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Abstract 20 

The study of community responses to environmental changes can be enhanced by the 21 

recent development of new metrics useful in applied conservation: relative rarity, 22 

ecological specialisation and functional diversity. These different metrics have been 23 

critically assessed independently, but are rarely combined in applied conservation 24 

studies, especially for less-studied taxa such as arthropods. Here we report how these 25 

different metrics can complement each other by using the response of spider 26 

communities to environmental changes in salt marshes as an example. Sampling took 27 

place using pitfall traps in salt marshes of the Mont St Michel Bay (France) during 28 

2004 and 2007. The sampling design was spatially replicated (3 plots per treatment 29 

and 4 traps per plot) and encompassed four habitat treatments: control, sheep 30 

grazing, cutting (annual, in summer) and invasion by the plant Elymus athericus. We 31 

observed contrasting responses of spider communities to the different treatments: 32 

grazing had a negative impact on both rarity and functional diversity but a positive 33 

impact on specialisation; cutting had a negative impact on the three metrics; and 34 

invasion only had a negative impact on rarity and specialisation. These contrasting 35 

responses emphasise the necessity of using different complementary community 36 

metrics in such conservation studies. Consequently, rarity-, specialization-, and 37 

functional-based indices should be applied simultaneously more frequently, as they 38 

potentially provide additional complementary information about communities. Such 39 

complementary information is the key to better-informed conservation choices. 40 

Key-words: Index of Relative Rarity; Community Specialisation Index; Functional 41 

Divergence; Grazing; Cutting; Spiders. 42 
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Abbreviations: 44 

CSI: Community Specialisation Index (Julliard et al., 2006) 45 

FDiv: Functional Divergence Index (Villéger et al., 2008) 46 

IRR: Index of Relative Rarity (Leroy et al. 2013) 47 

SSI: Species Specialisation Index (Julliard et al., 2006) 48 
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1. Introduction 50 

Addressing responses of biodiversity to environmental changes at the 51 

community rather than species level present the advantage of integrating the 52 

responses of multiple species and their interactions. Responses of communities can 53 

be assessed with different facets (taxonomic, phylogenetic or functional) for which 54 

several new indices have been developed (e.g., Devictor et al., 2010; Meynard et al., 55 

2011; Strecker et al., 2011). However, these different facets are still rarely used in 56 

applied conservation studies, particularly for less-studied taxa such as arthropods. 57 

The early methods used to assess communities in conservation studies were simple 58 

taxonomic diversity metrics such as species richness or abundance (e.g., Prieto-59 

Benítez and Méndez, 2011). However these simple metrics only reflect a fraction of 60 

the biodiversity and do not take into account the identity of species and their 61 

characteristics within and between communities, even though these aspects are 62 

crucial to assess biodiversity distribution (α, β components), conservation concerns 63 

(rarity), ecosystem functioning (functional traits) and importantly the processes 64 

implied in the impact of environmental changes on this biodiversity (biotic and 65 

functional homogenisation). Hence, species and communities were attributed values 66 

with respect to the conservation goal, for example according to their rarity, or more 67 

recently to their functional characteristics. In this study, we focus on recent 68 

methodological advances regarding three aspects: rarity, ecological specialisation and 69 

functional diversity. 70 

Rarity primarily provides an insight into the facet of species biodiversity that is 71 

most at risk of extinction (Gaston, 1994), also with respect to the maintenance of 72 

vulnerable ecosystem functions (Mouillot et al., 2013). Different axes of rarity are 73 

usually considered: restricted abundance, restricted geographic distribution and 74 



narrow niche breadth. The study of rarity in arthropod communities has recently 75 

been improved by the proposal of new indices based on species occurrence (Leroy et 76 

al., 2012), which provide the possibility of integrating multiple spatial scales (Leroy et 77 

al., 2013). Robust metrics have also been developed to assess the average niche width, 78 

i.e. the specialisation of species communities (Devictor et al., 2010a). Using basic 79 

predictions from the ecological niche theory, specialist species should indeed be 80 

favoured in rather stable environments whereas generalists should be more able to 81 

thrive in disturbed habitats (Levins, 1968). In the same way, species functional traits 82 

are increasingly taken into account to provide a better assessment of the functional 83 

responses of communities to environmental changes. The study of this facet of 84 

biodiversity was improved thanks to the proposal of novel metrics which have been 85 

developed and analysed critically (Devictor et al., 2010a; Villéger et al., 2008). The 86 

loss of functional diversity was a criterion that had been overlooked initially, but is of 87 

increasing concern in biological conservation (e.g., Devictor et al., 2010b). 88 

All these distinct approaches were successfully applied on arthropod 89 

communities (e.g., Leroy et al., 2013; Penone et al., 2013) to assess their responses to 90 

environmental changes. They have each been critically assessed alone, but how they 91 

complement each other in the case of applied conservation remained to be tested. In 92 

this paper, we report a case study combining different recently developed metrics 93 

