in Arctic Quebec are exposed to high amounts of pollutants, including 

organochlorine pesticides (OCPs). While the adverse developmental effects of these 

pesticides on child cognitive functions are well known, the effects of developmental 

exposure to OP on sensory processes have not been investigated. The aim of this 

longitudinal study was to assess the effects of prenatal and childhood exposure to 1,1,1-

trichloro-2,2-bis(p-chlorophenyl)ethane (p,p’-DDT) and its major metabolite 1,1,-dichloro-

2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), on visual processing in Inuit children in 

Nunavik (Arctic Québec). p,p’-DDT and p,p’-DDE concentrations were determined from 

umbilical cord and 5- and 11-year plasma samples. Visual evoked potentials (VEPs) were 

successfully recorded in 150 children at four contrast levels (95%, 30%, 12%, and 4%). 

Hierarchical multiple regressions were conducted to determine the association between p,p’-

DDT, or p,p’-DDE, exposure and VEPs while controlling for the effects of various 

confounders, including fish nutrients and other contaminants. p,p’-DDE measured in 

umbilical cord plasma was significantly related to the amplitude of the N150 response at the 

lowest contrast (4%). In addition, 5-year p,p’-DDE plasma concentration was significantly 

associated with decreased N75 amplitude. These findings indicate that p,p’-DDE exposure, 

both pre- and postnatally, during early childhood is associated with visual processing 

impairment later in life. 

 

Keywords: Neurotoxicity, p,p’-DDT, p,p’-DDE, Visual Evoked Potentials, Sensory 

processing 
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1. Introduction 

Organochlorine pesticides (OCPs) are widespread contaminants. These industrially synthesized 

chlorine compounds were used extensively in agriculture and residential settings from the 1930s to 

the mid-1980s. OCPs are included in the group of environmental endocrine disruptors known as 

persistent organic pollutants (POPs). Most of them have been banned under the international 

Stockholm Convention due to their persistence in the environment, their ability to be stored in fatty 

tissues, and their high toxicity for wildlife and humans, although some OCP continue to be used in 

industrialized and developing countries. Studies have demonstrated adverse associations of these 

chemicals with human health, including cancer (Cohn et al., 2007, McGlynn et al., 2008, Multigner 

et al., 2010, Romieu et al., 2000), as well as metabolic (Montgomery et al., 2008, Patel et al., 2010), 

immune (Dewailly et al., 2000, Hermanowicz et al., 1982), and reproductive (De Jager et al., 2006) 

dysfunctions.  

During gestation, OCPs can reach the fetus by crossing the placenta (Sala et al., 2001, Shen 

et al., 2008). Postnatal exposure to these toxicants occurs via breastfeeding, and later in life through 

food, house dust (Abb et al., 2010), and water consumption (Diaz et al., 2009, Kaushik et al., 2012). 

The adverse effects of prenatal exposure to these chemicals on neurodevelopment, especially child 

cognition and behaviors, are well documented (Korrick and Sagiv, 2008), and can be explained by 

the fact that the developing brain, from early embryologic life to adolescence, is extremely sensitive 

to toxic disturbances. Perturbations of complex maturational processes by OCP or other 

organochlorine compounds, such as polychlorinated biphenyls (PCBs), can lead to brain damage or 

more subtle functional alterations, which are detectable early in life and in later development 

(Grandjean and Landrigan, 2006, Jacobson and Jacobson, 1996).  

In recent decades, prenatal exposure to various OCP has been related to impaired attention, 

working memory deficits (Puertas et al., 2010), hyporeflexia (Rogan et al., 1986), poorer social 

performance, and attention deficit hyperactivity disorder (ADHD) symptoms (Ribas-Fito et al., 
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2007). Numerous studies have focused on the effects of p,p’-DDT and its major metabolite, p,p’-

DDE, on cognitive neurodevelopment. A prospective birth cohort study assessing child 

development in Spain showed an association between cord p,p’-DDE concentration and mental and 

psychomotor development delays at age 13 months (Ribas-Fito et al., 2003). A follow-up study of 

these children 3 years later revealed an adverse impact of cord serum p,p’-DDT concentration on 

verbal, memory, and perceptual scores on the McCarthy Scales of Children's Abilities (Ribas-Fito et 

al., 2006). Other studies have found evidence of the adverse effects of prenatal exposure to p,p’-

DDE and p,p’-DDT on psychomotor or mental development in childhood (Eskenazi et al., 2006, 

Torres-Sanchez et al., 2007). More recently, in utero DDE exposure was also related to ADHD-like 

behaviors in a cohort of 607 children aged from 7 to 11 years (Sagiv et al., 2010). The impact of 

p,p’-DDT or p,p’-DDE exposure on sensory development is unknown. 

