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Integrative analysis of high-throughput RNAi
screen data identifies the FER and CRKL tyrosine
kinases as new regulators of the mitogenic
ERK-dependent pathways in transformed cells
Philippe Nizard1,2, Frédéric Ezan3, Dominique Bonnier3, Nolwenn Le Meur3,4, Sophie Langouët3, Georges Baffet3,
Yannick Arlot-Bonnemains1 and Nathalie Théret3*
Abstract

Background: Cell proliferation is a hallmark of cancer and depends on complex signaling networks that are chiefly
supported by protein kinase activities. Therapeutic strategies have been used to target specific kinases but new
methods are required to identify combined targets and improve treatment. Here, we propose a small interfering
RNA genetic screen and an integrative approach to identify kinase networks involved in the proliferation of
cancer cells.

Results: The functional siRNA screen of 714 kinases in HeLa cells identified 91 kinases implicated in the regulation
of cell growth, most of them never being reported in previous whole-genome siRNA screens. Based on gene
ontology annotations, we have further discriminated between two classes of kinases that, when suppressed, result
in alterations of the mitotic index and provoke cell-cycle arrest. Extinguished kinases that lead to a low mitotic index
mostly include kinases implicated in cytosolic signaling. In contrast, extinguished kinases that result in a high mitotic
index mostly include kinases implicated in cell division. By mapping hit kinases in the PhosphPOINT phosphoprotein
database, we generated scale-free networks consisting of 449 and 661 protein-protein interactions for kinases from
low MI and high MI groups, respectively. Further analyses of the kinase interactomes revealed specific modules such
as FER- and CRKL-containing modules that connect three members of the epidermal growth factor receptor (EGFR)
family, suggesting a tight control of the mitogenic EGF-dependent pathway. Based on experimental studies, we
confirm the involvement of these two kinases in the regulation of tumor cell growth.

Conclusion: Based on a combined approach of large kinome-wide siRNA screens and ontology annotations, our
study identifies for the first time two kinase groups differentially implicated in the control of cell proliferation. We
further demonstrate that integrative analysis of the kinase interactome provides key information which can be
used to facilitate or optimize target design for new therapeutic strategies. The complete list of protein-protein
interactions from the two functional kinase groups will provide a useful database for future investigations.
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Background
The protein kinase family is one of the largest gene fam-
ilies in the human genome and protein phosphorylation
affects more than 30% of all proteins. Most kinases are
involved in signal transduction pathways that govern cell
proliferation, differentiation and apoptosis. Protein kin-
ase expression and activities are highly misregulated in
cancer, justifying the development of therapeutic stra-
tegies that target kinases. Inhibitors of protein kinase
oncogenes such as gefinitib for EGFR [1], imatinib for
BCR-ABL [2] or trastuzumab for HER2 [3] have been
subjected to clinical assays, but the efficiency of target-
ing specific kinase oncogenes has been impaired by the
intrinsic heterogeneity of cancers. In order to improve
antitumor treatment, investigation of the non-oncogene
dependency of cancer, combined therapies and multiple-
target approaches have been proposed [4-7]. These have
proven to be highly complex tasks, and an integrated vi-
sion of kinome networks is required to optimize for the
best combinations of targets. Over the past decade, high-
throughput approaches have significantly contributed to
the global picture of kinase profiles in cancer and cell pro-
liferation, mainly by describing the differential expression
and activation of numerous kinases. However, the basis
for the dynamic complexity of kinase networks remains
unclear. Unlike global analyses such as gene-expression
array and proteomics, RNA interference (RNAi) technol-
ogy is a functional approach that has been used both to
identify new selective targets and to understand the cell’s
response to cancer drugs [8]. Using single-well screening,
the small interference RNA (siRNA) method was shown
to be more suitable for phenotypic analysis and has been
successfully employed to investigate genes involved in the
cell cycle and in cell proliferation [9-11]. Taken together,
genome-wide RNAi screens have led to the identification
of more than 2 500 genes that are implicated in cell prolif-
eration but basing the rational choice of efficient targets
on these data has proven difficult. More recently, integra-
tive screening combining genome-wide RNAi screens with
multiple biologic data have been developed to filter for
high-confidence candidate targets [12]. However combin-
ing results from different resources to extract information
of interest remains a challenging task. The originality of
the work reported here consists in the specific screen of a
set of 714 kinases and, using integrative data-mining ana-
lyses to filter functional kinase groups, constructing kinase
interaction networks that successfully identify new bio-
logically relevant targets.
For this purpose, we developed an image-based RNAi

screen to identify kinases required for cell-cycle progres-
sion. The readout of the screen consists in the quanti-
fication of mitotic index (phospho-histone H3-positive
cells) after RNAi treatment. Based on ontology annota-
tions, two groups of kinases leading to either low or high
mitotic index (MI) were functionally characterized. By
extracting information from PhosphoPOINT, the human
interactome and phosphoprotein database, we further
generated protein networks that permit the identification
of two key kinases as regulators of tumor cell growth that
control cell growth, the FER and CRKL tyrosine kinases
that form a pivotal subnetwork which controls the EGFR
mitogenic pathway.

