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Some important phonon effects observed in X-ray absorption and 

X-ray photoemis- sion spectra are discussed on the basis of 

nonequilibrium Green’s function theory.  For the pre-edge structures, 

the intensity associated with forbidden electric dipole transition is 

sensitive to temperature compared with allowed electric quadrupole 

transition. We also discuss the FC and their interference, which have 

negligible contribution to pre- edge intensity and energy shift. The 

quasi-particle energy is also influenced by the core displacement which 

can be responsible for the peak shift of the pre-edges. We also discuss 

the photoelectron angular distribution caused by the thermal atomic 

vibration. 
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Abstract

Some important phonon effects observed in X-ray absorption and X-ray photoemis-
sion spectra are discussed on the basis of nonequilibrium Green’s function theory.
This theoretical framework allows us to incorporate phonon effects, such as Debye-
Waller (DW) factors, Franck-Condon (FC) factors and electron-phonon interactions
in a natural way. In the case of core level excitations, we can take into account the
core-hole effects in lesser Green’s function g

< and photoelectron propagation in
greater Green’s function g

>. For the core-hole propagation we derive some formulas
to describe the thermally displaced core functions: we have p components even for
deep core s orbital due to the thermal motion. We should notice that the thermal
fluctuation is quite small but it is already in the order of the spread of the core
functions. Applying Mermin’s theorem, we can calculate the thermal average of the
hole propagator g

<: Here an important ingredient is the Debye-Waller factor used in
X-ray and neutron diffraction. For the pre-edge structures, the intensity associated
with forbidden electric dipole transition is sensitive to the temperature compared
with allowed electric quadrupole transition. We also discuss the FC and their inter-
ference, which have negligible contribution to pre-edge intensity and energy shift.
The quasi-particle energy is also influenced by the core displacement which can be
responsible for the peak shift of the pre-edges. We also discuss the changes of the
photoelectron angular distributions caused by the thermal atomic vibration.

Key words: XPS, XAFS, electron-phonon interaction, Debye-Waller factors,
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1 Introduction

Among phonon effects on X-ray absorption spectra, the EXAFS Debye-Waller
(DW) factors have extensively been studied, whereas other factors like Franck-
Condon (FC) factors and electron-phonon interactions are rarely discussed.
Within the single-scattering EXAFS theory, both the DW and FC and their
interference terms are explicitly taken into account [1,2]. A more sophisti-
cated approach including electron-phonon interaction has been developed on
the basis of Keldysh Green’s function formalism [3]. • •Ankudinov and Rehr
have shown that local atomic displacements are responsible for additional
XANES peaks [4]. They used a simple formula for the X-ray absorption in-
tensity I(ω,Q) considering the thermal average shown by < . . . >

< I(ω, Q) >= I(ω, Q0) +
1

2

∑

αi

∑

βj

< uαiuβj >
∂2I(ω,Q)

∂uαi∂uβj

|0, (1.1)

(i, j = x, y, z),

where Q designates the assembly of nuclei Q = (Rα,Rβ, . . .). The above
equation takes small deviation from equilibrium atomic configuration Q0(u =
Q − Q0). The first order terms cancel since < uαi >= 0. For solids the sum-
mation over α and β runs over all composite atoms. Prominent temperature
dependence of the pre-edge structures are observed in Ti K-edge XANES in
SrTiO3 from 15 to 300K: One of the pre-edge peaks shows an increase of the
intensity with temperature as observed by Nozawa et al. [5]. More recently
Manuel et al. present the Al K-edge XANES spectra of corundum and beryl
for temperature range from 300 to 930 K [6]. These experimental results pro-
vide an evidence of the role of thermal fluctuation in XANES at the Al K
edge: The pre-edge grows and shifts to lower energy with temperature. They
use first principle density functional theory (DFT) calculations for both com-
pounds. They demonstrate that the pre-edge peak originates from forbidden
1s → 3s transition. The theoretical analyses used there are based on their
previous papers [7,8]. The electron-phonon interaction in XAFS spectra has
been studied on the basis of nonrelativistic Keldysh Green’s function theory
by Arai et al. [3], there they discuss the inelastic mean free path of electrons
due to the electron-phonon interaction in XANES spectra.

There is also a growing interest in phonon effects on photoemission spectra.
Plucinski et al. study the temperature dependence of W(110) soft X-ray angle
resolved photoemission spectra excited at ω =260-870 eV and T =300-780K
[9]. They have shown that meaningful band mapping can be done for the test
case of W at room temperature with photon energies up to 870 eV. High-
energy XPS spectra probe more accurately bulk rather than surface electronic
structures, but some questions are raised in regard to the possibility of band
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mapping. Osterwalder et al. report the photoelectron angular distribution from
Al (001) valence band excited at ω = 1254 eV which presents strong maxima
of intensity at main crystallographic directions resembling very closely to the
angular distribution of photoelectrons from the 2s core level [10]. The occur-
rence of maxima of intensity at main interatomic directions is a well-known
phenomenon in core-level XPS because of forward focusing [11]. Vicent Al-
varez et al. proposed a model to analyze these phenomena based on one-
electron theory [12]. They successfully explain the interesting behavior of the
angular distributions of photoelectrons, however, it is hard to estimate the
relative importance of Debye-Waller (DW), Franck-Condon (FC) factors, and
electron-phonon interaction in that one-electron theory.

Recent experimental work by Takata et al. clearly shows that C 1s peak shift
to high binding energy side with increase of photon energy [13]. The energy
shift is well explained by

Δεp = −p2/(2MA)

where MA is the mass of an X-ray absorbing atom A. This is just classical
free atom recoil energy shift. From physical point of view, this result looks so
funny because the X-ray absorbing atom is tightly bound in solids. The above
recoil energy shift and peak broadening are successfully explained by consid-
ering phonon excitation [14–16]. Recoil effects in valence band photoemission
of organic solids have been studied by Shang et al. [17,18]: Specific features
sensitive to photon energy are well explained by use of Gelius formula [19] and
harmonic approximation for the atomic vibration.