OCP are found in polar regions, where they are carried from industrialized and developing 

countries by marine and atmospheric currents and bioaccumulated in the food chain due to their 

lipophilic properties (Barrie et al., 1992). Given their geographic location and traditional diet of 

seafood and marine mammals, Inuit people living in Canada’s Arctic Quebec, a region called 

Nunavik, are exposed to high levels of several environmental contaminants, including 

organochlorine compounds (Dewailly et al., 1993, Muckle et al., 2001). By way of comparison, 

prenatal exposure to organochlorine products is about two to three times higher in Nunavik than in 

other North American regions (Muckle et al., 2001). Prenatal exposure to organochlorine 

compounds,, in particular PCBs, has been related to alterations in emotional (Plusquellec et al., 

2010), cognitive, behavioral (Boucher et al., 2012) and visual functions (Saint-Amour et al., 2006). 

Using visual evoked potential (VEP) recordings, Saint-Amour et al. (2006) demonstrated 

impairments in visual brain function in preschool Inuit children in Nunavik relating to postnatal 

PCB exposure. However, using the same method, a follow-up VEP study in children aged 11 years 

found no significant effect from PCB exposure on visual processing (Ethier et al., 2012). 
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Scalp-recorded VEP is a sensitive and non-invasive electrophysiological method commonly 

used in pediatric populations to assess the maturation and functional integrity of brain processes 

(Otto, 1987). Alterations in VEP amplitude or latency are thought to reflect damage along visual 

pathways, including subclinical alterations in visual processing due to environmental contaminants 

(Ethier et al., 2012, Jacques et al., 2011, Murata et al., 1999, Saint-Amour et al., 2006). Compared 

to behavioral performance, using electrophysiological recording to assess sensory processes 

provides a more direct measure of brain function. Because vision depends on the maturation and 

integrity of the retina, optic tract, and visual cortex, measuring electrical visual activity may provide 

a more accurate picture of OCP exposure neurotoxicity, with the additional advantage of revealing 

subclinical effects.  

A recent VEP study conducted in Nunavik to assess child visual development in relation to 

heavy metal and PCB exposure (Ethier et al., 2012) found that cord blood concentrations of lead 

and mercury were associated with decreased VEP amplitude in 11-year-old children. No significant 

association with PCB exposure was found. The aim of the present longitudinal study was to assess 

the relation of  p,p’-DDT and its p,p’-DDE metabolite exposures with visual brain integrity by 

examining prenatal and childhood exposures. After PCBs, p,p’-DDT, and particularly p,p’-DDE, is 

the most prevalent organochlorine compound in Nunavik. Because the Inuit are exposed to high 

amounts of omega-3 polyunsaturated fatty acids (n-3 PUFAs), due to their traditional seafood diet, 

and because n-3 PUFAs are widely recognized for their beneficial role in vision development and 

function (Molloy et al., 2012, Morse, 2012), exposure to n-3-PUFAs was adjusted statistically in the 

data analysis, along with other potential confounding variables. 

2. Methods 

2.1 Participants 
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A total of 294 school-age Inuit children from Nunavik participated in an 11 follow-up study. From 

these children, 172 participated in the present VEP study (range = 10 to 13 years, mean ±standard 

deviation = 10.9 ±0.6) (see Ethier et al., 2012 for more details). These children were originally 

recruited under the 1993–1998 Cord Blood Monitoring Program, which aimed to document the 

exposure of Inuit newborns to environmental contaminants by using umbilical cord samples 

(Muckle et al., 1998). Three groups of Inuit mothers and their children were invited to participate in 

the 11-year follow-up assessment, according to the following categories: 1) children who had 

participated in the Environmental Contaminants and Child Development Study as infants (Jacobson 

et al., 2008, Muckle et al., 2001), 2) children who had participated in the Nunavik Preschool Study 

at age 5 years (Saint-Amour et al., 2006), and 3) children for whom cord blood samples were 

available but had not been previously tested. Mothers living in the three largest Nunavik villages 

were contacted by telephone, informed about the study procedures, and invited to participate. 

Inclusion criteria were 8.0 to 15.0 years of age, birth weight ≥ 2.5 kg, gestation duration ≥ 35 

weeks, no known neurologic or clinically significant developmental disorder, and no use of 

medication at the time of testing. A maternal interview was conducted at the time of testing to 

collect information about tobacco, drug, and alcohol use during pregnancy, and to document 

potential confounding variables, such as quality of parental intellectual function and 

sociodemographic and psychosocial factors. Written informed consent was obtained from one 

parent of each participant, and oral assent was obtained from each child. The research procedures 

were approved by the ethics committees of Wayne State University, Laval University, and Saint-

Justine Hospital.  

2.2 Visual Evoked Potentials 

As described in detail in Ethier et al. (2012), a standard pattern reversal VEP procedure was used. 

Vertical sinusoidal gratings with a spatial frequency of 2.5 cycles per degree were presented using 

Presentation® software (Neurobehavioral Systems, Inc. San Paolo, CA) at a reversal rate of 1.1 Hz 
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at four visual contrasts from high to low visibility, i.e., at 95, 30, 12 and 4%. Contrast was defined 

according to the Michelson’s formula to keep the mean luminance constant: (maximal luminance -

minimal luminance)/(maximal luminance + minimal luminance) x 100. Stimuli were presented to 

the children binocularly from a distance of 57 cm in a dimly lit room (24° × 24° of visual field). 

