P. Ehrlich, Collected Study on Immunology, 1906.

V. Torchilin, Multifunctional nanocarriers???, Advanced Drug Delivery Reviews, vol.58, issue.14, pp.1532-1555, 2006.
DOI : 10.1016/j.addr.2006.09.009

A. Hoffman, The origins and evolution of ???controlled??? drug delivery systems, Journal of Controlled Release, vol.132, issue.3, pp.153-163, 2008.
DOI : 10.1016/j.jconrel.2008.08.012

S. Liu, R. Maheshwari, and K. Kiick, Polymer-Based Therapeutics, Macromolecules, vol.42, issue.1, pp.3-13, 2009.
DOI : 10.1021/ma801782q

Y. Malam, M. Loizidou, and A. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer, Trends in Pharmacological Sciences, vol.30, issue.11, pp.592-599, 2009.
DOI : 10.1016/j.tips.2009.08.004

R. Misra, S. Acharya, and S. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy, Drug Discovery Today, vol.15, issue.19-20, pp.842-850, 2010.
DOI : 10.1016/j.drudis.2010.08.006

J. Park, S. Lee, J. Kim, K. Park, K. Kim et al., Polymeric nanomedicine for cancer therapy, Progress in Polymer Science, vol.33, issue.1, pp.113-137, 2008.
DOI : 10.1016/j.progpolymsci.2007.09.003

F. Chiellini, A. Piras, C. Errico, and E. Chiellini, Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications, Nanomedicine, vol.3, issue.3, pp.367-393, 2008.
DOI : 10.2217/17435889.3.3.367

H. Fisher, S. Erdmann, and . E. Holler, An unusual polyanion from Physarum polycephalum that inhibits homologous DNA-polymerase .alpha. in vitro, Biochemistry, vol.28, issue.12, pp.28-5219, 1989.
DOI : 10.1021/bi00438a045

S. Cammas, G. Ph, J. Girault, E. Holler, Y. Gache et al., Natural poly(L-malic acid): NMR shows a poly(3-hydroxy acid)-type structure, Macromolecules, vol.26, issue.17, pp.4681-4684, 1993.
DOI : 10.1021/ma00069a041

M. García-alvarez, M. De-ilarduya, A. Portilla, J. , A. A. Muñoz-guerra et al., Ionic Complexes of Biotechnological Polyacids with Cationic Surfactants, Macromolecular Symposia, vol.7, issue.1, 2008.
DOI : 10.1002/masy.200851312

A. Lanz-landázuri, M. García-alvarez, J. Portilla-arias, M. De-ilarduya, A. Patil et al., Poly(methyl malate) Nanoparticles: Formation, Degradation, and Encapsulation of Anticancer Drugs, Macromolecular Bioscience, vol.5, issue.10, pp.1370-1377, 2011.
DOI : 10.1002/mabi.201100107

A. Lanz-landázuri, M. García-alvarez, J. Portilla-arias, M. De-ilarduya, A. Holler et al., Modification of Microbial Polymalic Acid With Hydrophobic Amino Acids for Drug-Releasing Nanoparticles, Macromolecular Chemistry and Physics, vol.5, issue.15, pp.1623-1631, 2012.
DOI : 10.1002/macp.201200134

J. Portilla-arias, M. García-alvarez, M. De-ilarduya, A. Muñoz-guerra, and S. , Ionic Complexes of Biosynthetic Poly(malic acid) and Poly(glutamic acid) as Prospective Drug-Delivery Systems, Macromolecular Bioscience, vol.23, issue.7, pp.897-906, 2007.
DOI : 10.1002/mabi.200700025

J. Portilla-arias, M. García-alvarez, M. De-ilarduya, A. Holler, E. Galbis et al., Synthesis, Degradability, and Drug Releasing Properties of Methyl Esters of Fungal Poly(??,L-malic acid), Macromolecular Bioscience, vol.7, issue.6, pp.540-550, 2008.
DOI : 10.1002/mabi.200700248

K. Black, J. Ljubimova, A. Ljubimov, and E. Holler, Polymalic acid based nanoconjugate for imaging, 2012.

H. Ding, J. Ljubimova, E. Holler, and K. Black, Poly(beta-malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery, 2009.

