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 

Abstract—In this paper, the accuracy of the Singularity 

Expansion Method (SEM) used for antenna characterization is 

investigated. A well-known limitation of the SEM is that pole 

extraction is very sensitive to noise. A comparison between two 

main methods of pole extraction is presented. The Matrix Pencil 

(MP) method and the Cauchy’s method are used to extract poles 

from the radiated fields of a dipole antenna and two bowtie 

antennas. Results are presented for simulated fields and the 

robustness to a white Gaussian noise is also analyzed. We show 

that the MP method allows working with lower SNR than 

Cauchy’s method and is more accurate for field reconstruction. 

 
Index Terms—Antenna characterization, Cauchy’s method, 

complex natural resonance, matrix pencil method, poles, residues, 

singularity expansion method. 

 

I. INTRODUCTION 

OR many years, the Singularity Expansion Method (SEM) 

[1], introduced by C. E. Baum in 1971, has been widely 

used in the radar domain. The SEM represents a solution of an 

electromagnetic problem in terms of singularities (poles) in the 

complex frequency plane. Since singularities are independent 

of the direction of the incoming wave, the SEM has been 

widely studied for target identification [2][3]. The information 

on poles can give some indications on the general shape and 

the constitution of the illuminated target. Moreover, the SEM 

has been used in the antenna domain such as in [4] where the 

SEM formalism has been applied for modeling the time 

response of the current of a thin wire antenna. In [5], Barnes 

analyses the dipole antenna response to an electromagnetic 

pulse using the SEM. More recently, this method has been 

applied in both time and frequency domains to model antenna 

 
Manuscript received December 10, 2012. This work was financially 

supported in part by the Direction Générale de l‟Armement (DGA).  

François Sarrazin and Ala Sharaiha are with the Institute of Electronics 

and Telecommunications of Rennes, University of Rennes 1, Rennes, France 

(corresponding author to provide phone: +33-223-233-374; e-mail: 

francois.sarrazin@univ-rennes1.fr, ala.sharaiha@univ-rennes1.fr). 

Philippe Pouliguen is with the Direction Générale de l‟Armement (DGA), 

MRIS, Paris, France, (e-mail: philippe.pouliguen@dga.defense.gouv.fr). 

Patrick Potier and Janic Chauveau are with the Direction Générale de 

l‟Armement (DGA), MI, Bruz, France, (e-mail: 

patrick.potier@dga.defense.gouv.fr, janic.chauveau@dga.defense.gouv.fr). 

 

effective length, in order to fully describe the antenna radiation 

patterns, directivity and gain using only a few sets of 

parameters (poles and residues) [6][7]. In [6][7], the authors 

extract poles from the whole antenna response. But, according 

to the theory of C.E. Baum [1], physics phenomena can be 

observed only in the late time antenna response. In this paper, 

we focus on the physical approach of the SEM and only the 

late time response is considered. 

The well-known limitation of the SEM is that pole 

extraction is very sensitive to noise. In transient domain, there 

are two main methods to extract poles from the antenna 

electromagnetic response. The first one is the well-known 

Prony‟s method introduced by Baron de Prony in 1795 [8]. 

This method has been modified to be used on noisy data using 

a Least Square (LS) approach in 1950 [9] and a Total Least 

Square (TLS) approach in 1987 [10]. In 1990, Hua and Sarkar 

suggested the Matrix Pencil (MP) method [11] also based on a 

TLS approach. They have compared Prony and MP methods 

and have shown that the MP method is more robust to noise 

than Prony‟s algorithm [12]. This has been verified on noisy 

antenna responses [13]. Moreover, the MP method is 

computationally more efficient [14]. More details on MP are 

given in appendix I. In the frequency domain, the main way to 

extract poles of a transfer function is the Cauchy‟s method 

developed in 1821 by Cauchy [15]. A TLS approach has also 

been used to improve its robustness to noise [16]. More details 

on Cauchy‟s method are given in appendix II. MP and Cauchy 

methods are the two main efficient methods of pole extraction, 

in transient and frequency domains, respectively, but there are 

few works dealing with their comparison [17]. 