The FC factors have also been discussed for XPS [20] and EXAFS analy-
ses [1,2]. In EXAFS the FC factors play a minor role, whereas in XPS they
contribute to the temperature dependent peak broadenings. In contrast the
influence of electron-phonon interactions on the photoemission spectra are
discussed only within the sudden approximation in the UPS region [21,22].
A first principle theory is recently proposed [23] to handle the phonon effects
such as DW, FC factors and electron-phonon interactions on photoemission
spectra from deep cores, and also extended shallow valence levels based on
Keldysh Green’s function theory [24] and the Baym-Hedin approach [25,26].
Quite recently Braun et al. present a one-step relativistic theory of tempera-
ture dependent photoemission, where phonon effects are explicitly taken into
account [27]. These first principle theories, however, have neglected core dis-
placement effects on core excitation. Here we give an approach to incorporate
those effects in the Keldysh Green’s function theory to discuss the phonon
effects on XAFS and XPS spectra, since we can include those temperature
effects in a natural way.

3
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2 Phonon Effects on XAFS

In this section we discuss phonon effects on XAFS spectra based on Keldysh
Green’s function formalism taking atomic thermal displacements.

2.1 General Consideration

In the Keldysh Green’s function approach the X-ray absorption intensity is
described by use of the reducible polarization propagator π>(1, 2) [28,29]. The
absorption intensity for X-ray photon with energy ω is then given by

I(ω) = −Im[
∫

dxdx′Δ∗(x)Δ(x′)

∞
∫

−∞

π>(xt, x′) exp(iωt)dt] (2.1)

The electron-photon interaction operator Δ is proportional to z for the linear
polarization parallel to the z-axis in the electric dipole approximation. The
reducible polarization π is given in terms of irreducible polarization propagator
P and the screened Coulomb interaction W (1= (x1, t1), x1 = (r1, σ1)),

π>(1, 2) = P>(1, 2) +
∫

c

d3d4[P (1, 3)W (3, 4)P (4, 2)]>. (2.2)

The integrals along the Keldysh contour are denoted as
∫

c ... The lowest order
approximation in the skeleton expansion gives an explicit expression [28,29]

iπ>(xt, x′) ≈ iP>(xt, x′) ≈ g>(xt, x′)g<(x′, xt). (2.3)

The greater electron Green’s function g> describes the propagation of excited
photoelectrons, and the lesser electron Green’s function g< describes the hole
propagation. We should notice that both g> and g< already include some
correlation effects and phonon effects. In the core excitation processes the
latter is well approximated by

ig<(x′, xt) = − < ψ†(xt)ψ(x′) >≈ − < φ∗
c(x)φc(x

′)b†(t)b >, (2.4)

where b(b†) is the annihilation (creation) operator of the core state φc. The
average in the above equation is taken over electronic and phonon states. From
now on we use the Born-Oppenheimer approximation (BOA) for simplicity.
The core function φc is well approximated

4
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φc(x) = φc(r − R0
A − uA)χ(σ), (2.5)

φc(r) = Rlc(r)YLc
(r̂).

As shown in the Appendix, for the small deviation uA, the core function is
approximately given by

φc(r − R0
A − uA) ≈

∑

L

φc
L(r − R0

A)JLLc
(uA). (2.6)

In eq. (2.4) b†(t) = exp(iHt)b† exp(−iHt) includes the total Hamiltonian H
which is given in the BOA

H = He + H0
vib = H∗

e + H∗
vib, (2.7)

where He and H0
vib are electronic and vibrational Hamiltonians with no core

hole, whereas H∗
e and H∗

vib are those with the core hole on φc. They are ex-
plicitly written for the states before the core excitation [20] in terms of many-
electron Hamiltonian Hv for the valence electrons and the core level energy
εc,

He = Hv + εc, (2.8)

H0
vib =

∑

ν

ων

(

b†νbν + 1/2),

where bν (b†ν) is the phonon destruction (creation) operator for the mode
ν = (q, j); j is a phonon branch, q is the crystal momentum. After the core
excitation

H∗
e = Hv + Vc, (2.9)

H∗
vib = H0

vib +
∑

ν

(Bνbν + B∗
νb

†
ν

)

.

Here Vc is the core-hole potential, and the second term of H∗
vib is related to

the displacement of the equilibrium configuration after the core excitation. We
thus have a useful expression for the hole propagator g< from eqs. (2.4), (2.6)
and (2.7)

ig<(r′, rt) = −
∑

LL′

φc
L(r − R0

A)∗φc
L′(r′ − R0

A)

× < J∗
LLc

(uA)JL′Lc
(uA) exp(iH0

vibt) exp(−iH∗
vibt) >vib

× < exp(iHet)b
† exp(−iH∗

e t)b >e (2.10)

5
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where < . . . >vib and < . . . >e are the average over phonon states and elec-
tronic states. For example we have for the former

< X >vib= Tr[exp(−βH0
vib)X]/Tr[exp(−βH0

vib)]. (2.11)

The difference between the two vibrational Hamiltonian H0
vib and H∗

vib can
contribute to the Franck-Condon factor [1,2]. At first we neglect the difference,
which yields the simple formula for the vibrational expectation value in eq.
(2.10) by use of the relation (A.12)

< J∗
LLc

(uA)JL′Lc
(uA) >vib

=< JLcL(uA)JL′Lc
(uA) >vib

= (−1)l′+lc

∫

dr̂dr̂′Y ∗
Lc

(r̂)YL(r̂)Y ∗
L′(r̂′)YLc

(r̂′)

× < exp[auA · (r̂′ − r̂)] >vib . (2.12)

For the phonon systems we apply the simplest approximation, the harmonic
approximation. We can thus apply the Mermin’s theorem [30] for the average
in eq. (2.12)

< exp[auA · (r̂ − r̂′)] >vib

= exp[
a2

2
< (uA · (r̂ − r̂′))2 >vib]. (2.13)

The average < (uA · (r̂ − r̂′))2 >vib is simplified for the isotropic systems

< (uA · (r̂ − r̂′))2 >vib= 2σ2
A(1 − cos θ) (2.14)

where we have used the relations

< (uA · r̂)2 >vib=< (uA · r̂′)2 >vib=< u2
A >vib /3 = σ2

A,

< (uA · r̂)(uA · r̂′) >vib= σ2
A cos θ, (2.15)

with cos θ = r̂ · r̂′. From eqs. (2.13)-(2.15), the average given by eq. (2.12) is
analytically given by