The experimenter was blind to participant information. Children were instructed to concentrate on a 

small red dot located at the center of the screen. The electro-oculograms (EOG) were recorded from 

the outer canthus of each eye (horizontal EOG) and above and below the right eye (vertical EOG). 

VEPs were scalp-recorded over the occipital central site (Oz derivation according to the 

International 10–20 system) with an Ag–AgCl electrode using InstEP software (InstEP Inc., 

Montreal, Canada). The reference and ground electrodes were located at the frontal central site (Fz 

derivation according to the International 10–20 system) and on the forehead, respectively. 

Impedance was kept below 5 kΩ. The electro-encephalogram (EEG) signal was amplified and 

band-pass filtered at 0.1–100 Hz. 100 trials were recorded at each contrast. Pattern reversal VEPs 

were time-locked to stimulus onset and averaged (sweep time, 500 ms; pre-stimulus delay, 50 ms; 

sampling rate, 1000 Hz). Trials in which the response was higher than 75 µV at any recording site 

(horizontal EOG, vertical EOG, or Oz) were rejected before averaging to eliminate ocular and 

muscular artifacts. The following standard VEP components were examined: N75 (negative 

deflection at ≈ 75 ms after the stimulus onset), P100 (positive deflection at ≈ 100 ms after the 

stimulus onset), and N150 (negative deflection at ≈ 150 ms after the stimulus onset) (Odom et al., 

2004). For each component, the latency, i.e., the time in ms from stimulus onset to the largest 

amplitude of a positive or negative deflection, was calculated as well as the amplitude (response 

intensity in µV) was calculated from baseline to peak. All EEG analyses were performed with 

Analyzer 2 software (Brain Products, Inc., Munich, Germany). 

2.3 Biological measures 
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Documentation of prenatal exposure to several persistent organic pollutants was available from the 

Cord Blood Monitoring Program. The analyses were performed at the Laboratoire de Toxicologie 

INSPQ, which is accredited by the Canadian Association for Environmental Analytical 

Laboratories. Detailed analytical and quality control procedures have been described previously 

(Boucher et al., 2010a, Boucher et al., 2010b, Boucher et al., 2009, Muckle et al., 2001, Rhainds et 

al., 1999). The 14 most prevalent PCB congeners (IUPAC nos. 28, 52, 99, 101, 105, 118, 128, 138, 

153, 156, 170, 180, 183, 187), and 11 organochlorine pesticides or their metabolites (aldrin, α-

chlordane, β-chlordane, p,p’-DDT, p,p’-DDE, HCB, β-HCH, mirex, cis-nonachlor, trans-nonachlor, 

oxychlordane) were measured in purified plasma extracts using high-resolution gas chromatography 

(Hewlett-Packard HP5890A), with two capillary columns (Hewlett-Packard Ultra I and Ultra II) 

and dual Ni-63 electron capture detectors. PCB congener 153 was used as an indicator of total PCB 

exposure because it is highly correlated with other PCB congeners (Muckle et al., 2001) and is 

considered an adequate marker of exposure to environmental PCB mixtures (Ayotte et al., 2003). 

Total Hg concentrations were determined in umbilical cord blood samples using cold vapor atomic 

absorption spectrometry (Pharmacia Model 120). Blood Pb levels were determined by graphite 

furnace atomic absorption with Zeeman background correction (Perkin Elmer model ZL 4100). Se 

concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) on a 

Perkin Elmer SciexElan 6000 instrument. The limits of detection (LODs) were 0.2 µg/dL for blood 

Hg and Pb, 0.1 µmol/L for Se, and 0.02 µg/L for all PCB congeners and 11 organochlorine 

pesticides or their metabolites (aldrin, α-chlordane, β-chlordane, p,p’-DDT, p,p’-DDE, HCB, β-

HCH, mirex, cis-nonachlor, trans-nonachlor, oxychlordane) in plasma. Docosahexaenoic acid 

(DHA), an important omega-3 fatty acid, was measured in plasma phospholipids at the University 

of Guelph Lipid Analytical Laboratory (B.J. Holub), as described in Jacques et al. (2011).  