H. Ding, S. Inoue, A. Ljubimov, R. Patil, J. Portilla-arias et al., Inhibition of brain tumor growth by intravenous poly(??-L-malic acid) nanobioconjugate with pH-dependent drug release, Proceedings of the National Academy of Sciences, vol.107, issue.42, pp.107-18143, 2010.
DOI : 10.1073/pnas.1003919107

H. Ding, J. Portilla-arias, R. Patil, K. Black, J. Ljubimova et al., The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery, Biomaterials, vol.32, issue.22, pp.5269-5278, 2011.
DOI : 10.1016/j.biomaterials.2011.03.073

H. Ding, J. Portilla-arias, R. Patil, K. Black, J. Ljubimova et al., Distinct mechanisms of membrane permeation induced by two polymalic acid copolymers, Biomaterials, vol.34, issue.1, pp.217-225, 2013.
DOI : 10.1016/j.biomaterials.2012.08.016

J. Arias, S. Inoue, T. Daniels-wells, K. Black, E. Holler et al., Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer, J Control Release, issue.3, pp.171-322, 2013.

M. Fujita, N. Khazenzon, A. Ljubimov, B. Lee, I. Virtanen et al., Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis, Angiogenesis, vol.438, issue.4, pp.183-191, 2006.
DOI : 10.1007/s10456-006-9046-9

M. Fujita, B. Lee, N. Khazenzon, M. Penichet, K. Wawrowsky et al., Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(??-l-malic acid), Journal of Controlled Release, vol.122, issue.3, pp.356-363, 2007.
DOI : 10.1016/j.jconrel.2007.05.032

S. Inoue, H. Ding, J. Portilla-arias, J. Hu, B. Konda et al., Polymalic Acid-Based Nanobiopolymer Provides Efficient Systemic Breast Cancer Treatment by Inhibiting both HER2/neu Receptor Synthesis and Activity, Cancer Research, vol.71, issue.4, pp.1454-1464, 2011.
DOI : 10.1158/0008-5472.CAN-10-3093

S. Inoue, H. Ding, E. Holler, K. Black, and J. Ljubimova, Polymalic acid-based nanobiopolymer compositions and methods for treating cancer, PCT Int Appl. WO, p.1, 2012.

S. Inoue, R. Patil, J. Portilla-arias, H. Ding, B. Konda et al., Nanobiopolymer for Direct Targeting and Inhibition of EGFR Expression in Triple Negative Breast Cancer, PLoS ONE, vol.12, issue.2, pp.1-9, 2012.
DOI : 10.1371/journal.pone.0031070.t001

B. Kateb, K. Chiu, K. Black, V. Yamamoto, B. Khalsa et al., Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?, NeuroImage, vol.54, pp.5106-5124, 2011.
DOI : 10.1016/j.neuroimage.2010.01.105

B. Lee, M. Fujita, N. Khazenzon, K. Wawrowsky, S. Wachsmann-hogiu et al., -malic acid) for Drug Delivery, Bioconjugate Chemistry, vol.17, issue.2, pp.317-326, 2006.
DOI : 10.1021/bc0502457

URL : https://hal.archives-ouvertes.fr/hal-00857436

J. Ljubimova, K. Black, and E. Holler, Polymalic acid-based multifunctional drug delivery system, PCT Int. Appl. WO, p.2, 2005.

J. Ljubimova, M. Fujita, N. Khazenzon, B. Lee, S. Wachsmann-hogiu et al., Nanoconjugate based on polymalic acid for tumor targeting, Chemico-Biological Interactions, vol.171, issue.2, pp.195-203, 2008.
DOI : 10.1016/j.cbi.2007.01.015

J. Ljubimova and E. Holler, Biocompatible nanopolymers: the next generation of breast cancer treatment?, Nanomedicine, vol.7, issue.10, pp.1467-1470, 2012.
DOI : 10.2217/nnm.12.115

E. Holler, Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment, J Drug Target, vol.21, issue.10, pp.956-967, 2013.

R. Patil, J. Portilla-arias, H. Ding, S. Inoue, B. Konda et al., Temozolomide Delivery to Tumor Cells by a Multifunctional Nano Vehicle Based on Poly(??-L-malic acid), Pharmaceutical Research, vol.307, issue.11, pp.2317-2329, 2010.
DOI : 10.1007/s11095-010-0091-0

R. Patil, E. Holler, K. Black, and J. Ljubimova, Drug delivery of Temozolomide for systemic based treatment of cancer, PCT Int Appl. WO, pp.72240-72241, 2011.