< J∗
LLc

(uA)JL′Lc
(uA) >vib

= 4π(−1)l′+lc exp(a2σ2
A)

∑

L1

il1jl1(ia
2σ2

A)G(LcL1|L)G(LcL1|L′) (2.16)

The most important term in the above sum arises from the term with l1 = 0
and the next from those with l1 = 1, because j0(ix) = sinh(x)/x and jl(ix)

6
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are represented in the region where x = a2σ2
A ≪ 1

jl(ix) ≈ (ix)l/(2l + 1)!!, (l ≥ 1). (2.17)

We thus have an interesting formula for the deep core excitation from φLc

where atomic thermal motions are taken into account

ig<(x′, xt) ≈
[

− φ∗
Lc

(r − R0
A)φLc

(r′ − R0
A) exp(a2σ2

A)j0(ia
2σ2

A)

+4πi
∑

LL′

φc∗
L (r − R0

A)φc
L′(r′ − R0

A) exp(a2σ2
A)j1(ia

2σ2
A)

×
∑

m1

G(Lc1m1|L)G(Lc1m1|L′) + · · ·
]

< exp(iHet)b
† exp(−iH∗

e t)b >e .

(2.18)

In the second term, the selection rule for the Gaunt integral allows to pick
up only the terms with l, l′ = lc ± 1. We thus have finite contribution from
p−excitation even for the K-edge excitation because of the thermal motion of
nuclei.

The second term in the large parenthesis of eq. (2.18) is simply given for the
K-edge excitation (lc = 0),

∑

m1

φc∗
1m1

(r − R0
A)φc

1m1
(r′ − R0

A)f(γ), (2.19)

f(γ) = exp(γ)(γ cosh γ − sinh γ)/γ2, (2.20)

γ = a2σ2
A.

For the 2p excitation the large parenthesis of eq. (2.18) is given by a more
complicated formula

f(γ)[φc
00φ

c
00 + δmc,0A0(r, r

′) + δmc,±1A±1(r, r
′)], (2.21)

where A0 and A±1 are explicitly given in terms of φc
L

A0 =
2√
5

[φc
00φ

c
20 + φc

20φ
c
00] +

3

5

[

φc∗
21φ

c
21 + φc∗

2,−1φ
c
2,−1

]

+
4

5
φc

20φ
c
20,

A±1 =− 1√
5

[φc
00φ

c
20 + φc

20φ
c
00]

+
1

5

[

φc
20φ

c
20 + 3φc∗

2,±1φ
c
2,±1 + 6φc∗

2,±2φ
c
2,±2

]

. (2.22)

7
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We use the simplified notation as φc
Lφc

L′ = φc
L(r − R0

A)φc
L′(r′ − R0

A).

The electronic part in eq. (2.10) < exp(iHet)b
† exp(−iH∗

e t)b >e is reduced to
the core spectral function A∗

c whose complex conjugate is defined by [20,28]

Ac(t) =< b† exp(iH∗
e t)b exp(−iHet) >e=

∑

n

|Sn|2 exp(−iεnt), (2.23)

Ac(ω) =
∑

n

|Sn|2δ(ω − εn), (2.24)

Sn =< n∗|b|0 >, εn = E0 − E∗
n,

∑

n

|Sn|2 = 1,

where |n∗ > is the nth core-hole state which satisfies the equation (see eq.
(2.9))

H∗
e |n∗ >= E∗

n|n∗ > .

The nth intrinsic loss probability is given by |Sn|2. The extrinsic loss can be
taken into account if we go beyond the lowest order skeleton expansion in eq.
(2.2) [28]. In the present paper we will not discuss it any more.

2.2 Pre-edge Structures

So far we have focussed on the hole propagator g<. Here we discuss the photo-
electron or excited electron propagation. We thus discuss the particle propa-
gator g>. A useful expression of g> is given in terms of particle Dyson orbital
fq

ig>(xt, x′) =
∑

q

fq(x)f ∗
q (x′) exp(−iεqt), (2.25)

fq(x) = < 0, N |ψ(x)|q, N + 1 >,

εq = Eq(N + 1) − E0(N).

In one-electron approximation, fq(x) is simplified to a bound excited orbital
or a continuum photoelectron wave function. Substituting eqs.(2.23)-(2.25),
(2.3) in eq. (2.1), we obtain a formula to describe the pre-edge structures in
K-edge X-ray absorption spectra where Franck-Condon effects are neglected
but core displacement effects are considered,

I(ωk) = 2π
∑

q

| < fq|Δ|φ1s > |2f0(γ)Ac(εq − ωk)

+ 2π
∑

qm

| < fq|Δ|φ1s
1m > |2f(γ)Ac(εq − ωk), (2.26)

8
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f0(γ) = exp(γ) sinh(γ)/γ. (2.27)

The first term describes the conventional X-ray absorption intensity for 1s →
fq transition, which has phonon effects in the factor f0(γ). The second de-
scribes the absorption intensity induced by atomic displacement due to the
thermal motion. An explicit expression of the electron-photon interaction op-
erator Δ is now given neglecting unimportant numerical factor

Δ = e · r +
i

2
(e · r)(k · r),

+
1

2ωk

(k × e) · L. (2.28)

The first term describes the electric dipole (E1), the second the electric quadrupole
(E2), and the third the magnetic dipole (M1) transitions. In the above for-
mula, e and k are the photon polarization and the propagation vectors; we
notice that |e| = 1, ωk = ck, and e · k = 0. We should note that both of the
first and the second terms in eq. (2.26) depend on temperature through f0(γ)
and f(γ) given by eq. (2.20).