(rarity, specialisation, functional diversity) to assess how they complement each other 94 

to assess the response of arthropod communities to environmental changes, by using 95 

the example of spider communities of salt marshes. The environmental changes are 96 

here the replacement of natural vegetation of salt marshes by monospecific stands of 97 

the species Elymus athericus (Bockelmann and Neuhaus, 1999), and two 98 

management practices likely to limit the spread of this species: annual cutting and 99 



sheep grazing. The impact of E. athericus will here be termed as an invasion in 100 

accordance with previous work on this species (Pétillon et al., 2005). 101 

Salt marshes are of important conservation value because they host stenotopic 102 

species due to the constraining environmental conditions (Pétillon et al., 2011), and 103 

geographically rare species because of the restricted distribution of salt marshes in 104 

the western Palearctic (Leroy et al., 2013). In addition, salt marshes are subject to 105 

environmental changes (invasion by E. athericus and management) which often 106 

result in the replacement of the single dominant plant species by another (Veeneklaas 107 

et al., 2012). These changes in vegetation in turn modify the structure and 108 

composition of arthropod communities (Ford et al., 2012). The impacts of these 109 

environmental changes on salt marsh arthropods are still poorly understood, and 110 

results from scarce literature are often contradictive (e.g., Rickert et al., 2012; van 111 

Klink et al., 2013). Consequently, we expected the application of distinct community 112 

metrics to provide new and complementary information, thus leading to a better 113 

understanding of how environmental changes impact communities. For that purpose, 114 

we compared the impacts of four treatments (control, invasion, cutting and grazing) 115 

on spider communities of salt marshes using community-level indices. Spiders were 116 

selected as a model group as they constitute one of the most abundant and diverse 117 

groups of arthropods in salt marshes (Pétillon et al., 2008) and for their well-known 118 

sensitivity to changes in habitat structure (e.g., Marc et al., 1999). 119 

 120 
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2. Methods 122 

2.1. Sampling design 123 

The impacts of treatments on spider communities were investigated at two sites in 124 

the Mont-Saint-Michel Bay (NW France, 48°37’N, 1°34’W), 1 kilometre apart. Four 125 

treatments were investigated: control, invasion by E. athericus, vegetation cutting 126 

(once a year, in July) and grazing by sheep (on average 50 sheep/ha) (Pétillon et al., 127 

2007). Treatments are representative of the main salt-marsh habitats of the Mont St-128 

Michel Bay (Pétillon et al., 2007), and covered all together 89% of the 4054 hectares 129 

of salt marshes (E. athericus-invaded areas: 35%, cutting: 19%, sheep-grazing: 25%, 130 

natural vegetation: 10%, data from 2007, Valéry and Radureau, personal 131 

communication). 132 

Spider communities were sampled between May and June in 2004 and 2007: the 133 

former with control, invasion and cutting treatments, and the latter with control, 134 

invasion and grazing treatments. The comparison between treatments was made in 135 

similar salt-marsh zones within each site and the only apparent varying factors (at the 136 

local and landscape scales) between plots were the presence/absence of management 137 

practices (cutting and grazing) or invasion by E. athericus. 138 

The sampling protocol was designed to be comparable among treatments: within 139 

each site, each treatment was applied to three plots during the same sampling period. 140 

Plots had a surface area of 100m² and were spaced 100m apart. Within each plot, 141 

ground-dwelling spiders were sampled with four pitfall traps, set up regularly in a 142 

square grid and placed 10m part, as this is the minimum distance to avoid 143 

interference between traps (Topping and Sunderland, 1992). Traps consisted of 144 

polypropylene cups (10 cm diameter, 17 cm deep) containing ethylene-glycol as a 145 

preservative. Traps were covered with a raised wooden roof to exclude the rain and 146 



were visited weekly, tides permitting (i.e. three times per month during May and 147 

June). To summarise, there were 36 traps per site (3 treatments * 3 plots * 4 traps) 148 

and thus a total of 72 traps for the whole sampling protocol. To verify the impacts of 149 

treatments on vegetation, percentage covers of all plant species were estimated once 150 

within a radius of 1m around all traps. 151 

2.2.  Spider community-level indices 152 

We calculated the average rarity, specialisation, and functional diversity of each 153 

community (pitfall trap) using species characteristics obtained from spider datasets 154 