Results and discussion
Protein kinases control the cell cycle and their deregula-
tion has been widely reported in cancers. As a conse-
quence, targeted inhibition of kinases in cancer therapy
has been extensively studied but identifying combinations
of protein kinase targets is required to improve thera-
peutic strategies. RNAi strategies based on genome-wide
screens have been previously used to identify genes in-
volved in the cell cycle and mitosis, but with a low re-
dundancy of identified kinase genes [9-18]. Less than five
kinases have been recovered in at least two studies, with
Plk1 as the only common hit. In the present study, we
have focused on genes coding for kinases by screening a
siRNA library targeting 714 kinases (Additional file 1:
Table S1). We then developed a robust RNAi assay to
identify modifications in HeLa cell proliferation and mi-
tosis. Cells were transfected with 3 individual siRNA du-
plexes targeting each kinase and cultured for 48 hours.
Next, cells were fluorescently labeled for DNA (DAPI
staining) and phosphorylated histone H3 (pH3), a marker
for mitotic cells (Figure 1). The mitotic index was calcu-
lated as the ratio between the number of DAPI-stained
cells and pH3-positive cells (Additional file 1: Table S2).
On a log2 scale, values above or below the median ± 2 me-
dian absolute deviations (MAD) were selected as primary
hits. As illustrated in Figure 2 and listed in Table 1, 91 pri-
mary hits led to significant variations of the mitotic index
(MI) when compared to the mean MI of cycling cells
(5%). From this analysis, we could identify two groups of
kinases whose inhibition leads to low (n = 41) and high
MI (n = 50). Comparisons with data from the literature
show that 28 kinases had been already identified, as
well as 13 additional related kinases (Additional file 1:
Table S3). Note that results from this analysis included
data from 8 published studies based on whole-genome
RNAi screens, suggesting that use of dedicated siRNA
libraries greatly improves the identification of kinases
that interfere with cell proliferation.

Ontology annotations discriminate between functionally
different kinase groups
To better understand the significance of the existence of
two distinct kinase groups whose knockdown leads to
opposite effects, we investigated their functional annota-
tions using Gene Ontology analysis. Based on a classical



Figure 1 Experimental workflow to identify kinase targets using high-content imaging. (A) Cells were fluorescently labeled for DNA (DAPI
staining, blue channel) and for phosphorylated histone H3 (green channel) as indicated above the photographs. Using CellProfiler software,
snapshots were split into blue and green channels. For each image a local correction was applied and objects (nucleus and phosphohistone
H3-positive cells) were counted. (B) Normalization and Mitotic Index quantification were performed using CellHTS2 free software. The diagram
depicts box-plots of the whole experiment.

Nizard et al. BMC Genomics 2014, 15:1169 Page 3 of 13
http://www.biomedcentral.com/1471-2164/15/1169
hypergeometric test for Gene Ontology term enrichment,
the FATIGO tool provides a t-test for cross-comparison
enrichment analyses from two gene lists. As shown in
Figure 3, the two kinase lists (High and Low MI) were
characterized by different biological processes. Kinases
from the RNAi assay that induced a high MI are associated
with the ontology terms “cell cycle” and “cell proliferation”,
while kinases from the RNAi assay that induced a low MI
are associated with the ontology terms “response to exter-
nal and chemical stimulus”. In accordance with these ob-
servations, we found that the two groups of kinases were
also differentially enriched in cellular component terms



Figure 2 Variation of the mitotic index (MI) in HeLa cells transfected with siRNA targeted against kinases. Illustration of MI variation of
kinases for which siRNA significantly induced either an increase (High) or a decrease (Low) in mitotic index compared to the mean MI of cycling
cells reported as 5% in the literature (red band).
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compared with the whole-genome annotations (Figure 3B
and C). Kinases for which siRNA treatment induced a
high MI were enriched in nucleus-related terms that in-
clude “microtubule organizing center” and “spindle pole”
(Figure 3B), while kinases for which siRNA treatment in-
duced a low MI were enriched in cytosol-related terms,
with 27 kinases annotated with the “cytoplasm” term
(Figure 3C). Taken together, this ontology-based charac-
terization strongly suggests that kinases from each MI
group are associated with specific biologic functions.
Based on this ontology analysis, we postulated that an

increased mitotic index is associated with cell-cycle arrest
during mitosis, which involves kinases related to nuclear
processes, while a diminished mitotic index is associated
with cell-cycle blockage in early phases (G1/S/G2 phases),
which involves kinases related to cytosolic signaling. Ki-
nases implicated in the successful completion of mitosis
were present in the high mitotic-index list. These in-
clude BUB1, which is involved in the spindle check-
point function, Plk-1 and −2, critical regulators of cell
mitosis and cytokinesis, and NEK10, from the NIMA
gene family, which controls initiation of mitosis. We
note that NIMA gene-family Neks have been previously
implicated in the regulation of various aspects of the
cell cycle and that Nek-10 is physically associated with
Raf-1 and MEK1, formation of the three-protein com-
plex being necessary for Nek-10-mediated MEK1 auto-
activation [19,20].
In contrast, numerous kinases from the low mitotic-