R. Patil, J. Portilla-arias, H. Ding, B. Konda, A. Rekechenetskiy et al., Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(??-L-Malic Acid), International Journal of Molecular Sciences, vol.13, issue.12, pp.11681-11693, 2012.
DOI : 10.3390/ijms130911681

J. Portilla-arias, R. Patil, J. Hu, H. Ding, K. Black et al., Nanoconjugate platforms development based in, 2010.

Y. Ohya, K. Hirai, and T. Ouchi, Cell specific anticancer drug delivery using poly(?malic acid)/saccharide conjugate, Proceed Intern Symp Control Rel Bioact Mater, vol.19, pp.68-69, 1992.

K. Ichinose, K. Nakata, N. Ishii, Y. Ohya, T. Ouchi et al., Cell-typespecific augmentation of the tumoricidal activity of polymeric adriamycin combined with galactosamine, Acta Medica Nagasakiensia, vol.43, issue.12, pp.12-15, 1998.

M. Bakr, I. Mda, M. Sarker, M. Islam, and M. Hamed, Malic acid-propane 1,2-diol copolyester as an enteric coating material, J Polym Mater, vol.19, pp.87-92, 2000.

M. Bakr, M. Islam, M. Karim, G. Sadik, and M. Biswas, Drug delivery profile of malic acid-phthalic acid-propane 1,2-diol copolyester, J Polym Mater, vol.17, pp.467-472, 2002.

M. Bakr, S. Khatum, and M. Islam, In vitro drug release profile of malic acidbutane 1,4-diol copolyester, J Polym Mater, vol.20, pp.337-342, 2003.

B. He and M. Chan-park, -RS-??-malic acid), Macromolecules, vol.38, issue.20, pp.8227-8234, 2005.
DOI : 10.1021/ma050545j

URL : https://hal.archives-ouvertes.fr/tel-01108652

B. He, E. Wan, and M. Chan-park, Synthesis and Degradation of Biodegradable Photo-Cross-Linked Poly(??,??-malic acid)-Based Hydrogel, Chemistry of Materials, vol.18, issue.17, pp.3946-3955, 2006.
DOI : 10.1021/cm0526516

Y. Poon, Y. Cao, Y. Zhu, Z. Judeh, and M. Chan-park, Addition of ??-Malic Acid-Containing Poly(ethylene glycol) Dimethacrylate To Form Biodegradable and Biocompatible Hydrogels, Biomacromolecules, vol.10, issue.8, pp.2043-2052, 2009.
DOI : 10.1021/bm801367n

B. He, J. Bei, and S. Wang, Synthesis and characterization of a functionalized biodegradable copolymer: poly(l-lactide-co-RS-??-malic acid), Polymer, vol.44, issue.4, pp.989-994, 2003.
DOI : 10.1016/S0032-3861(02)00831-5

B. He, J. Bei, and S. Wang, Morphology and degradation of biodegradable poly(L-lactide-co-?-malic acid), Polymers for Advanced Technologies, vol.37, issue.9, pp.645-652, 2003.
DOI : 10.1002/pat.387

B. He, Y. Wan, J. Bei, and S. Wang, Synthesis and cell affinity of functionalized poly(l-lactide-co-??-malic acid) with high molecular weight, Biomaterials, vol.25, issue.22, pp.5239-5247, 2004.
DOI : 10.1016/j.biomaterials.2003.12.030

B. He, Y. Poon, J. Feng, and M. Chan-park, -RS-??-malic acid), Journal of Biomedical Materials Research Part A, vol.67, issue.1, pp.254-263, 2008.
DOI : 10.1002/jbm.a.31793

URL : https://hal.archives-ouvertes.fr/tel-01108652

K. Lai, B. He, and Z. Gu, PREPARATION AND CELL COMPATIBILITY OF FUNCTIONALIZED BIODEGRADABLE POLY(DL-LACTIDE-co-RS-??-MALIC ACID), Chinese Journal of Polymer Science, vol.26, issue.02, pp.177-186, 2008.
DOI : 10.1142/S0256767908002819