A lowest order approximation for fq(x) to discuss pre-edge structures in X-ray
absorption spectra is thus given by

fq(x) ≈ φq(x). (2.29)

where φq(x) is localized atomic orbital on the X-ray absorbing atom A. Even
though the function is localized, the ”size” of the function φq is much larger
than the atomic thermal fluctuation. In contrast the deep core function φc

has non-negligible effects from the thermal motion. Now we consider 1s → 3d
transitions in transition metals, where they have vacant 3d levels on each
composite atom. As far as we discuss the transitions to the vacant quasi-
localized 3d levels, only 1s → 3d E2 transitions ( first term in eq. (2.26)) are
allowed in the static approximation. In addition we take the atomic thermal
motion into account, then the E1 transition φ1s

1m → 3d (2nd term in eq.(2.26))
is also allowed.

Now let calculate the temperature dependence of the pre-edge intensity where
the incident linearly polarized X-ray ‖ z is propagating along x direction. The
thermal factor σA is the same as that used in X-ray diffraction analyses. We use
the harmonic approximation for the phonon modes, and in the temperature
range 100K < T the classical approximation is assumed to work well. We thus
use a simple expression for the thermal factor

σ2
A = σ2

0

T

300
(2.30)

9
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where σ2
0 is the thermal factor at 300K. The Ti 1s exponent a is 21.44, 3d expo-

nent is 2.71. Figures 1 (a-d) show the temperature dependence of the pre-edge
intensity for Ti K-edge excitation. In this geometrical setup 1s → 3d±1 tran-
sitions are allowed in the E2 transitions induced by the thermal displacement,
whereas φ1s

1m → 3d±1, 3d0 are allowed in the E1 transition because of the ther-
mal atomic vibrations. We calculate the temperature dependences for four
different σ2

0; from 10−2 to 10−5 a.u.2. For small σA, we have the temperature
dependence in linear function of T , however the nonlinear effect is prominent
for the large temperature factor σ2

0 = 0.01a.u.2; there the E1 intensity caused
by the thermal vibration is much stronger than the E2 transition. Even for the
value σ2

0 = 0.0001a.u.2, the E1 intensity is still stronger than the E2 absorp-
tion intensity. For the small value σ2

0 = 10−5a.u.2, they are in the same order.
These behaviors are similar to those observed in Ti K-edge XANES (pre-edge
) spectra for SrTiO3 [5].

2.3 XANES Spectra

For the XANES analyses, the detailed calculations of fq’s are too complicated
and impractical for condensed systems because they extend over the whole
systems. We again use the formula for the hole propagator g< in terms of φ1s

and φ1s
1m for the K-edge excitation, and φ2pm

, φ2p
00 and φ2p

2m for the L23-edge
excitation, but we use g> for the photoelectron propagation, which yields a
XANES formula for the K-edge excitation,

I(ωk) =− 1

2π
Im[< φ1s|Δ∗g>(ε0 + ωk)Δ|φ1s > f0(γ)

+
∑

m1

< φ1s
m1

|Δ∗g>(ε0 + ωk)Δ|φ1s
1m1

> f(γ)]. (2.31)

In the above equation Im[< φ|Δ∗g>(ε0 + ωk)Δ|φ > is rewritten in terms of
the retarded Green’s function gr instead of g> [28] and the XANES formula
is now reduced to

I(ωk) =− 1

π
Im[< φ1s|Δ∗gr(ε0 + ωk)Δ|φ1s > f0(γ)

+
∑

m1

< φ1s
m1

|Δ∗gr(ε0 + ωk)Δ|φ1s
1m1

> f(γ)]. (2.32)

The retarded Green’s function gr plays the same role as the scattering Green’s
function because of the same boundary condition. We can thus apply the
multiple scattering theory to both the first and the second terms in the above
equation.

For the description of photoelectron propagation, Debye-Waller factors play

10
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an important role in particular EXAFS region. Even in the XANES region
the Debye-Waller factors are essential to study the temperature dependence:
We have to take the spherical wave effects. XANES Debye-Waller factors have
been discussed before [32], however we give here a different practical formula to
clarify the mathematical structure of the matrix J discussed in the appendix A.
The XANES formula (2.32) is conveniently calculated by use of renormalized
multiple scattering series. • •Both the first and the second terms in eq. (2.32)
are written in the form within the muffin-tin approximation

−8

3
Im

∑

LL′

il−l′ exp[i(δA
l + δA

l′ )]ρc(l)ρc(l
′)G(Lc10|L)G(Lc10|L′)

×[(t − Xt)−1]AA
LL′ (2.33)

where tαβ
LL′ = δαβδLL′tαl and X is given by

Xαβ
LL′ = tαl (k)GLL′(kRα − kRβ)(1 − δαβ), (2.34)

tαl (k) = −[exp(2iδα
l ) − 1]/(2ik).

The propagator GLL′(kRα − kRβ) describes the photoelectron propagation
from the site β with orbital angular momentum L′ to α with L. The radial
matrix element ρc(l) =

∫

drRl(kr)Rlc(r)r
3 in eq. (2.33) is calculated by use of

R1s, and for the second by use of R1s
1 for Rlc .

For small displacement u, the propagator GLL′(kR0+ku) is related to GLL′(kR0)
by use of the matrix Ĵ [33]

GLL′(kR0 + ku) =
∑

L1

GLL1
(kR0)ĴL1L′(ku), (2.35)

ĴL1L′(ku) =
∫

dr̂Y ∗
L1

(r̂) exp(iku · r̂)YL′(r̂). (2.36)

We should note that the matrix Ĵ is obtained from J defined by eq. (A.12)
applying the analytical continuation a → −ik. Let us consider a double scat-
tering X-ray absorption formula for the A → α → β → A path with atomic
displacement, which has a matrix product of Ĵ ’s

∑

L1L′

1
L2L′

2
L3

GLL1
(kRAβ)ĴL1L′

1
(kuAβ)Xβα

L′

1
L2

ĴL2L′

2
(kuβα)XαA

L′

2
L3

ĴL3L′(kuαA).