Child exposure was measured through a venous blood sample (20 mL) at 5 and 11 years on 

the day of testing. Concentrations of PCB congeners, and 11 organochlorine pesticides or their 
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metabolites (aldrin, α-chlordane, β-chlordane, p,p’-DDT, p,p’-DDE, HCB, β-HCH, mirex, cis-

nonachlor, trans-nonachlor, oxychlordane) were measured in plasma extracts by gas 

chromatography (HP 5890 Series II Plus), equipped with a 30-m DB-5 (J&W Scientific) and HP 

5890B mass spectrometer (Agilent). Compounds were automatically extracted from the aqueous 

matrix using solid phase extraction. LODs were less than 0.05 µg/L for all PCB congeners and OPs, 

except for PCB 52 (LOD = 0.15 µg/L). Total Hg, Pb and Se concentrations were determined in 

whole blood samples by ICP-MS (Perkin Elmer SciexElan 6000 ICP-MS instrument for Pb and Se; 

PE DRC II instrument for Hg). LODs were 0.002 µg/dL for Pb, 0.10 µg/L for Hg and 0.09 µmol/L 

for Se. DHA was measured in plasma phospholipids using the same procedure as described above 

for umbilical cord plasma samples. Whenever chemical analysis yielded a “not detected” result, a 

value equal to half the limit of detection of the analytical method was entered in the database. All 

organochlorine compounds were expressed on a lipid basis for both prenatal and child exposures. 

For either prenatal or child exposure, OCPs that were not detected in more than 40% of the samples, 

that is aldrin, α-chlordane, β-chlordane, β-HCH and mirex, were not included in the statistical 

analyses. This 40% criterion is based on the practice of the Center for Disease Control and 

Prevention (CDC) (Sjodin et al., 2008, Wang et al., 2009). 

 

2.4 Confounding factors 

Based on our previous VEP study (Ethier et al., 2012), the following potential confounding 

variables were examined: child’s gender, age, and hemoglobin concentration at testing time, 

breastfeeding duration, maternal level of education, maternal parity, socioeconomic status of the 

primary caregiver (Hollingshead, 1975), maternal binge drinking episodes during pregnancy 

(yes/no) (> 5 standard drinks of alcohol per occasion) , maternal drug and tobacco uses during 

pregnancy (yes/no). Additional potential confounders included prenatal and current exposure to 

other environmental contaminants (mercury and lead) known to have a negative impact on visual 
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processing or child development, as shown previously in this population (Ethier et al., 2012, 

Plusquellec et al., 2010, Saint-Amour et al., 2006).  The major fish nutrients selenium and DHA 

were also examined, DHA being well known for its beneficial impact on visual system development 

(Cartier and Saint-Amour, in press, Jacques et al., 2011). Because oxychlordane, cis-nonachlore, 

trans-nonachlore and PCB153 were highly correlated with p,p’-DDT and p,p’-DDE (rs range: 0.54-

0.94), they were not included in the regression models to avoid multicolinearity. 

2.5 Statistical analysis 

Because the amplitude of some VEP component is by definition negative (i.e., N75 and N150), the 

analyses were conducted on the absolute values to avoid any ambiguity and facilitate the 

interpretation of the regression results. Descriptive statistics of the children, contaminants, and 

VEPs were examined for potential outliers and skewed distributions. Non-normally distributed 

variables were log-transformed. Pearson’s correlations were then computed to examine the pattern 

of correlations between the contaminants measured at birth and at the time of testing.  

 The following 3-step selection strategy was used to restrict the number of multiple 

regression models in order to minimize Type I error.  First, similarly to the method used by Ethier et 

al. (2012), each VEP component for both latency and amplitude was tested using repeated-measure 

analysis of variance (ANOVA), in which the four levels of visual contrast (95, 30, 12 and 4%) 

served as a within-subjects measure, and the contaminant of interest (DDT or DDE at both cord or 

11-year measurements) as a covariate. If the main or interaction (visual contrast level × 

contaminant) effect was significant (p < 0.05), the VEP outcome was then submitted to the next 

step, which consisted of running Pearson’s correlation between the contaminant and the dependent 

variable at each contrast level. When the correlation was at p < 0.20, multiple linear regression was 

conducted. This selection method yielded a total of 9 multiple linear regression models. 

Multiple linear regression analyses were conducted following the hierarchical procedure 

used by Jacobson et al. (2008): 1) among the above-described control variables, each variable 
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related to the VEP outcome of interest at p < 0.20 was selected; 2) the OCP variable was entered in 

the first step of the regression analysis and each potential confounder was then entered, starting with 

the confounder showing the highest correlation with the outcome and proceeding to the confounder 

showing the next highest correlation, etc.; 3) a confounder was retained in the model if its inclusion 

changed the association (standardized regression coefficient) between the OCP variable and the 

VEP outcome by at least 10% at entry. The 0.20 alpha level and 10% change criteria were based on 

the work of Maldonado and Greenland (1993). Cook’s distance was calculated for the final 

regression models to detect potential influential points, using a cut-off of 4 × p/n, where p is the 

number of predictors and n is the number of subjects in the model. A sensitivity analysis was then 

conducted by re-running the model, omitting participants with influential points. The model was 

considered to be unduly influenced if the beta for a contaminant of interest changed by more than 

10% without the influential points. Based on these criteria no participants were excluded from the 

regression analysis. The standardized residuals from each model were examined to check for model 

fit. All of the standardized residuals fell between -3.5 and 3.5.  