The objective of this paper is to determine which method is 

the most appropriate to extract poles for antenna 

characterization by using either the Total Least Square Matrix 

Pencil (TLS MP) method in the time domain or the Total Least 

Square Cauchy (TLS Cauchy) method in the frequency 

domain. In section II, the SEM is presented. Next, in section 

III, the two methods are applied to noiseless fields radiated by 

three different antennas: a narrow band dipole antenna and two 

Ultra Wide Band (UWB) bowtie antennas with different flare 

angles. To study the robustness of these methods in the 

presence of noise, two different kinds of noise are added to the 

simulated fields and results are compared in section IV. 
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II. SEM THEORY 

The SEM was developed to describe the global behavior of 

an object‟s response excited by an electromagnetic wave. In 

the time domain, this response is composed of two successive 

parts. The first one is called the early time response and is 

mainly due to the excitation impulse. The duration ET  of this 

early time response depends on the pulse duration PT  and the 

greatest dimension D  of the antenna as PE TcDT  /  where 

c  is the speed of light. The second part, called the late time 

response, occurs after the early time response and is only due 

to the radiation of the induced current propagated on the 

antenna after its illumination. The SEM allows modeling the 

late time response of an object as a decaying exponential sum 

as: 
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where )(ty  is the response, ns  is the n
th

 pole, 
nR  is the 

residue associated to the n
th

 pole and M  is the number of 

poles. In frequency domain, SEM allows modeling the transfer 

function )(sH  of the antenna as: 
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where s  is the Laplace complex variable. Each pole is defined 

as: 

 

nnn js    (3) 

 

where n  is the negative damping coefficient of the n
th

 pole 

and n  is the resonant pulsation of the n
th

 pole.  

III. POLE EXTRACTION FROM NOISELESS RADIATED ANTENNA 

RESPONSES  

This section presents a comparison between the two 

methods applied to fields radiated by three antennas: a dipole 

and two bowtie antennas shown in Fig. 1. Their lengths are 

L = 33.75 mm. The diameter of the dipole is D = 1.12 mm, so 

the ratio L/D = 30. Its gap length is 1.12 mm and the 

impedance of its lumped port is 73 Ω. Bowtie antennas have 

two different flare angles: 20° and 45° and the impedance of 

their lumped port is 200 Ω. These antennas are simulated using 

CST Microwave Studio [18] with transient solver. A power 

source is used and the excitation signal is a Gaussian pulse. A 

far field probe is used to measure the electric field in the 

boresight direction at a distance R = 2 m. 

A. Dipole Antenna 

The field radiated by the dipole antenna is shown in Fig. 2. 

The MP algorithm is directly applied on the late time transient 

radiated field of the dipole antenna whereas the Cauchy‟s 

   

a. Dipole b. 20° Bowtie c. 45° Bowtie 

Fig. 1.  Geometry of the three considered antennas. 

  

 
Fig. 2.  Simulated transient electric far field of the dipole antenna in the 

boresight direction. 

  

 
Fig. 3.  Poles extracted from transient simulated electric far field of the dipole 

antenna with MP and Cauchy methods in a complex plane. 

  

 
Fig. 4.  Residues extracted from transient simulated electric far field of the 

dipole antenna with MP and Cauchy methods in a complex plane. 
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algorithm is used on the frequency radiated field obtained by a 

Fast Fourier Transform (FFT). Results of both extractions are 

shown in Fig. 3 and Fig. 4 for poles and residues, respectively. 

Three pairs of poles and residues are extracted by the two 

methods and their agreement is very good (relative difference 

less than 1 %). Resonant frequencies of the poles are 

represented using black lines on its input impedance in Fig. 5. 

We can see that these poles correspond almost to resonances 

of the dipole antenna at 2/ , 2/3  and 2/5 , where   is 

the wavelength in free space. So all extracted poles have 

physical meanings. Late time radiated fields are reconstructed 

using these two different sets of poles and residues, extracted 

with MP and Cauchy methods, and (1). Results are presented 

in Fig. 6. The three curves are close; the Normalized Mean 

Square Error (NMSE) is less than 3 % for both methods. In 

Fig. 6, only the late time response of the dipole antenna is 

presented whereas in Fig. 2 the entire radiated field is shown. 

The early time duration is 0.2 ns. In Fig. 3, the marker size 

depends on the weight of each pole. The weight is computed 

as the ratio between residue and damping coefficient of the 

pole and is normalized by the maximum weight. This 

representation is a good way to estimate the contribution of 

each pole [3]. In Table I, NMSE of the dipole responses 

reconstructed using only some of the physical poles extracted 

are presented. It shows that the pole 2 is the most important 

contribution to the late time dipole response, then the pole 1 

and finally the pole 3. MP and Cauchy methods allow 

extracting the same physical poles from the noiseless field 

radiated by a dipole antenna. Moreover, it is possible to 

reconstruct the radiated field with a very small error. It means 

that a 6-poles set is enough to accurately model the late time 

response of a dipole antenna.  