(rarity, specialisation), and the literature (hunting strategy).  155 

Data came from i) the western France spider database, and ii) the Catalogue of Spider 156 

Species from Europe and the Mediterranean Basin (both datasets were detailed in 157 

Leroy et al., 2013). 158 

2.2.1. Multiscale Index of Rarity 159 

For each spider species, we calculated rarity weights (wMi) according to the method 160 

described in Leroy et al. (2013) (details in Appendix A). These rarity weights integrate 161 

information on the occurrence of species at two spatial scales: the western France 162 

scale and the western Palearctic scale. Weight values range from 0 to 2. The rarer the 163 

species, the higher the weights, with species which are rare at both scales receiving 164 

higher rarity weights than species which are rare at a single scale. 165 

The Index of Relative Rarity (IRR) of each pitfall community was then calculated as 166 

the average weight of rarity of individuals of all the species of the considered 167 

community, and was subsequently normalized to values between 0 (no rare species in 168 

the community) and 1 (all individuals of the community belong to species with the 169 



maximum rarity weight): IRR = ([Σ(ai × wMi)/N] – wmin)/(wmax – wmin) where ai and 170 

wMi respectively are the abundance and rarity weight of the ith species of the 171 

community; N is the total number of individuals in the community; and wmin and 172 

wmax are the minimum and maximum possible weights, respectively. 173 

2.2.2. Community Specialisation Index 174 

Each species was characterised for habitat specialisation through using the 175 

calculation of a Species Specialisation Index (SSI) according to Julliard et al. (2006). 176 

To define habitat specialisation, the western France spider database was used. For 177 

each species, the frequencies of occurrence in each habitat class were calculated (see 178 

details in Appendix B). The coefficient of variation of these frequencies of occurrence 179 

(standard deviation/average) as a measure of each Species Specialisation Index (SSI) 180 

(Julliard et al., 2006) was then calculated. The SSI varied between 0.76 (most 181 

generalist species) and 4.69 (most specialised species) (Table 1 and Appendix B). The 182 

Community Specialisation Index (CSI) of each pitfall community was calculated as 183 

the average SSI of the species detected, weighted by local species abundance, as 184 

follows: CSI = [Σ(ai SSIi)/N], where ai and SSIi respectively are the abundance and 185 

species specialisation indices of species i; and N is the total number of individuals in 186 

the community (Devictor et al., 2008). The CSI was then standardised between 0 and 187 

1 in a similar manner to the Index of Relative Rarity (Leroy et al., 2012); a CSI of 1 188 

means that a community is composed of individuals of the most specialised species of 189 

the database, whereas a CSI of 0 means that a community is composed of individuals 190 

of the most generalist species. 191 

2.2.3. Functional diversity 192 



The functional diversity of spider communities was calculated on the basis of 193 

functional traits related to hunting modes, because of the important impacts of 194 

predator hunting modes in ecosystem functioning (Schmitz, 2009). We used 195 

functional traits at the family level on the basis of the trait matrix of spider families of 196 

Cardoso et al. (2011). The Functional Divergence (FDiv) index (Villéger et al., 2008) 197 

was calculated in order to take into account both the occupation of functional space 198 

by the different families and the relative abundance of families in communities.  199 

2.3. Analyses 200 

Because rarity weights and specialisation indices of species describe two axes of 201 

rarity, we first analysed their correlation for the sampled species with Pearson’s 202 

correlation coefficient. Species richness and the three indices (IRR, CSI and FDiv) 203 

were then calculated for each community of spiders of the 72 traps. The FDiv index 204 

was calculated for only 58 out of 72 communities, because functional divergence 205 

cannot be estimated when communities contain less than three functionally singular 206 

species. The effects of treatments on the calculated metrics were then analysed using 207 

linear mixed-effects models because of the hierarchical nature of the sampling design. 208 

We fitted linear mixed-effect models with the treatment as a fixed effect, and sites 209 

nested in year as random effects. The significance of fixed effects was tested by 210 

comparing models with vs. without fixed effects using likelihood ratio tests. We then 211 

performed multiple comparisons between treatments with Tukey’s post-hoc tests 212 

with a correction on probability values by controlling the false discovery rate 213 