3. Results 

Children with abnormal visual acuity (≥ 20/30 on the Snellen E chart) were excluded from the 

analysis for the following reason. Abnormal acuity is mainly related to refraction errors in the 

focusing of light on the retina. In the other words, if vision is corrected with adequate glasses, visual 

acuity becomes instantly normal. Because refraction error has drastic effects on VEPs (latency is 

increased and amplitude is decreased), it is not possible to distinguish effects of refraction error 

from the effects of alteration of visual processing (at the retina or cortex level). Furthermore, there 

is no data in the literature showing that p,p’-DDT or p,p’-DDE exposure is related to visual acuity. 

Accordingly, we did not find any correlation between abnormal visual acuity and exposure, or a 

difference of contaminant concentration between participants with glasses and participants without 

glasses. Thus of the initial sample of 172 participants, 21 children were excluded from the analyses 
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on this acuity criteria (and one was excluded due to lack of cooperation), ending in a final sample of 

150 valid participants. Because the VEP results reported do not include participants with apparent 

visual acuity deficits, any significant association in the present study is therefore revealing OCP 

subclinical neurotoxicity.  

Descriptive statistics of the participants are presented in Table 1. Most of the characteristics 

of the 150 VEP study participants did not differ significantly from the 144 remaining children who 

were part of the 11-year follow up study, except for the selenium prenatal exposure and for 

marijuana use during pregnancy (Table 1). Girls and boys were equally represented in the sample 

(50.7% girls, 49.3% boys). Median breastfeeding duration was 3 months. Of the mothers, 81.1% 

reported smoking during pregnancy on a regular basis, and 49.2% reported consuming alcohol 

during pregnancy.  

3.2 Contaminants and nutrient exposures 

As presented in Table 2, intercorrelations between cord blood and 11-year blood concentrations 

ranged from moderate to high. Intercorrelations between p,p’-DDT and p,p’-DDE were mostly 

moderate (rs range: 0.42–0.71; median = 0.48). On the other hand, oxychlordane, cis-nonachlore, 

trans-nonachlore and PCB153 were moderately to highly correlated with p,p’-DDT or p,p’-DDE 

atbirth (rs range: 0.57-0.89; median = 0.78) and at 11 years (rs range: 0.54-0.94; median = 0.82). 

Organochlorine compound concentrations (p,p’-DDT, p,p’-DDE, oxychlordane, cis-nonachlore, 

trans-nonachlore and PCB153) measured at birth were weakly to moderately correlated with 11-

year organochlorine compound concentrations (rs range: 0.41-0.57; median = 0.46).  

Mean concentrations and ranges of p,p’-DDT, p,p’-DDE, PCB153, Pb and Hg, as well as 

nutrients are reported in Table 3. p,p’-DDE was found in all umbilical cords and childhood plasma 

samples, whereas p,p’-DDT was detected in 79.9% of umbilical cord samples and 69.4% of plasma 

samples at age 11. Mean p,p’-DDT concentrations at birth and age 11 were 24.45, and 6.93 µg/kg 
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plasma lipids, respectively. Mean p,p’-DDE concentration at birth was 509.27, whereas p,p’-DDE 

concentrations at age 11 were approximately half of these values at 268.54 µg/kg plasma lipids . 

 
3.3 Associations of p,p’-DDT and p,p’-DDE exposure with VEP 

Multivariate linear regression analyses were conducted to examine the association between 

contaminants and VEPs by taking account of the control variables according to a change-in-

estimate approach (see method section for details). Only final regression models with a p-value < 

0.2 are shown in Table 3. After adjusting for confounders, umbilical cord p,p’-DDE plasma 

concentration was significantly associated with increased N150 amplitude at the lowest contrast 

(4%) (see Figure 1A). The β coefficients indicate that an increase of p,p’-DDE concentration of one 

logarithm unit is associated with an increase in amplitude of 0.72 µV (i.e., 0.28 SD). Prenatal p,p’-

DDE exposure was also associated with increased N150 at the 95% contrast level, but that effect 

fell short of statistical significance. No association was detected with current p,p’-DDT or p,p’-

DDE plasma concentrations.  

Considering the important visual system reorganisation occurring during the first years of 

life, and knowing the greater vulnerability to neurotoxic insult during development, we asked 

whether DDT and DDE exposure during this period could also alter 11-year VEPs. Thus, because 

these contaminants were also measured at age 5 years in a subsample of the children (n = 56) taking 

part in the present VEP follow-up study, we conducted further analyses to assess the association 

between p,p’-DDT and p,p’-DDE concentrations at preschool aged and VEP measured at age 11. Of 

note, the VEP responses of these 56 children, either in terms of amplitude or latency, were 

comparable to those of the other children in the sample (p > 0.05). Multiple regressions revealed 

that N75 amplitude at mid-contrast (30 %) was significantly decreased with increasing p,p’-DDE 

plasma concentration at age 5 (see Figure 1B). The β coefficients indicate that an increase of p,p’-

DDE concentration of one logarithm unit is associated with a decrease in amplitude on  the order of 
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1.44 µV. Interestingly, p,p’-DDE concentration at age 5 was very well predicted by cord p,p’-DDE 

concentrations and breastfeeding duration. Cord p,p’-DDE (standardized β = 0.43 p < 0.0001) and 

breastfeeding duration (standardized β = 0.59, p < 0.000001) accounted for 54% of the total 

variance in plasma p,p’-DDE at age 5, whereas 5-year p,p’-DDT concentration was very well 

predicted by cord p,p’-DDT concentrations (standardized β = 0.52, p < 0.000001), but not at all by 

breastfeeding duration (standardized β = 0.14, ns). 