The thermal average of the above formula for the harmonic phonon systems
yields with aid of the Mermin’s theorem [30]

< ĴL1L′

1
(kuAβ)ĴL2L′

2
(kuβα)ĴL3L′(kuαA >

11
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=
∫

dr̂1r̂2dr̂3Y
∗
L1

(r̂1)YL′

1
(r̂1)Y

∗
L2

(r̂2)YL′

2
(r̂2)Y

∗
L3

(r̂3)YL′(r̂3)

× < exp(ikuAβ · r̂1) exp(ikuβα · r̂2) exp(ikuαA · r̂3) >

=
∫

dr̂1r̂2dr̂3Y
∗
L1

(r̂1)YL′

1
(r̂1)Y

∗
L2

(r̂2)YL′

2
(r̂2)Y

∗
L3

(r̂3)YL′(r̂3)

× exp[−k2

2

(

< (uAβ · r̂1)
2 > + . . . + < (uαA · r̂3)

2 >
)

]

× exp[−k2

2

(

< (uAβ · r̂1)(uβα · r̂2) > + . . .
)

]. (2.37)

In the complicated multiple scattering paths the cross terms as shown in the
last exponential term are expected to be canceled out because of their random
phases. By use of this assumption we can define the temperature dependent
path matrix X(T ) instead of the temperature independent X defined by eq.
(2.34)

Xβα
LL′(T ) =

∑

L”

Xβα
LL”K

βα
L”L′(T ), (2.38)

Kβα
L”L′(T ) =

∫

dr̂Y ∗
L”(r̂) exp[−k2

2
< (uβα · r̂)2 >]YL′(r̂). (2.39)

For the isotropic systems we can simplify the matrix K and X(T )

Xβα
LL′(T ) = Xβα

LL′ exp[−k2

6
< u2

βα >]. (2.40)

The thermal factor < u2
βα > is related to the conventional EXAFS thermal

factor

< (R̂ · (uβ − uα))2 >= Δ2
βα,

< u2
βα >= 3Δ2

βα. (2.41)

For the systems with axial symmetry around z-axis the matrix K(T ) is more
complicated and read

Kβα
L′′L′(T ) = exp[−k2

6
< u2

βα >][δL”L′ − k2

3
Δσ2

βαG(L′20|L”) + . . .] (2.42)

where

Δσ2
βα =< u2

βα,z > − < u2
βα,x > .

12
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2.4 Franck-Condon factor

So far we have neglected the difference of the vibrational Hamiltonian for
the no-hole electronic states H0

vib and that for the core-hole states H∗
vib in

eq. (2.10). Now we study the influence of the difference responsible for the
Franck-Condon effects. By applying Schwinger’s technique [34,35] we have

exp(iH0
vibt) exp(−iH∗

vibt) = exp
[

− iC(t) + B(t)
]

, (2.43)

B(t) =
∑

ν

[gν(t)bν − g∗
ν(t)b

†
ν ], (2.44)

C(t) =
∑

ν

|λν |2
ων

(

t − sin ωνt

ων

)

, (2.45)

gν(t) = λν
exp(−iωνt) − 1

ων

.

The factor C(t) is not a q-number but a c-number. Substitution of eq. (2.43)
into eq. (2.10) in the average over the vibrational states yields a more compli-
cated formula than eq. (2.16)

< J∗
LLc

(uA)JL′Lc
(uA) exp(iH0

vibt) exp(−iH∗
vibt) >vib

= (−1)l′+lc

∫

dr̂dr̂′Y ∗
Lc

(r̂)YL(r̂)Y ∗
L′(r̂′)YLc

(r̂′)

× < exp[auA · (r̂′ − r̂)] exp[B(t)] >vib exp[−iC(t)]. (2.46)

Again we apply the Mermin’s theorem [30]; the average over the phonon states
< . . . >vib is then given with aid of the isotropic and harmonic approximation
by

exp[a2σ2
A(1 − cos θ) + a < uA · (r̂′ − r̂)B(t) > +

1

2
< B2(t) >].

The first term is just due to the thermal displacement of absorbing atom A,
the third is the Franck-Condon factor and the second is their interference
term, which is explicitly given by

a(t) · (r̂′ − r̂),

where we have defined the vector a(t)

a(t) =
∑

ν

a√
2NMAων

[e∗(ν)gν(t)n(ων) − e(ν)g∗
ν(t)(n(ων) + 1)], (2.47)

13
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where MA is the mass of the X-ray absorbing atom A, n(ω) is the average
phonon number n(ω) = [exp(βω) − 1]−1, e(ν) is the phonon polarization vec-
tor for ν = (q, j) (crystal momentum q, branch j). The first order contribution
from the interference to the average (2.46) should vanish because of the sym-
metry. The Franck-Condon factor < B2(t) > /2 is easily calculated in the
harmonic vibration approximation [15,20], and is given by

−iC(t) +
1

2
< B2(t) >= −α + iβt

+

∞
∫

0

dω
D(ω)

ω2
[(n(ω) + 1) exp(−iωt) + n(ω) exp(iωt)], (2.48)

where

D(ω) =
∑

ν

|λν |2δ(ω − ων), (2.49)

α =

∞
∫

0

dω
D(ω)

ω2
[2n(ω) + 1], (2.50)

β =

∞
∫

0

dω
D(ω)

ω
.

Following Almbladh and Hedin [20], we define the spectral function

F (t) = exp[−iC(t) +
1

2
< B2(t) >] =

∞
∫

−∞

F (ω) exp(−iωt)dω, (2.51)

which satisfies the normalization condition
∫

F (ω)dω = F (t = 0) = 1. (2.52)

We thus have

< ω >=
∫

ωF (ω)dω = iḞ (t = 0) = 0,

< ω2 >= −F̈ (t = 0) =

∞
∫

0

dωD(ω)[2n(ω) + 1]. (2.53)

The Franck-Condon broadening increases as a function of temperature T . We
thus understand the Franck-Condon and also its interference with the core
displacement have no influence on the peak shift. The factor exp(−α) where

14
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α is given by eq. (2.50) has a finite contribution to the thermal damping due
to the Franck-Condon effects contrary to the core displacement.