(Benjamini and Hochberg, 1995). Welsh two sample t-tests were used to compare the 214 

average abundance between treatments, of several species. Indices were calculated 215 

with Rarity version 1.2-1 (Leroy, 2013) and FD version 1.0-11 (Laliberté and Shipley, 216 

2011). Linear mixed effect models were performed in R 3.0.2 (R Core Team, 2013) 217 



with the package lme4 version 1.0-5 (Bates et al., 2013), and post-hoc tests with the 218 

package multcomp version 1.3-1 (Hothorn et al., 2008). 219 

220 



3. Results 221 

3.1. Samplings 222 

A total of 3826 spiders, representing 31 species, 10 families and 6 functional groups, 223 

was collected (Table 1). The dominance of single plant species per treatment was 224 

confirmed: Atriplex portulacoides in the control plots (mean±sd=66.8±11.5%, 225 

range=[55%-88%], n=12), Elymus athericus in the invaded plots 226 

(mean±sd=89.4±7.3%, range=[70%-93%], n=12), Festuca rubra in the cut plots 227 

(mean±sd=62.9±5.4%, range=[55%-70%], n=12) and Puccinellia maritima in the 228 

grazed plots (mean±sd=77.5±21.4%, range=[30%-90%], n=12). 229 

3.2. Correlation between rarity weights and specialisation indices of species 230 

We observed a positive correlation between rarity weights and specialisation indices 231 

of species (Pearson’s R = 0.75; P < 0.001; N = 31) (Fig. 1). Nevertheless, some species 232 

had very high specialisation values but low rarity weights (e.g., Erigone longipalpis), 233 

or had very high rarity weights but intermediate specialisation values (e.g., Pardosa 234 

purbeckensis). 235 

3.3. Effects of treatments on communities 236 

We detected a significant treatment effect on all the measured metrics (see Figure 1 237 

and details in Appendix B). The species richness was significantly lower in traps 238 

located in invaded plots than in traps associated with other treatments (χ²=13.5, 239 

df=3, p=0.004) (Fig. 2A). The relative rarity of communities was significantly higher 240 

in control plot traps than in those located in managed or invaded plots (χ²=24.1, 241 

df=3, p<0.001) (Fig. 2B). This increase in rarity was associated with a higher mean 242 

abundance of the rare species P. purbeckensis in the control treatment than in other 243 

treatments (t=5.78, df=31.50, p<0.001) (Table 1). Conversely, although the CSI was 244 



significantly higher in the control treatment than under invasion or cutting 245 

treatments, the highest CSI was observed in the grazed plots, and was significantly 246 

higher than in control and in invaded or cut plots (χ²=24.40, df=3, p<0.001) (Fig. 247 

2C). The higher specialisation under the control compared to invasion and cutting 248 

treatments was associated with higher average abundance of specialised species such 249 

as P. purbeckensis (t=6.60, df=30.22, p<0.001) and Silometopus ambiguus (t=2.90, 250 

df=33.08, p=0.007) (Table 1). On the other hand, the very high specialisation value 251 

observed under the grazing treatment was associated to the high abundance of the 252 

specialised species E. longipalpis, with on average 13.83±9.76 individuals per trap 253 

versus 1.13±2.05 individuals per trap (mean±sd) in other treatments (t=4.49, 254 

df=11.20, p<0.001). However, grazing, and to a lesser extent cutting, appeared to 255 

have a negative impact on the functional divergence of communities, with a 256 

significantly lower FDiv in traps of grazed plots than in those of invaded or control 257 

traps (χ²=10.4, df=3, p=0.016) (Fig. 2D). We compared this lower functional 258 

diversity to the presence of functional groups under the grazing treatment, and we 259 

observed only two dominant functional groups (“Ground hunters” and “Other 260 

hunters”), while other treatments were more balanced, with an additional functional 261 

group (“Orb web weavers”) (Table 1).  262 

263 



4. Discussion 264 

In this paper, we combined different metrics (rarity, specialisation and functional 265 

diversity) to analyse how spider communities of salt marshes respond to changes in 266 

their environment, whether induced by a biological invasion (Elymus athericus) or by 267 

management practices (grazing, cutting). As expected, environmental changes 268 

generally had negative impacts on spider communities, which led to decreases in 269 

rarity, specialisation and functional diversity of communities. While the general trend 270 

was similar among metrics, we observed divergent responses to the relative impacts 271 

of treatments between the three measured metrics. 272 

Influence of community composition on metrics 273 

In particular, the most interesting divergence was observed for the effect of grazing 274 

treatment. Specialisation was higher in grazed plots than in control plots, whereas the 275 