4. Discussion 

The aim of this study was to assess the potential neurotoxic impact of prenatal and childhood 

exposure to organochlorine pesticides on visual processing in children. After controlling for the 

influence of socioeconomic factors, other environmental contaminants and nutrients, such as DHA, 

we found subtle and subclinical p,p’-DDE relation to visual processing. Indeed significant 

associations were found between p,p’-DDE prenatal and early childhood exposure and VEP 

responses at age 11 years. Prenatal p,p’-DDE exposure was significantly associated with increased 

N150 amplitude at the lowest visual contrast, whereas p,p’-DDE exposure measured at age 5 years, 

which mainly reflects cumulative prenatal and infancy exposures, was significantly related to 

decreased N75 amplitude. One limitation of our study is the multiple comparisons involved in the 

analysis that was not corrected considering that correction methods are often too conservative for 

epidemiological studies (which may result in Type 2 error). As a consequence, we cannot exclude 

the possibility that some of our significant results are due to chance (Type 1 error).   

 Functional (Bradley and Freeman, 1982, Ellemberg et al., 1999) and anatomical (de Courten 

and Garey, 1983, Huttenlocher et al., 1982) data indicate that visual processes develop from the 

embryologic period and only reach an adult-like state  at approximately 8 to 9 years of age. Our 

results therefore concur with the body of evidence indicating greater brain vulnerability to toxic 

insult during prenatal and early childhood periods (Grandjean and Landrigan, 2006, Rice and 
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Barone, 2000). Indeed, toxic interference with sequence events underlying brain development can 

result in brain alterations even if the chemicals have no effect on a mature brain (Grandjean and 

Landrigan, 2006, Rice and Barone, 2000). Because vision develops during the perinatal and early 

childhood period, these periods appears to be a critical time for p,p’-DDT and p,p’-DDE exposure.  

p,p’-DDT and p,p’-DDE are recognized endocrine disruptors, and are reported to alter 

estrogen, androgen, and thyroid functions (Danzo, 1997, Facemire et al., 1995, Fry and Toone, 

1981, Gray et al., 2001, Guillette et al., 1994, Kelce et al., 1995, Moccia et al., 1986, T, 1992). 

Given the importance of steroid and thyroid hormones for orchestrating the complex temporal and 

regional processes of brain development, including cell proliferation, migration, differentiation, 

synaptogenesis, and myelinization (Beyer, 1999, Howdeshell, 2002, Porterfield and Hendrich, 

1993, Thompson and Potter, 2000), the p,p’-DDT and p,p’-DDE association with visual function 

may result, at least in part, from interference with endocrine functions (Colborn, 2004, Howdeshell, 

2002, Weiss, 2011). A more direct mechanism of action of p,p’-DDE exposure on brain 

development may relate to its capacity to induce sustained hyperexcitability. Thus, p,p’-DDT keeps 

voltage gated sodium channels open, thereby prolonging neuron depolarization, leading to central 

nervous system hyperexcitability (Davies et al., 2007, Narahashi and Haas, 1967). This  may also 

occur by interfering with K+ and Ca+ transport across neural membranes via ATPase inhibition 

(Matsumura and Narahashi, 1971, Matsumura and Patil, 1969). These hyperexcitability states lead 

to different neurotoxic processes, including apoptotic cell death.  

To our knowledge, only one study has assessed VEP responses associated with p,p’-DDE 

exposure in early childhood (Riva et al., 2004). In that study, p,p’-DDE and p,p’-DDT 

concentrations in maternal milk were significantly correlated with increased P100 latency at age 12 

months. However, after controlling for DHA concentrations measured in children’s blood samples, 

mother’s age, and area of residence, the partial correlation coefficient was no longer significant. 

Our contrasting results may be explained by different protocols and outcomes of interest. Riva et al. 
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only assessed  the P100 evoked at maximum contrast (100%), with no measure of amplitude (only 

latency was considered). Because most of the significant associations between p,p’-DDE exposure 

and VEP in the present study were revealed at mid- and low-contrast, our results underscore the 

need to use a VEP protocol with different contrasts to assess subtle differences in the developmental 

neurotoxicity of pollutants. 