B. Bowtie Antenna with 20° flare angle° 

Fig. 7 shows the field radiated by the bowtie antenna with 

flare angle equal to 20°. This antenna has a wider band than 

the dipole antenna. In fact, larger flare angles correspond to 

wider bandwidths. Since the antenna is less resonant, it is more 

difficult to define which poles have physical meanings when 

extracted by the two methods. In order to select poles 

extracted in the time domain, we use the Window Moving 

Technique (WMT) also known as Time-Frequency analysis 

[19][20]. The idea of the WMT is to move a time window with 

a given duration through the entire signal by small time steps. 

The minimum time step is equal to the sample period. MP 

method is applied on each time window. The assumption is 

that, depending on the window, the position of the 

 
Fig. 7.  Simulated transient electric far field of the bowtie antenna in the 

boresight direction. 

  

 
Fig. 6.  Radiated fields of the dipole antenna, simulated and reconstructed 

using Cauchy poles and Matrix Pencil poles. 

  

 
Fig. 8.  Poles extracted from simulated transient electric far field of the 

bowtie 20° antenna with MP and Cauchy methods in a complex plane. 

  

TABLE I 

NMSE OF THE RECONSTRUCTED DIPOLE RESPONSE 

Poles 1-2-3 1-2 1-3 2-3 2 

NMSE (%) 2.7 6.2 92 19.5 24.5 

 

 
Fig. 5.  Complex impedance of the dipole antenna. Black lines represent 

resonant frequencies of extracted poles. 
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mathematical poles will change from window to window, 

whereas the physical poles will remain essentially unchanged. 

To improve pole extraction in the frequency domain, the 

frequency radiated field is split into two responses (from 1 to 7 

GHz and from 7 to 23 GHz). In this paper, subbands have 

been selected empirically after several tests. However, a 

systematic approach relating the resonant behavior of the 

antenna to the needed number and size of the subbands is 

under investigation. The Cauchy‟s algorithm is applied 

separately on these two subbands. Each subband contains only 

a few poles so it is easier to extract them accurately. Residues 

are then computed again using the extracted poles in each 

subband and the entire response in order to accurately model 

the complete response. Poles extracted with the two methods 

are shown in Fig. 8. Three pairs of poles are extracted by the 

two methods and they are in very good agreement. A 

maximum relative error of 1 % is found for the resonant 

frequencies of these poles whereas a relative error varying 

from 1 to 3 % is obtained for the damping coefficients. 

Resonant frequencies of the poles extracted with the MP 

algorithm are represented with a black line on the antenna‟s 

input impedance in Fig. 9. We can see that these frequencies 

mainly correspond to the resonances of the antenna input 

impedance, i.e. when its imaginary part is close to zero. 

Associated residues are presented in Fig. 10. Late time 

radiated field is reconstructed using poles and residues 

extracted with MP and Cauchy methods and results are shown 

in Fig. 11. The three curves are overlapped. NMSE with the 

two reconstructed fields are less than 4 %. Therefore, it is 

possible to model the late time response of this wideband 

antenna using only a set of 6 poles and residues. NMSE of the 

reconstructed fields using only some poles are presented in the 

Table II. It shows that the pole 2 is still the dominant one 

followed by the pole 3. Note that even if the pole 1 has the 

strongest damping coefficient, it provides the smallest 

contribution to the radiated field. 

C. Bowtie Antenna with 45° flare angle 

The field radiated by the bowtie antenna with flare angle equal 

to 45° is shown in Fig. 12. This UWB bowtie antenna has a 

much wider band than the previous one. Therefore, we need to 

use the WMT in the transient domain and split the frequency 

 
Fig. 11.  Radiated fields of the bowtie antenna, simulated and reconstructed 

using Cauchy poles and Matrix Pencil poles. 

  

 
Fig. 10.  Residues extracted from simulated transient electric far field of the 

bowtie antenna with MP and Cauchy methods in a complex plane. 

  

 
Fig. 9.  Complex impedance of the bowtie antenna. Black lines represent 

resonant frequencies of extracted poles. 

 

  

 
Fig. 12.  Simulated transient electric far field of the 45° bowtie antenna in the 

boresight direction. 

  

TABLE II 

NMSE OF THE RECONSTRUCTED BOWTIE 20° RESPONSE 

Poles 1-2-3 1-2 1-3 2-3 2 

NMSE (%) 4 26 80 12 33 

 

TABLE III 

NMSE OF THE RECONSTRUCTED BOWTIE 45° RESPONSE 

Poles 1-2-3 1-2 1-3 2-3 2 

NMSE (%) 2.5 54 98 4.5 60 
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response into three subbands in order to extract the physical 

poles presented in Fig. 13. The number of extracted poles is 

unchanged but damping coefficients are much larger in 

absolute value than for the previous bowtie antenna, especially 

for the third pole (around -35.10
9
 Neper/s). The resonant 

frequencies, extracted with the MP method, are represented 

with a black line on the impedance of the antenna in Fig. 14. 