opposite was observed for rarity and functional diversity. This is surprising given the 276 

observed positive relationship between rarity weights and specialisation indices at the 277 

species level. However, this relationship has exceptions such as the widespread but 278 

specialist species E. longipalpis. Incidentally, E. longipalpis was highly abundant in 279 

the grazed plot, leading to a divergence between specialisation and rarity indices. This 280 

pattern shows that metrics expected to vary conjointly can produce divergent 281 

outcomes because of their sensitivity to the composition of communities. This 282 

sensitivity is very important to highlight unexpected impacts of environmental 283 

changes on communities. 284 

Another important property of the metrics used here is that they are not biased by the 285 

species richness or abundance: because the metrics are based on the average trait 286 

(rarity, specialisation) of the species in the community, then a species-poor 287 

community can have a higher value than a species-rich community (Julliard et al., 288 



2006; Leroy et al., 2012; Villéger et al., 2008). If we take the example of the CSI, a 289 

community with only a few individuals from very specialised species will have a 290 

higher CSI than a community with many individuals of generalist species. Because of 291 

this averaging property, a decrease in CSI may result from a decrease of specialists 292 

and/or from an increase of generalist species. Typically disturbances are expected to 293 

negatively impact specialist species while fostering generalist species, as both 294 

predicted by theory and empirically observed (see Devictor and Robert, 2009). As a 295 

consequence it is expected that changes in community composition resulting from 296 

environmental disturbances will generally result in lower CSI values. However, in 297 

extreme cases, the reverse might be observed: for example a disturbance 298 

corresponding to the extreme values of the abiotic gradient may have positive 299 

impacts on only a few specialist species with particular adaptation to this disturbance 300 

(e.g., Doxa et al., 2010), which would thus result in a higher CSI value. Though this is 301 

a particular case, it highlights the importance of verifying, as a second step, how 302 

community composition changed. This impact is similar on the functional divergence 303 

index: the loss of species occupying intermediate functions will increase the 304 

functional value. However, this is not relevant in our case study since spider 305 

functional groups are strongly divergent; thus, a decrease in abundance of any 306 

functional group will decrease the functional value. 307 

To summarise, the three applied metrics accurately synthesise how changes in 308 

community composition affect different facets of biodiversity; such changes cannot 309 

be detected by species richness alone. However, understanding these changes imply 310 

to look at changes in community composition as a second step. 311 

Implications for salt marsh conservation 312 

The indices showed that grazing induced a decrease in the average rarity and 313 

functional diversity of communities, but an increase in their specialisation. This 314 



pattern is mainly due to the increase in widespread but specialist species such as E. 315 

longipalpis. This positive impact of grazing on specialist species of salt marshes such 316 

as E. longipalpis was reported by Ford et al. (2012), although they did not investigate 317 

species rarity. The negative effect of grazing, and to a lesser extent cutting, on 318 

functional diversity is clearly due to a reduction in the number of vegetation strata, 319 

which negatively impacts spiders living in higher vegetation such as orb web weavers 320 

(Uetz et al., 1999). On the other hand, no significant impact of grazing was detected 321 

on species richness alone, unlike Rickert et al. (2012) and van Klink et al. (2013). In 322 

fact, a negative impact on species richness was only observed for the invaded 323 

treatment. We also found higher specialisation and rarity in control plots than in 324 

invaded and cut plots, in accordance with a previous study that revealed more 325 

continental, non-specialised, spider species in cut or invaded salt marshes (Pétillon et 326 

al., 2005). 327 

To summarise, our results suggest that undisturbed salt marshes generally support a 328 

higher specialisation, rarity and functional diversity than disturbed salt marshes, with 329 

the notable exception of the positive impact of grazing on specialised species. To 330 

preserve all the facets of spider diversity, we would recommend maintaining the 331 

grazing management in areas invaded by E. athericus rather than the cutting 332 

treatment. 333 

Conclusion 334 

We therefore showed contrasting responses of spider communities to the different 335 

environmental changes (invasion and management measures). These contrasts 336 

emphasise the necessity of using different and complementary community metrics in 337 

such conservation studies. As a consequence, rarity-, specialization- and functional- 338 

based indices should be more frequently applied together, as they can potentially 339 



contribute a wide range of complementary information about species communities. 340 

Such complementary information is the key to better-informed conservation choices. 341 

Acknowledgements 342 

We thank Simon Potier, Alain Radureau and Vincent Schricke for fruitful discussion, 343 