In the current study, p,p’-DDE was associated with both increased and decreased VEP 

amplitude. In fact, the scalp-recorded VEP signal results from a summation of the excitatory and 

inhibitory postsynaptic potentials, and is generated by the synchronized activation of thousands of 

neurons. More specifically, VEP amplitude reflects both the numbers of neurons activated and the 

synchronization of their activity in response to visual stimulation (Luck, 2005). Our results 

therefore suggest that p,p’-DDE alters the complex neuronal network organization and/or function 

in the visual cortex. There is consensus that the early component N75 represents mainly primary 

visual cortex (V1) activity and is related to the information conduction time from retina to V1 (Di 

Russo et al., 2002, Di Russo et al., 2005, Saint-Amour et al., 2005), and that the P100 and N150 

components are dependent on both striate and extrastriate area activation (Di Russo et al., 2002, Di 

Russo et al., 2005, Saint-Amour et al., 2005). Consequently, the association of prenatal p,p’-DDE 

exposure with N150 alteration suggests that the p,p’-DDE impact extends to extrastriate structures. 

Because the visual cortex undergoes important restructuration between the embryologic period and 

the first few years of life, mainly due to synaptic remodeling and elimination in response to the 

visual environment (Huttenlocher et al., 1982), our findings support the concept of greater 

vulnerability to toxicant exposure during critical periods of brain plasticity. 

Due to the high intercorrelation between p,p’-DDE or p,p’-DDT and other organochlorine 

compounds the respective association with each of these compounds is statistically difficult to 

dissociate. Indeed, VEP alteration associated with p,p’-DDE prenatal exposure could not be specific 

to this chemical but also attributable to other organochlorine compounds. In addition, because of the 
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long half-life of these contaminants (i.e., many years), VEP alterations associated with p,p’-DDE 

plasma concentrations at age 5 years could be attributable to bioaccumulative exposure to 

organochlorine compounds from infancy through breastfeeding and the traditional marine diet. It is 

noteworthy that cord PCB 153 concentrations were not significantly correlated with N150 

amplitude (r = -0.08, data not shown), suggesting that the association between the N150 response 

and cord plasma p,p’-DDE is not mediated by PCB exposure. This result concurs with Ethier et al. 

(2012), who, using the same dataset as the present study, found no significant association between 

prenatal (or postnatal) exposure to PCB 153 and VEP responses at age 11 years.  

Although p,p’-DDT was banned in many countries a few decades ago, the p,p’-DDT 

molecule in the present study in Nunavik was clearly detected in 80% and 70% of cord and 

childhood plasma samples, respectively. Moreover, its breakdown product p,p’-DDE was detected 

and quantified in 100% of plasma samples. Our findings suggest that the p,p’-DDE, not p,p’-DDT, 

exposure concentrations present in Nunavik are capable of altering visual processing development. 

Regarding p,p’-DDT, it is important to note that the data distribution may have been biased by the 

fact that about 30% of the data was under the detection limit level. In this case, a value equal to half 

the limit of detection of the analytical method was used, which affected the variance, the mean and 

the distribution of the data. Although the skewed-distribution criterion was respected, this procedure 

may have affected our results and may explain why no association was found with p,p’-DDT. 

Another factor that may have affected our results is the a priori exclusion of participants who were 

premature or of low birth weight. Indeed, there is a possibility that these neurodevelopmental 

disorders were in the causal pathway between exposure and VEPs, which may have led to an 

underestimation of the associations. Our design did not allow testing this hypothesis because no 

follow-up study was conducted on these excluded participants.  

 Recent biomonitoring reports allow comparing Nunavik concentrations with those in the 

general population. Data from the Report on Human Biomonitoring of Environmental Chemicals in 
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Canada, obtained between 2007 and 2009, indicate that the p,p’-DDE geometric mean of the 

Canadian population aged 20–39 years was 94.68 µg/kg plasma lipids (HealthCanada, 2010). 

Similar exposures were measured from 2003 to 2004 in the U.S. population (CDC, 2009) including 

age group from 12 to 19 years old, which is more comparable to the present 11-year blood sample. 

The p,p’-DDE geometric mean in this U.S. population was 105 µg/kg plasma lipids, or 43% lower 

than that found in 11-year-olds in Nunavik (185.25 µg/kg plasma lipids). Although cord and 5-year-

old blood concentrations are not available in the U.S. or Canadian general populations, it is 

noteworthy that the p,p’-DDE concentration measured at age 11 years in our study corresponds 

closely to the 75th percentile of the U.S. 12–19-year-old population (167 µg/kg plasma lipids; 95% 

confidence interval = 123–240 µg/kg plasma lipids). These data suggested that around 25% of the 

general population may be exposed to p,p’-DDE concentrations in the range of those found in 

Nunavik. Of note, p,p’-DDE cord concentration in Nunavik are similar or even lower than cord 

concentrations found in other countries (Adetona et al., 2013, Patayova et al., 2013, Qu et al., 2010, 

Tan et al., 2009, Valvi et al., 2012). In other words, many populations may be exposed to p,p’-DDE 

concentrations sufficient to potentially impair the development of visual processing.  