2.5 quasi-particle energy for the core state

The quasi-particle energy (binding energy) of the core level εc = E0 − E∗
c

defined by eq. (2.24) is calculated by use of a pole of the retarded Green’s
function. We keep only the diagonal part of the electron selfenergy with respect
to the core function φc,

εc =< c|h + VH |c > + < c|Σr(εc)|c > (2.54)

where h is one-electron part and VH is the temperature dependent Hartree
potential

VH(r) =
∫

dr′v(r − r′) < ρ(r′) >, (2.55)

< ρ(r) > =
∑

σ

< ψ†(x)ψ(x) > .

Of course h + VH directly depends on atomic displacement and also thermal
electron excitations near Fermi level. These effects are however small compared
with the core displacement effects on the core wave functions as discussed
before. By use of the relations (2.6) and (2.16), we have an explicit formula
within the temperature Hartree approximation for the K-edge excitation

< c|h + VH |c >vib= εH
0 f0(γ) +

∑

m

εH
mf(γ), (2.56)

εH
m =< φ1m|h + VH |φ1m > . (2.57)

We have used the conventional Hartree energy εH
0 without atomic displace-

ment, typically negative, and εH
m the Hartree energy induced by core displace-

ment. Both f0(γ) and f(γ) are increasing function of the temperature T .

We can obtain a similar formula as far as we neglect the atomic displacement
effects on the selfenergy Σr,

< c|h + VH + Σr(εc)|c >= ε0f0(γ) +
∑

m

εmf(γ) (2.58)

where ε0 and εm are quasi-particle energy without and with core displacement
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ε0 = < φc|h + VH + Σr(εc)|φc >,

εm = < φ1m|h + VH + Σr(εc)|φ1m > . (2.59)

We thus have the binding energy shift with temperature

Δεc = −ε0[f0(γ) − 1] −
∑

m

εmf(γ). (2.60)

For the very small deviation limit, the binding energy shift behaves as

Δεc ≈ (ε0 +
1

3

∑

m

εm)γ. (2.61)

If we neglect the sum
∑

m εm induced by atomic displacement, negative ε0 gives
only the energy shift toward higher binding energy side. Recent experimental
results by Mannel et al. [6], however, show the pre-edge shift toward lower
energy for higher temperature, which suggests the finite contribution from the
second term of eqs. (2.60) and (2.61).

Figure 2 shows the binding energy shifts Δεc as a function of temperature for
Ti K-edge excitation, where the ratio β defined by

β =
∑

m

εm/ε0 (2.62)

is changed from −2.85 to−3.15. For the ratios −2.85, −2.90 and −2.95, the
shift Δεc increases as T , whereas it decreases for the smaller rations,−3.00 ∼
−3.15. The direct evaluation of εm is rather hard. So far no prominent binding
energy shift has been observed, which suggests that ε0 ≈ −εm.

3 Core Photoemission

In this section, we discuss phonon effects on photoemission from a deep core
φc excited by X-ray photons. In the Keldysh Green’s function approach to
the photoemission theory [24,36], the photoemission intensity without extrin-
sic losses and resonant processes is given in terms of dressed photoelectron
function f−

p under the influence of the optical potential (advanced electron
self-energy Σa ) and g<,

I(p) ∝ Im < f−
p |Δg<(εp − ω)Δ∗|f−

p > (3.1)
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where g<(εp − ω) is Fourier-transformed lesser Green’s function

g<(εp − ω) =
∫

dtg<(t) exp[i(εp − ω)t]. (3.2)

The integral (3.1) is thus given by use of eq. (2.10)

< f−
p |Δg<(t)Δ∗|f−

p >

= i
∑

LL′

< f−
p |Δ|φc

L′ >< φc
L|Δ∗|f−

p >

× < exp(iHet)b
† exp(−iH∗

e t)b >e

× < J∗
LLc

(uA)JL′Lc
(uA) exp(iH0

vibt) exp(−iH∗
vibt) >vib . (3.3)

At first we neglect the difference between the phonon Hamiltonian H0
vib and

H∗
vib. In this approximation the right hand side of eq. (3.3) is written for the

K-edge excitation,

< f−
p |Δg<(t)Δ∗|f−

p >

≈
[

| < f−
p |Δ|φc

00 > |2f0(γ) +
∑

m

| < f−
p |Δ|φc

1m > |2f(γ)
]

× < exp(iHet)b
† exp(−iH∗

e t)b >e (3.4)

where f(γ) is given by the thermal factor as shown by eq. (2.20), and f0(γ) is
given by eq. (2.27). The first term in eq. (3.4) describes the photoemission pro-
cesses where the core function is not polarized, but the second term describes
those processes associated with the core polarization due to the atomic ther-
mal displacement. The thermal fluctuation, however, influences the first term
through f0(γ). The electric dipole transition yields p-wave in the first term,
whereas d- and s-waves in the second term at the excited atom because of
the E1 transition. After the excitation the photoelectron waves propagate in-
side solids and suffer multiple scatterings from surrounding composite atoms.
The last factor in eq. (3.4) is the same as A∗

c(t) in eq. (2.23). We thus have a
formula for the photoemission intensity I(p) including the effects due to the
thermal atomic displacement at K-edge excitation

I(p) ∝
∑

n

|Sn|2
(

| < f−
p |Δ|φc

00 > |2f0(γ)

+
∑

m

| < f−
p |Δ|φc

1m > |2f(γ)
)

δ(εp + E∗
n − E0 − ω), (3.5)

where only the intrinsic loss effects are taken into account. The second term
in the large parenthesis is due to the atomic displacement, which gives rise
to quite different photoelectron angular distribution from the first term. As
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far as we completely neglect the elastic scatterings from nearby atoms, the
latter (the first term) shows simply cos2 θ angular distribution, where θ is the
angle between the X-ray polarization and the photoelectron momentum p. • •

For real systems, we cannot neglect the elastic scatterings as shown in the
studies of plasmon losses in XPS spectra [37,38]. We rather show here the
photoelectron angular distribution to demonstrate and to stress the influence
of the thermal atomic displacement without elastic scatterings

Figure 3 (a) and (b) show the photoelectron angular distribution excited from
Si K-edge at εp =100eV: In (a) σ2