Damien Nouguès and Mathieu de Flores for their contribution in field work and 344 

spider identification. Aldyth Nys provided useful editing of the English of an earlier 345 

draft. Loïc Valéry provided data on the spatial distribution of treatments. We thank 346 

two anonymous reviewers for useful additions in an earlier draft. 347 

348 



References 349 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2013. lme4: Linear mixed-effect models using 350 
Eigen and S4. R package version 1.0-5. http://CRAN.R-project.org/package=lme4 351 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 352 
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. Methodol. 57, 289–300. 353 

Bockelmann, A., Neuhaus, R., 1999. Competitive exclusion of Elymus athericus from a 354 
high‐stress habitat in a European salt marsh. J. Ecol. 87, 503–513. 355 

Cardoso, P., Pekár, S., Jocqué, R., Coddington, J.A., 2011. Global patterns of guild 356 
composition and functional diversity of spiders. PLoS One 6, e21710. 357 

Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., 358 
Villéger, S., Mouquet, N., 2010a. Defining and measuring ecological specialization. J. 359 
Appl. Ecol. 47, 15–25. 360 

Devictor, V., Julliard, R., Clavel, J., Jiguet, F., Lee, A., Couvet, D., 2008. Functional biotic 361 
homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 362 
252–261. 363 

Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., Mouquet, N., 2010b. Spatial 364 
mismatch and congruence between taxonomic, phylogenetic and functional diversity: 365 
the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 366 
1030–40. 367 

Devictor, V., Robert, A., 2009. Measuring community responses to large-scale disturbance in 368 
conservation biogeography. Divers. Distrib. 15, 122–130. 369 

Doxa, A., Bas, Y., Paracchini, M.L., Pointereau, P., Terres, J.-M., Jiguet, F., 2010. Low-370 
intensity agriculture increases farmland bird abundances in France. J. Appl. Ecol. 47, 371 
1348–1356. 372 

Ford, H., Garbutt, A., Jones, L., Jones, D.L., 2012. Grazing management in saltmarsh 373 
ecosystems drives invertebrate diversity, abundance and functional group structure. 374 
Insect Conserv. Divers. 6, 189–200. 375 

Gaston, K.J., 1994. Rarity. Chapman & Hall, London, UK. 376 

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous Inference in General Parametric 377 
Models. Biometrical J. 50, 346–363. 378 

Julliard, R., Clavel, J., Devictor, V., Jiguet, F., Couvet, D., 2006. Spatial segregation of 379 
specialists and generalists in bird communities. Ecol. Lett. 9, 1237–44. 380 

Laliberté, E., Shipley, B., 2011. FD: measuring functional diversity from multiple traits, and 381 
other tools for functional ecology. R package version 1.0-11. 382 

Leroy, B., 2013. Rarity: Calculation of rarity indices for species and assemblages of species. R 383 
package version 1.2-1. http://CRAN.R-project.org/package=Rarity 384 



Leroy, B., Canard, A., Ysnel, F., 2013. Integrating multiple scales in rarity assessments of 385 
invertebrate taxa. Divers. Distrib. 19, 794–803. 386 

Leroy, B., Pétillon, J., Gallon, R., Canard, A., Ysnel, F., 2012. Improving occurrence-based 387 
rarity metrics in conservation studies by including multiple rarity cut-off points. Insect 388 
Conserv. Divers. 5, 159–168. 389 

Levins, R., 1968. Evolution in Changing Environments: Some Theoretical Explorations. 390 
Princeton University Press, Princeton, USA. 391 

Marc, P., Canard, A., Ysnel, F., 1999. Spiders (Araneae) useful for pest limitation and 392 
bioindication. Agric. Ecosyst. Environ. 74, 229–273. 393 

Meynard, C.N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., Mouquet, N., 2011. Beyond 394 
taxonomic diversity patterns: how do α, β and γ components of bird functional and 395 
phylogenetic diversity respond to environmental gradients across France? Glob. Ecol. 396 
Biogeogr. 20, 893–903. 397 

Mouillot, D., Bellwood, D.R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., 398 
Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C.E.T., Renaud, J., Thuiller, 399 
W., 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS 400 
Biol. 11, e1001569. 401 

Penone, C., Kerbiriou, C., Julien, J.-F., Julliard, R., Machon, N., Le Viol, I., 2013. 402 
Urbanisation effect on Orthoptera: which scale matters? Insect Conserv. Divers. 6, 319–403 
327. 404 