The current study shows that p,p’-DDE exposure both pre- and postnatally during the first 

years of life may impair visual processing in pre-adolescent children. To our knowledge, this is the 

first study to demonstrate subclinical alterations in visual system function in children exposed to 

pesticides throughout their childhood development. Although this deficit is subclinical, it may 

reflect neuronal insults and subtle brain organisation damage resulting from p,p’-DDT/ p,p’-DDE 

neurotoxicity. Clinical manifestations of such neurotoxocity may be temporarily masked by 

compensatory processes and become more apparent with natural age-related decline of functions 

(Rice, 1998). Moreover, this subclinical toxicity may lead to more children with clinical deficits 

when a larger part of the population is considered (Rice, 1998). In other words, our finding may 

have more meaning when interpreted at a population level. Therefore, in order to have a more 
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accurate global picture of the integrity of brain function in children with relation to environmental 

contaminants, it is important, when assessing OCP developmental neurotoxicity, to consider 

sensory function in addition to cognitive functions.   
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Figure legend 

Figure 1. Scatterplots relating cord (A) and 5-year (B) p,p’-DDE exposures (µg/kg plasma lipids) 
to the VEP. After adjustment, cord p,p’-DDE exposure is associated with N150 amplitude increase 
at 4% of visual contrast whereas 5-year  p,p’-DDE exposure is associated with N75 amplitude 
decrease at 30% of visual contrast.  Natural log-transformed values were used for p,p’-DDE 
exposures. 
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Table 2. Intercorrelations among contaminants in cord and 11-year plasma samples.
p,p’ -DDT p,p’ -DDE Oxychlordane cis -nonachlor trans -nonachlor PCB 153
Cord 11 years Cord 11 years Cord 11 years Cord 11 years Cord 11 years Cord 11 years

p,p’ -DDT
Cord 0.49*** 0.71*** 0.48*** 0.63*** 0.51*** 0.66*** 0.51*** 0.72*** 0.53*** 0.57*** 0.41***

11 years 0.42*** 0.67*** 0.46*** 0.64*** 0.40*** 0.74*** 0.50*** 0.73*** 0.40*** 0.54***

p,p’ -DDE
Cord 0.46*** 0.84*** 0.43*** 0,77*** 0.42*** 0.87*** 0.44*** 0.89*** 0.41***

11 years 0.46*** 0.93*** 0.43*** 0.90*** 0.49*** 0.93*** 0.44*** 0.94***

Oxychlordane
Cord 0.55*** 0.85*** 0.51*** 0.96*** 0.53*** 0.88*** 0.47***

11 years 0.48*** 0.94*** 0.56*** 0.98*** 0.46*** 0.94***

cis -nonachlor
Cord 0.49*** 0.90*** 0.57*** 0.81*** 0.42***

11 years 0.55*** 0.98*** 0.42*** 0.84***

trans -nonachlor
Cord 0.88*** 0.47***

11 years 0.90***

PCB 153 
Cord 0.48***

Log transformations were performed for p,p'DDT, p,p’-DDE, Oxychlordane, cis -nonachlor, trans -nonachlor and
 PCB concentrations.
p,p’ -DDT = 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane;  
p,p’ -DDE = 1,1,-dichloro-2,2-bis(p-chlorophenyl)ethylene; 
PCB = Polychlorinated biphenyl congener IUPAC 153.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
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N Geometric Mean Arithmetic Mean SD Range
Contaminants
At birth (cord blood)
p,p’ -DDT (µg/kg plasma lipids) 146 18.27 24.45 23.20 4.46-160.40
p,p’ -DDE (µg/kg plasma lipids) 146 399.26 509.27 395.31 80.10-2239.09
PCB-153 (µg/kg plasma lipids) 146 101.65 128.84 98.35 21.60-653.60
Pb (µmol/L) 147 0.18 0.22 0.15 0.04-0.94
Hg (nmol/L) 147 76.52 103.57 78.54 9-442

At 11 years (blood sample)
p,p’ -DDT (µg/kg plasma lipids) 144 5.28 6.93 5.68 1.52-43.55
p,p’ -DDE (µg/kg plasma lipids) 146 185.25 268.54 265.14 30.43-1803.92
PCB-153 (µg/kg plasma lipids) 146 50.43 79.8 95.23 4.13-809.52
Pb (µmol/L) 147 0.10 0.12 0.11 0.02-0.62
Hg (nmol/L) 147 13.86 22.26 24.76 0.2-170

Nutrients
At birth (cord blood)
Selenium (µmol/L) 135 4.17 4.65 2.54 1.90-20
DHA (% phospholipids) 144 3.42 3.65 1.26 1.12-7.73

At 11 years (blood sample)
Selenium (µmol/L) 147 2.33 2.52 1.26 0.86-12
DHA (% phospholipids) 145 2.18 2.37 0.97 0.60-5.51

p,p’ -DDE = 1,1,-dichloro-2,2-bis(p-chlorophenyl)ethylene;  
PCB = Polychlorinated biphenyl congener IUPAC 153; Pb = Lead; Hg = Mercury; 
DHA = Docosahexaenoic acid.

Table 3. Descriptive statistics for the biological samples

p,p’ -DDT = 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane; 
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