Associated residues are presented in Fig. 15 and they are in 

very good agreement. Late time responses reconstructed using 

the whole poles are presented in Fig. 16. The NMSE is less 

than 3% for both methods. NMSE of the reconstructed fields 

using only a few poles are presented in Table III. They 

confirm the weight of each pole presented in Fig. 13, i.e. the 

pole 2 is the dominant one, followed by the poles 3 and 1. 

IV. POLE EXTRACTION FROM NOISY RADIATED ANTENNA 

RESPONSES  

Behaviors of MP and Cauchy methods in presence of noise 

are now compared. We consider two different approaches as 

presented in the flowcharts in Fig. 17. The first one considers 

that the original data is in the transient domain and a noise is 

added to the transient simulated field to obtain a noisy 

response with a desired Signal to Noise Ratio (SNR). Then, 

poles are extracted directly with MP and using a FFT. In the 

second one, it is considered that the original data is in the 

frequency domain, so the noise is added to the frequency 

simulated field. The Cauchy‟s method is then directly applied 

and an IFFT is performed to use MP. Two different kinds of 

noise are considered: a White Gaussian Noise (WGN) and a 

mixed noise composed of WGN, impulse noise and single 

carrier noise. 

Due to the noise and the overestimation of the number of 

poles to be extracted, some poles can be very different of those 

extracted from the noiseless case. These poles are called 

 
Fig. 15.  Residues extracted from simulated transient electric far field of the 

bowtie antenna with MP and Cauchy in a complex plane. 

  

 
Fig. 16.  Radiated fields of the bowtie antenna, simulated and reconstructed 

using Cauchy poles and Matrix Pencil poles. 
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Fig. 17.  The flowcharts of the two approaches (1: transient, 2: frequency). 

  

 
Fig. 13.  Poles extracted from simulated transient electric far field of the 

bowtie 45° antenna with MP and Cauchy methods in a complex plane. 

  

 
Fig. 14.  Complex impedance of the bowtie antenna. Black lines represent 

resonant frequencies of extracted poles. 
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“mathematical” because they do not have a physical sense. 

Since the aim of this study is to define which method is the 

best to extract physical poles of an antenna, we only kept poles 

close to those extracted from the noiseless field. We consider a 

pole well extracted when its resonant frequency is around 5 % 

of the original one, i.e. poles extracted from noiseless data, 

and damping coefficient around 30 %. Using these poles 

extracted from noisy data, the radiated field is reconstructed 

and the NMSE compared to the simulated field is computed. 

These operations (noise addition, pole extraction, field 

reconstruction and NMSE computation) are repeated for each 

SNR value from -10 to 60 dB with a 5 dB step. For each SNR 

value, these operations are repeated 100 times to limit the 

random effect of the noise. An average NMSE is then 

computed using the 100 NMSE values.  

Results for the WGN case for the first and second approach 

are given in Fig. 18 and Fig. 19, respectively. The two 

approaches provide very similar results. In fact, adding the 

WGN in the frequency or the transient domain does not 

change the results. Therefore, the FFT and the IFFT seem to 

not disturb pole extraction with the two methods. We can 

notice that, for a given SNR, the NMSE is generally more 

important for the 45° bowtie than the 20° bowtie and the 

dipole antennas. Therefore, we may conclude that for 

wideband antennas, it is difficult to extract poles with a good 

accuracy whatever the method used. For the dipole antenna 

case, the difference between the two methods is around 5 dB 

to obtain the same NMSE. However, for the two others 

antennas, the difference is much higher. In fact, for the 20° 

bowtie, one needs a 45 dB SNR to obtain a 10 % NMSE with 

the Cauchy‟s method, unlike 20 dB sufficient with the MP 

method. For the 45° bowtie, there is a 20 dB difference. So the 

MP method allows dealing with signals with SNR 5 to 25 dB 

lower than using Cauchy‟s method.  

The same analysis is done using the mixed noise. Since the 

two approaches give very similar results, only those obtained 

from approach 1 are presented in Fig. 20. As for the previous 

analysis, it is easier for both methods to extract poles from the 

dipole antenna response than for the bowtie antennas. 

Otherwise, even if the results are close between MP and 

Cauchy methods for the dipole response, the MP algorithm 

allows obtaining a lower NMSE than the Cauchy‟s method for 

the two bowties. As an example, the dipole response, noiseless 

and in presence of mixed noise for SNR = 10 dB, and the 

reconstructed field are presented in Fig. 21. The NMSE of the 

reconstructed field is 10 %. 