Y. Liu, W. Wang, J. Wang, Y. Wang, Z. Yuan et al., Blood compatibility evaluation of poly(d,l-lactide-co-beta-malic acid) modified with the GRGDS sequence, Colloids and Surfaces B: Biointerfaces, vol.75, issue.1, pp.370-376, 2010.
DOI : 10.1016/j.colsurfb.2009.09.011

W. Wang, Y. Liu, J. Wang, X. Jia, L. Wang et al., -??-Malic Acid) with Extended Carboxyl Arms Offering Better Cell Affinity and Hemacompatibility for Blood Vessel Engineering, Tissue Engineering Part A, vol.15, issue.1, pp.65-73, 2009.
DOI : 10.1089/ten.tea.2007.0394

S. Stolnik, M. Davies, L. Illum, S. Davis, M. Boustta et al., The preparation of sub-200 nm biodegradable colloidal particles from poly(??-malic acid-co-benzyl malate) copolymers and their surface modification with Poloxamer and Poloxamine surfactants, Journal of Controlled Release, vol.30, issue.1, pp.57-67, 1994.
DOI : 10.1016/0168-3659(94)90044-2

S. Stolnik, M. Garnett, M. Davies, L. Illum, M. Boustta et al., The colloidal properties of surfactant-free biodegradable nanospheres from poly(?-malic acid-co-benzyl malate)s and poly(lactic acid-co-glycolide)Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.235-245, 1995.

S. Stolnik, M. Garnett, M. Davies, L. Illum, S. Davis et al., Nanospheres prepared from poly(?-malic acid) benzyl ester copolymers: evidence for their in vitro degradation, Journal of Materials Science: Materials in Medicine, vol.4, issue.3, pp.161-166, 1996.
DOI : 10.1007/BF00121255

S. Osanai and K. Nakamura, Effects of complexation between liposome and poly(malic acid) on aggregation and leakage behaviour, Biomaterials, vol.21, issue.9, pp.867-876, 2000.
DOI : 10.1016/S0142-9612(99)00210-0

B. Nottelet, D. Tommaso, C. Mondon, K. Gurny, R. Möller et al., Fully biodegradable polymeric micelles based on hydrophobic- and hydrophilic-functionalized poly(lactide) block copolymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.126, issue.15, pp.3244-3254, 2010.
DOI : 10.1002/pola.24100

URL : https://hal.archives-ouvertes.fr/hal-00519455

L. Wang, X. Jia, X. Liu, Z. Yuan, and J. Huang, Synthesis and characterization of a functionalized amphiphilic diblock copolymer: MePEG-b-poly(DL-lactide-co-RS-??-malic acid), Colloid and Polymer Science, vol.28, issue.3, pp.273-281, 2006.
DOI : 10.1007/s00396-006-1560-1

L. Wang, K. Neoh, E. Kang, B. Shuter, and S. Wang, Biodegradable magnetic-fluorescent magnetite/poly(dl-lactic acid-co-??,??-malic acid) composite nanoparticles for stem cell labeling, Biomaterials, vol.31, issue.13, pp.3502-3511, 2010.
DOI : 10.1016/j.biomaterials.2010.01.081

J. Ying, N. Erathodiyil, A. Lin, and S. Selvin, Polymer coated magnetic particles, PCT Int Appl. WO, vol.2011053252, issue.A1, 2011.

C. Bouclier, L. Moine, H. Hillaireau, V. Marsaud, E. Connault et al., Physicochemical Characteristics and Preliminary in Vivo Biological Evaluation of Nanocapsules Loaded with siRNA Targeting Estrogen Receptor Alpha, Biomacromolecules, vol.9, issue.10, pp.2881-2890, 2008.
DOI : 10.1021/bm800664c

X. Yang, J. Grailer, S. Pilla, D. Steeber, and S. Gong, Tumor-Targeting, pH-Responsive, and Stable Unimolecular Micelles as Drug Nanocarriers for Targeted Cancer Therapy, Bioconjugate Chemistry, vol.21, issue.3, pp.496-504, 2010.
DOI : 10.1021/bc900422j

Z. Zhao, M. He, L. Yin, J. Bao, L. Shi et al., Biodegradable Nanoparticles Based on Linoleic Acid and Poly(??-malic acid) Double Grafted Chitosan Derivatives as Carriers of Anticancer Drugs, Biomacromolecules, vol.10, issue.3, pp.565-572, 2009.
DOI : 10.1021/bm801225m