Pétillon, J., Georges, A., Canard, A., Lefeuvre, J.-C., Bakker, J.P., Ysnel, F., 2008. Influence of 405 
abiotic factors on spider and ground beetle communities in different salt-marsh systems. 406 
Basic Appl. Ecol. 9, 743–751. 407 

Pétillon, J., Georges, A., Canard, A., Ysnel, F., 2007. Impact of cutting and sheep grazing on 408 
ground-active spiders and carabids in intertidal salt marshes (Western France). Anim. 409 
Biodivers. Conserv. 30, 201–209. 410 

Pétillon, J., Lambeets, K., Ract-Madoux, B., Vernon, P., Renault, D., 2011. Saline stress 411 
tolerance partly matches with habitat preference in ground-living wolf spiders. Physiol. 412 
Entomol. 36, 165–172. 413 

Pétillon, J., Ysnel, F., Canard, A., Lefeuvre, J.-C., 2005. Impact of an invasive plant (Elymus 414 
athericus) on the conservation value of tidal salt marshes in western France and 415 
implications for management: Responses of spider populations. Biol. Conserv. 126, 103–416 
117. 417 

Prieto-Benítez, S., Méndez, M., 2011. Effects of land management on the abundance and 418 
richness of spiders (Araneae): A meta-analysis. Biol. Conserv. 144, 683–691. 419 

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation 420 
for Statistical Computing, Vienna, Austria. 421 

Rickert, C., Fichtner, A., van Klink, R., Bakker, J.P., 2012. α- and β-diversity in moth 422 
communities in salt marshes is driven by grazing management. Biol. Conserv. 146, 24–423 
31. 424 



Schmitz, O.J., 2009. Effects of predator functional diversity on grassland ecosystem function. 425 
Ecology 90, 2339–2345. 426 

Strecker, A., Olden, J., Whittier, J.B., Paukert, C.P., 2011. Defining conservation priorities for 427 
freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. 428 
Appl. 21, 3002–3013. 429 

Topping, C.J., Sunderland, K.D., 1992. Limitations to the use of pitfall traps in ecological 430 
studies exemplified by a study of spiders in a field of winter wheat. J. Appl. Ecol. 29, 431 
485–491. 432 

Uetz, G.W., Halaj, J., Cady, A.B., 1999. Guild structure of spiders in major crops. J. Arachnol. 433 
27, 270–280. 434 

Van Klink, R., Rickert, C., Vermeulen, R., Vorst, O., WallisDeVries, M.F., Bakker, J.P., 2013. 435 
Grazed vegetation mosaics do not maximize arthropod diversity: Evidence from salt 436 
marshes. Biol. Conserv. 164, 150–157. 437 

Veeneklaas, R.M., Dijkema, K.S., Hecker, N., Bakker, J.P., 2012. Spatio-temporal dynamics of 438 
the invasive plant species Elytrigia atherica on natural salt marshes. Appl. Veg. Sci. 16, 439 
205–216. 440 

Villéger, S., Mason, N.W.H., Mouillot, D., 2008. New multidimensional functional diversity 441 
indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301. 442 

 443 



 

Table 1. Multiscale rarity weights, specialisation indices and functional groups of the sampled spider species, and their average ± sd 

abundance in pitfall traps. The functional groups are based on Cardoso et al. (2011). 

Species 
Multiscale rarity 

weights 
Species specialisation 

indices 
Functional groups 

Abundance ± sd 

Control Invasion Cutting Grazing 

Family Araneidae        

Argiope bruennichi 0.009 1.272 Orb web weavers 0.00±0.00 0.08±0.28 0.00±0.00 0.00±0.00 

Larinioides cornutus 0.004 1.225 Orb web weavers 0.04±0.20 0.08±0.28 0.00±0.00 0.00±0.00 

Neoscona adianta 0.002 1.271 Orb web weavers 0.00±0.00 0.04±0.20 0.00±0.00 0.00±0.00 

Family Clubionidae        

Clubiona stagnatilis 0.144 1.877 Other hunters 0.00±0.00 0.04±0.20 0.00±0.00 0.00±0.00 

Family Dictinidae        

Argenna patula 0.344 3.247 Ground hunters 0.71±1.16 3.29±4.22 0.83±0.83 0.92±1.00 

Family Gnaphosidae        

Drassyllus pusillus 0.031 1.429 Ground hunters 0.04±0.20 0.00±0.00 0.00±0.00 0.00±0.00 

Silometopus ambiguus 0.697 3.164 Other hunters 3.29±3.38 1.58±2.21 0.08±0.29 2.33±1.97 