0 = 0.005a.u.2 and 0.01a.u.2 in (b). For sim-
plicity we neglect elastic scatterings from surrounding atoms. That is, only A
term in eq. (3.8) is taken into account. We normalize the intensity so that the
integrated intensity over θ to be the same. We observe that the normalized
intensity decreases at θ = 0, whereas increases at large θ >≈ 30◦ with tem-
perature. For the larger σ0 the angular deviation from the cos2 θ is prominent
as shown in Fig. 3 (b). Figure 4 (a) and (b) show the photoelectron angular
distribution excited from Ti K-edge at εp =100eV: In (a) σ2

0 = 0.005a.u.2 and
0.01a.u.2 in (b). For simplicity we neglect elastic scatterings from surrounding
atoms, and normalize the intensity so that the integrated intensity over θ to
be the same. We observe that the normalized intensity decreases at θ = 0,
whereas increases at large θ >≈ 30◦ with temperature. For the larger σ0 the
angular deviation from the cos2 θ is prominent as shown in Fig. 4 (b). The
comparison with the result for Si K-edge excitation demonstrates that for the
heavier atom Ti the thermal deviation has prominent effects on the angular
distribution, because the core size is much smaller for Ti than Si. Figure 5
shows the similar results for Cu K-edge excitation. Even for the smaller DW
factors the prominent deviation from the cos2 θ angular dependence is observed
because of the smaller size of 1s core function of Cu.

Next we study the influence of the difference between H∗
vib and H0

vib in eq.
(3.3) which contributes to the Franck-Condon effects. The thermal average
in eq. (3.3) gives rise to the quite similar formula shown in subsection 2.4:
The Franck-Condon and its interference with the core displacement have no
influence on the peak shift, but finite effects on the peak broadening and the
intensity damping.

In addition to this factor we should consider the Debye-Waller factors for poly-
atomic systems. The scattering effects from surrounding atoms are completely
neglected so far. The interference effects (photoelectron diffraction effects) are
suppressed because of the DW factors in particular in high-energy region. The
photoemission amplitude is then written in terms of the damping plane wave
φ0

p, full T-matrix T expanded in terms of site T-matrix tα, and damping free
propagator g0(ε) = (ε + ∇2/2 + iΓ)−1 ( Γ > 0 is the imaginary part of the
optical potential ) [11,39–41]
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< f−
p |Δ|φc >=< φ0

p|[1 + Tg0(εp)]Δ|φc >

=< φ−
Ap|Δ|φc > +

∑

α(�=A)

< φ0
p|tαgAΔ|φc >

+
∑

β �=α(�=A)

< φ0
p|tβg0tαgAΔ|φc > + . . . , (3.6)

< φ0
p|(1 + tAg0) =< φ−

Ap|, gA = g0 + g0tAg0, (3.7)

where φc is localized on the site A. The first term describes the direct photoe-
mission process, the second a single elastic scattering, and so on. Let us write
the jth term of eq. (3.6) as Zj(j = 1, 2, 3, . . .). The photoemission intensity is
now given at instantaneous atomic configuration Q,

| < f−
p |Δks|φc > |2 = |Z1 + Z2 + Z3 + . . . |2 = A + B + C + D + . . .

A = |Z1|2, B = 2Re(Z∗
1Z2), C = |Z2|2, D = 2Re(Z∗

1Z3), . . . (3.8)

We then take thermal average over all phonon states. The direct term A has
no effects from thermal motion, whereas other terms B, C,.. are destructively
influenced by the thermal motion: Debye-Waller factors suppress the photo-
electron diffraction effects [11,42]. Of course the core displacement should have
some influence on the diffraction terms B,C,D, . . ., however the DW factors
have to be more important. In recent high-energy XPS (ωk >5keV) analy-
ses, we find that recoil effects in the direct term A are affected by phonon
excitation [13–16].

4 Concluding Remarks

Some important phonon effects observed in core level XAFS and X-ray photoe-
mission spectra are discussed on the basis of nonequilibrium Green’s function
theory. This theoretical framework allows us to incorporate phonon effects,
such as Debye-Waller factors, Franck-Condon factors and electron-phonon in-
teractions in a natural way. The core hole effects are taken into account in the
lesser Green’s function g<, and the excited electron propagation is described
by the greater Green’s function g>.

In the case of deep core excitation, the thermally displaced 1s core function
induces p component which plays an important role for pre-edge transitions.
In addition to the 1s → 3d E2 transitions, the thermally induced ”1p” → 3d
E1 transitions are allowed, which should be sensitive to the temperature. In
EXAFS region, these thermal displacement plays a very minor role because
1s → εp E1 transitions are predominant. This thermally displaced core func-
tion is also responsible for the temperature dependent binding energy shift.
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In XPS spectra excited from deep core levels, those thermally induced ”p”
orbitals have significant influence on the photoemission angular distribution.
Even though excited from 1s levels, the angular distribution, where scatterings
from surrounding atoms are neglected, does not show cos2 θ angular depen-
dence: The deviation is prominent for the heavier atoms because the deep 1s
orbitals are strongly localized.
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A Displaced Core Functions

Let first evaluate the Fourier transform of the core function φc given in eq.
(2.5).

∫

φLc
(r) exp(−ik · r)dr = 4πi−lcflc(k)YLc

(k̂), (A.1)

flc(k) =

∞
∫

0

jlc(kr)Rlc(r)r
2dr (A.2)

When the atomic position is displaced from the equilibrium position with u,
the core function is thus given by

φLc
(r − u) =

∫ dk

(2π)3
4πi−lcflc(k)YLc

(k̂) exp[ik · (r − u)]

= 8
∑

LL′

il−l′−lcG(LcL
′|L)YL(r̂)Y ∗

L′(û)K(lc, l, l
′; r, u), (A.3)

K(lc, l, l
′; r, u) =

∞
∫

0

dkk2flc(k)jl(kr)jl′(ku), (A.4)

where G(LL′|L′′) is the Gaunt integral defined by
∫

YL(r̂)YL′(r̂)Y ∗
L′′(r̂)dr̂.