B. Wang, C. He, C. Tang, and C. Yin, Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers, Biomaterials, vol.32, issue.20, pp.4630-4638, 2011.
DOI : 10.1016/j.biomaterials.2011.03.003

J. Wang, C. Ni, Y. Zhang, M. Zhang, W. Li et al., Preparation and pH controlled release of polyelectrolyte complex of poly(l-malic acid-co-d,l-lactic acid) and chitosan, Colloids and Surfaces B: Biointerfaces, vol.115, pp.275-279, 2014.
DOI : 10.1016/j.colsurfb.2013.12.018

R. Pounder, H. Willcock, N. Ieong, O. Reilly, R. Dove et al., Stereocomplexation in novel degradable amphiphilic block copolymer micelles of poly(ethylene oxide) and poly(benzyl ??-malate), Soft Matter, vol.9, issue.22, pp.10987-10993, 2011.
DOI : 10.1039/C1PY00254F

R. Shen, P. Du, B. Mu, and P. Liu, Biocompatible and Biodegradable Polymeric Nanocapsules from Poly(<I>??</I>,<I>??</I>-malic acid)-Grafted Nano-silica Templates, Designed Monomers & Polymers, vol.14, issue.1, pp.39-45, 2011.
DOI : 10.1163/138577210X541187

M. Schott, M. Domurado, L. Leclercq, C. Barbaud, and D. Domurado, Solubilization of Water-Insoluble Drugs Due to Random Amphiphilic and Degradable Poly(dimethylmalic acid) Derivatives, Biomacromolecules, vol.14, issue.6, pp.1936-1944, 2013.
DOI : 10.1021/bm400323c

URL : https://hal.archives-ouvertes.fr/hal-01003204

R. Bizzarri, F. Chiellini, R. Solaro, E. Chiellini, S. Cammas-marion et al., Synthesis and Characterization of New Malolactonate Polymers and Copolymers for Biomedical Applications, Macromolecules, vol.35, issue.4, pp.1215-1223, 2002.
DOI : 10.1021/ma0111257

Z. Huang, V. Laurent, . Chétouani, J. Ljubimova, E. Holler et al., New functional and bio-degradable nanoparticles based on poly(malic acid) derivates for site-specific anti-cancer drug delivery, Int J Pharm, vol.243, pp.84-92, 2012.

P. Loyer, W. Bedhouche, Z. Huang, and S. Cammas-marion, Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro, International Journal of Pharmaceutics, vol.454, issue.2, pp.727-737, 2013.
DOI : 10.1016/j.ijpharm.2013.05.060

URL : https://hal.archives-ouvertes.fr/hal-00861299

M. Martinez-barbosa, S. Cammas, M. Appel, and G. Ponchel, Investigation of the Degradation Mechanisms of Poly(malic acid) Esters in Vitro and Their Related Cytotoxicities on J774 Macrophages, Biomacromolecules, vol.5, issue.1, pp.137-143, 2004.
DOI : 10.1021/bm0300608

L. Reddy and P. Couvreur, Nanotechnology for therapy and imaging of liver diseases, Journal of Hepatology, vol.55, issue.6, pp.1461-1466, 2011.
DOI : 10.1016/j.jhep.2011.05.039

L. Droumaguet, B. , N. J. Brambilla, D. Mura, S. Maksimenko et al., Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: Application to Cancer and Alzheimer???s Disease, ACS Nano, vol.6, issue.7, pp.5866-5879, 2012.
DOI : 10.1021/nn3004372

Y. Patil, U. Toti, A. Khdair, L. Ma, and J. Panyam, Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery, Biomaterials, vol.30, issue.5, pp.859-866, 2009.
DOI : 10.1016/j.biomaterials.2008.09.056

S. Kim, S. Cho, Y. Lee, and L. Chu, Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems, Macromolecular Research, vol.12, issue.7, pp.646-655, 2007.
DOI : 10.1007/BF03218945

W. Yang, Y. Cheng, T. Xu, X. Wang, and L. Wen, Targeting cancer cells with biotin???dendrimer conjugates, European Journal of Medicinal Chemistry, vol.44, issue.2, pp.862-868, 2009.
DOI : 10.1016/j.ejmech.2008.04.021