From these analyses, we can conclude that the MP method 

is less sensitive to noise than the Cauchy‟s one, especially 

when applied to wideband or UWB antenna responses. 

Nevertheless, the SNR needed to obtain poles with accuracy is 

quite high. During measurements, it will be necessary to 

increase the SNR as much as possible using especially a time 

gating to filter unwanted echoes [7]. 

 
a. Matrix Pencil method 

 
b. Cauchy method 

Fig. 19.  NMSE of the reconstructed fields versus SNR for approach 2 and 

for white Gaussian noise. 

  

 
a. Matrix Pencil method 

 
b. Cauchy method 

Fig. 18.  NMSE of the reconstructed fields versus SNR for approach 1 and 

for white Gaussian noise. 
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V. CONCLUSION 

The well-known limitation of the SEM is that pole 

extraction is high sensitive to noise. Therefore, one has to 

extract poles very carefully in order to obtain physical ones. In 

this article, two of the best numerical methods of pole 

extraction, MP and Cauchy, have been applied to fields 

radiated by three different antennas, a dipole and two bowtie 

antennas with different flare angles. In the noiseless case, both 

methods allow extracting physical poles with a good accuracy. 

It follows that the late time response of these antennas can be 

reconstructed by using only a 6-poles set. We also compared 

the robustness of MP and Cauchy methods in the presence of 

two different kinds of noises. For the simple case of the dipole 

antenna, results are close but the MP method is more accurate 

than Cauchy‟s method when SNR becomes low. For the two 

bowtie antennas, the difference between the two methods is 

more significant. Indeed, the MP method allows dealing with 

signal with a SNR 20-25 dB lower than that needed for 

Cauchy‟s method. 

APPENDIX I 

MATRIX PENCIL METHOD 

The data samples ky  are defined as: 
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where Kk ,...,1,0 , K  being the sample‟s number, 
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n ez   and sT  is the sampling period. A data matrix  Y  is 

constructed from the data samples. 
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L  is called the Pencil parameter and is very important to 

filter noise. It is usually chosen between K/3 and K/2 [11]. In 

fact, the variance of the extracted poles is the lowest for these 

values. Then, a Singular Value Decomposition (SVD) is 

applied to this matrix as      HVUY   where H  defines 

the Hermitian transpose,  U  and  V  are unitary matrices, 

composed of the eigenvectors of   HYY  and    YY
H

, 

respectively, and    is a diagonal matrix containing the 

singular values of  Y . In the noiseless case, the matrix  Y  

contains exactly M nonzero eigenvalues corresponding to the 

M poles of the system. However, in the noisy case, the other 

eigenvalues are not exactly equal to zero. So it is necessary to 

filter these eigenvalues. The smallest ones, minor to a 

threshold ε, are set to zero. A new matrix  'Y  can be written 

as      HVUY ''''   where: 
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c. Matrix Pencil method 

 
d. Cauchy method 

Fig. 20.  NMSE of the reconstructed fields versus SNR for approach 1 and 

for mixed noise. 

  

 
Fig. 21.  Field radiated by the dipole antenna, noiseless, in presence of 

mixed noise for an SNR of 10 dB and reconstructed with NMSE of 10 %. 
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    .'
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From  'V , it is possible to define two submatrices  '1V  and 

 '2V  as: 
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where il  is the i
th

 line of  'V . Using the TLS approach [21], 

poles are obtained from the eigenvalues of     HH
VV '' 21


, 

where   H
V '1  is the Moore-Penrose pseudo-inverse of 

 HV '1 . It is now possible to compute residues from (4). 

APPENDIX II 

CAUCHY‟S METHOD 

The main idea of this method is to approximate the transfer 

function )(sH  of an antenna into a ratio of two polynomials 

P  and Q  as: 
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Equation (14) can be rewritten as: 

 

.0)(

00




n
P

n

n
n

Q

n

n sasHsb  (12) 

 

It is possible to write (12) as: 
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A QR decomposition of (13) is made such as: 
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So these two following equations are obtained: 

 

022 bR  (15) 

 

.01211  bRaR  (16) 

 

A SVD of 22R  is done such as: 
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Using a TLS approach [21], coefficients b  are obtained 

from   1 QVb . Coefficients a  are then computed using (16). 

Poles are now found by computing squares of the Q 

polynomial. 
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where ns  are the poles and s  the Laplace variable. The 

transfer function can now be written as: 
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Residues nR  are obtained from: 
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