Zelotes latreillei 0.026 1.749 Ground hunters 0.00±0.00 0.08±0.41 0.08±0.29 0.00±0.00 

Family Linyphiidae        

Agyneta conigera 0.551 4.286 Sheet web weavers 0.00±0.00 0.00±0.00 0.08±0.29 0.00±0.00 

Bathyphantes gracilis 0.012 1.368 Sheet web weavers 0.21±0.51 0.08±0.28 0.17±0.39 0.08±0.29 

Collinsia inerrans 0.525 2.222 Other hunters 0.04±0.20 0.00±0.00 0.00±0.00 0.00±0.00 

Erigone atra 0.010 1.346 Other hunters 0.46±0.78 0.04±0.20 1.50±1.62 0.67±0.89 

Erigone dentipalpis 0.003 1.195 Other hunters 0.17±0.38 0.00±0.00 0.00±0.00 0.00±0.00 

Erigone longipalpis 0.234 4.690 Other hunters 2.50±2.69 0.25±0.53 0.17±0.39 13.83±9.76 

Oedothorax fuscus 0.022 1.224 Other hunters 4.83±6.68 0.04±0.20 4.25±5.14 2.50±1.24 

Oedothorax retusus 0.028 1.353 Other hunters 0.58±0.78 0.04±0.20 5.50±5.89 0.25±0.45 

Pelecopsis parallela 0.051 1.830 Other hunters 0.00±0.00 0.33±0.82 0.42±0.67 0.00±0.00 

Savignia frontata 0.325 3.720 Other hunters 0.00±0.00 0.00±0.00 0.08±0.29 0.00±0.00 



 

Stemonyphantes lineatus 0.031 1.424 Other hunters 0.04±0.20 0.13±0.34 0.00±0.00 0.00±0.00 

Tenuiphantes tenuis 0.003 0.757 Sheet web weavers 0.75±1.03 0.75±1.11 0.50±0.67 1.33±0.78 

Family Liocranidae        

Agroeca lusatica 0.555 2.442 Ground hunters 0.33±0.56 0.42±0.83 0.08±0.29 0.00±0.00 

Family Lycosidae        

Alopecosa pulverulenta 0.007 1.464 Ground hunters 0.00±0.00 0.08±0.28 0.00±0.00 0.00±0.00 

Arctosa fulvolineata 0.560 2.462 Ground hunters 3.13±2.42 2.17±1.97 4.00±3.49 2.00±1.28 

Pardosa palustris 0.035 1.785 Ground hunters 0.04±0.20 0.00±0.00 0.08±0.29 0.08±0.29 

Pardosa prativaga 0.023 2.046 Ground hunters 0.04±0.20 0.04±0.20 0.00±0.00 0.00±0.00 

Pardosa proxima 0.019 1.507 Ground hunters 0.00±0.00 0.08±0.28 0.17±0.39 0.00±0.00 

Pardosa purbeckensis 1.077 3.307 Ground hunters 21.13±10.11 6.17±5.26 7.17±4.13 13.17±6.67 

Family Tetragnathidae        

Pachygnatha clercki 0.010 1.545 Orb web weavers 0.00±0.00 0.00±0.00 0.33±0.65 0.00±0.00 

Pachygnatha degeeri 0.006 0.888 Orb web weavers 2.54±2.28 2.83±4.57 1.83±2.29 0.33±0.65 

Family Theridiidae        

Enoplognatha mordax 0.214 2.375 Space web weavers 0.08±0.28 0.04±0.20 0.08±0.29 0.08±0.29 

Family Thomisidae        

Ozyptila simplex 0.091 1.675 Ambush hunters 0.04±0.20 0.00±0.00 0.00±0.00 0.08±0.29 

        

Total abundances    41.00±14.63 18.71±11.96 27.42±11.77 37.67±10.53 
 

 



 

Figure captions 

 

 

Figure 1. Correlation between specialisation indices and rarity weights of the 
sampled species. Two species highly abundant in some of the sampled sites and with 
high weight values are indicated: Erigone longipalpis and Pardosa purbeckensis. 

 



 

 

Figure 2. Average values of indices (A. Species richness, B. Multiscale Index of 
Relative Rarity, C. Community Specialisation Index, and D. Functional Divergence) 
and 95% confidence intervals (estimated by linear mixed-effects models (LMMs)) for 
the four treatments. Different successive letters indicate significant differences in 
means (revealed by corrected Tukey’s post-hoc test on treatment effect following 
LMMs, with correction for the false discovery rate). 