For 1s and 2p core functions the radial parts are explicitly given by
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R1s(r) = 2a3/2 exp(−ar), R2p(r) =
2a5/2

√
3

r exp(−ar), (A.5)

which yields f1s(k) and f2p(k) as

f1s(k) =
4a5/2

(k2 + a2)2
,

f2p(k) =
16a7/2k√

3(k2 + a2)3
, (A.6)

By use of these explicit formulas, we can calculate the integral K(lc, l, l
′; r, u).

In order to apply residue analyses, we should extend the integral range from
(0,∞) to (−∞,∞). We notice that

jl(kr) = (−1)ljl(−kr), f1s(k) = f1s(−k),

f2p(k) = −f2p(−k). (A.7)

The non-zero Gaunt integrals G(LcL|L′) in eq. (A3) are restricted to the terms
when lc + l + l′ = even and |l − lc| ≤ l′ ≤ l + lc. For the K-edge excitation
(lc = 0), l and l′ should have the same parity. We thus understand that
f0(k)jl(kr)jl′(ku) is an even function of k. In the same way f1(k)jl(kr)jl′(ku)
is also an even function of k. The integral is thus written

K(lc, l, l
′; r, u) =

1

4

∞
∫

−∞

dkflc(k)[hl(kr) + h∗(kr)]jl′(ku)k2. (A.8)

As |z| → ∞, hl(z) → i−l−1 exp(iz)/z, so that hl(kr)jl′(ku) therefore decreases
exponentially as |k| → ∞ on the upper half complex plane as far as r > u. We
can therefore add a large semi-circle to the contour in the upper half-plane,
and apply Cauchy’s theorem. We should note that hl(kr)jl′(ku)k2 behaves as
kl′−l+1 at small k. At k = 0 we can have an additional pole. As shown below
only |l − l′| ≤ 1 have finite contribution, so that we have no need to worry
about the singularity at k = 0. For 1s excitation, only ia is the 2nd order pole
in the upper half-plane. The integral is thus given by

∞
∫

−∞

k2

(k2 + a2)2
hl(kr)jl′(ku)dk

= 2πi

⎡

⎣

d

dk

⎛

⎝

(

k

k + ia

)2

hl(kr)

⎞

⎠ jl′(ku) +

(

k

k + ia

)2

hl(kr)
d

dk
jl′(ku)

⎤

⎦

k=ia

(A.9)
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As u is much smaller than r, the ratio of the first term to the second is in
the order of 1/(aσA) which is typically much larger than 1. We thus keep only
the first term of eq. (A9). In the same way, we close the contour in the lower
half-plane in the term containing h∗

l (kr)jl′(ku) in eq. (A8). With the help of
the identity h∗

l (−z) = (−1)lhl(z), we finally obtain

φ1s(r − u) =
∑

L

φ1s
L (r)JL,00(u), (A.10)

where

φ1s
L (r) = il−lcR1s

l (r)YL(r̂),

R1s
l (r) = 2a3/2[(l + 1)hl(z) − zhl+1(z)], (z = iar) (A.11)

The important matrix which describes the atomic displacement is given in
terms of spherical harmonics

JLLc
(u) =

∫

Y ∗
L (r̂) exp(−ar̂ · u)YLc

(r̂)dr̂. (A.12)

It is important to check that JLLc
(0) = δLLc

and φ1s
00(r) = φ1s(r), which is

easy to be proved.

For 2p excitation, the integral K(1, l, l′; r, u) is calculated in the same way as
eq.(A.9). Here f1(k) has a third order pole at ia in the upper half plane. The
integral is thus approximated as

∞
∫

−∞

k3

(k2 + a2)3
hl(kr)jl′(ku)dk

≈ πi

[

d2

dk2

(

k3

(k + ia)3
hl(kr)

)

jl′(ku)

]

k=ia

(A.13)

which yields a relation

φ2p,mc
(r − u) =

∑

L

φ2p
L (r)JL,1mc

(u). (A.14)

The new functions φ2p
L (r) are explicitly given by

φ2p
L (r) = il−lcR2p

l (r)YL(r̂), (A.15)

R2p
l (r) = − 2i√

3
a3/2[(l2 − 1 − z2)hl(z) + zhl−1(z)], (A.16)

(z = iar).
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Explicit formulas of R1s
1 , R2p

0 and R2p
2 are shown in terms of ρ = ar

R1s
1 (r) = −2ia3/2(1 + 1/ρ + 1/ρ2) exp(−ρ),

R2p
0 (r) = −2ia3/2

√
3

(−ρ + 1 + 1/ρ) exp(−ρ),

R2p
2 (r) =

−2ia3/2

√
3

(ρ + 2 + 5/ρ + 9/ρ2 + 9/ρ3) exp(−ρ). (A.17)
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Figure Caption

Fig.1 The temperature dependence of the pre-edge intensities for Ti K-edge
excitation for different thermal factors σ2

0: (a) 1×10−2 a.u.2, (b) 1×10−3 a.u.2,
(c) 1×10−4 a.u.2 and (d) 1×10−5 a.u.−2. Both E1(1s → np ) and E2 (1s → nd)
transitions are shown.

Fig.2 Temperature dependence of the binding energy shifts at Ti K-edge (see
eq. (2.60)) for different energy ratio β =

∑

m εm/ε0.

Fig.3 The photoelectron angular distribution excited from Si K-edge at εp =100eV:
In (a) σ2

0 = 0.005a.u.2 and 0.01a.u.2 in (b) for various temperatures T from
10K to 300K. For simplicity we neglect elastic scatterings from surrounding
atoms. We normalize the intensity so that the integrated intensity over θ to
be the same.

Fig.4 The photoelectron angular distribution excited from Ti K-edge at εp =100eV:
In (a) σ2

0 = 0.005a.u.2 and 0.01a.u.2 in (b) for various temperatures T from
10K to 300K. For simplicity we neglect elastic scatterings from surrounding
atoms. We normalize the intensity so that the integrated intensity over θ to
be the same.

Fig.5 The photoelectron angular distribution excited from Cu K-edge at
εp =100eV: In (a) σ2

0 = 0.001a.u.2 and 0.005a.u.2 in (b) for various tem-
peratures T from 10K to 300K. For simplicity we neglect elastic scatterings
from surrounding atoms. We normalize the intensity so that the integrated
intensity over θ to be the same.
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