index list are involved in signaling pathways. For example,
PRKCE is a serine- and threonine-specific protein kinase
activated by diacylglycerol, PIK3CB, is a Phosphoinositide
3-kinase, and DGKE is a Diacylglycerol kinase involved
mainly in the regeneration of phosphatidylinositol (PI)
from diacylglycerol in the PI cycle during signal transduc-
tion. Similarly, the MAPKAPK3 and MAPAPK5 kinases,
which are activated by MAP kinases such as MAPK1/
ERK, MAPK14/p38-alpha and MAPK11/p38-beta, me-
diate the signaling response to cellular stress and pro-
inflammatory cytokines. In accordance with our data,
Moffat et al. [13] reported gene targets involved in signal-
ing pathways for which shRNAs induced a decrease in
MI, such as diacylglycerol kinase (DGKG), interleukin-1
receptor-associated kinase 2 (RAK2) and glycogen syn-
thase kinase 3 beta (GSK3B). However, it is important to
note that our approach enriches the list of putative kinases
involved in these processes, suggesting that dedicated
siRNA libraries are more efficient than global-genome ap-
proaches to identify signaling kinase targets.

Integrative phosphoproteomic approaches identify
essential modules
To further understand the contribution of these signaling
kinases in the control of cell proliferation, we next built
the functional interactome of the two kinase groups. To
do this, we first integrated protein and phosphoproteomic
interactions into our data by extracting protein inter-
actions that include phosphoprotein substrates from
PhosphoPOINT, a comprehensive human kinase inter-
actome and phospho-protein database. 449 and 661
protein-protein interactions (PPI) were identified for ki-
nases from the low-MI and high-MI groups, respec-
tively (detailed in Additional file 1: Tables S4 and S5).
We next generated networks where nodes stand for
proteins and edges represent biological information in-
cluding “interacting proteins”, “interacting proteins as
well as phospho-proteins”, “substrates” and “substrates
as well as interacting phospho-proteins”. As shown in
Figure 4 for the kinases from the high-MI group (563
nodes) and Figure 5 for the kinases from low-MI group
(406 nodes), both networks exhibit scale-free behavior,
meaning that they follow a power law-degree distribution
which confers scale-invariance properties and network’s
robustness. Expandable views of graphs were provided as



Table 1 Lists of protein kinases whose inhibition leads to low and high Mitotic Index

Low mitotic index High mitotic index

Symbol Gene description Symbol Gene description

ACVR1B Activin A receptor, type IB AKT3 V-akt murine thymoma viral oncogene homolog 3

ADRBK2 Adrenergic, beta, receptor kinase 2 ALS2CR2 Amyotrophic lateral sclerosis 2 (juvenile) chromosome region

AK2 Adenylate kinase 2 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)

ALPK2 Alpha-kinase 2 CAMK1 Calcium/calmodulin-dependent protein kinase I

ARAF V-raf murine sarcoma 3611 viral oncogene homolog CDC2L1 Cell division cycle 2-like protein kinase 1

AURKB Aurora kinase B CDC7 Cell division cycle 7 homolog (S. cerevisiae)

BRD4 Bromodomain containing 4 CDKL4 Cyclin-dependent kinase-like 4

BTK Bruton agammaglobulinemia tyrosine kinase CHKB choline kinase beta

CAMK1D Calcium/calmodulin-dependent protein kinase ID CIT Citron (rho-interacting, serine/threonine kinase 21)

CDC42BPG CDC42 binding protein kinase gamma (DMPK-like) DAK Dihydroxyacetone kinase 2 homolog (S. cerevisiae)

CDKL3 Cyclin-dependent kinase-like 3 DDR2 Discoidin domain receptor family, member 2

CLK2 CDC-like kinase 2 DGKB Diacylglycerol kinase, beta 90 kDa

CRKL V-crk sarcoma virus CT10 oncogene homolog (avian)-like EIF2AK2 Eukaryotic translation initiation factor 2-alpha kinase 2

DCAMKL1 Doublecortin-like and CAM kinase-like 1 ETNK2 Ethanolamine kinase 2

DGKE Diacylglycerol kinase, epsilon 64 kDa FGFR1 Fibroblast growth factor receptor 1

DMPK Dystrophia myotonica-protein kinase FGFR4 Fibroblast growth factor receptor 4

FER Fer (fps/fes related) tyrosine kinase GRK1 G protein-coupled receptor kinase 1

FGFR3 Fibroblast growth factor receptor 3 GRK5 G protein-coupled receptor kinase 5

GSK3A Glycogen synthase kinase 3 alpha HIPK2 Homeodomain interacting protein kinase 2

IRAK3 Interleukin-1 receptor-associated kinase 3 IGF1R Insulin-like growth factor 1 receptor

LMTK2 Lemur tyrosine kinase 2 IHPK3 Inositol hexaphosphate kinase 3

LRRK1 Leucine-rich repeat kinase 1 LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila)

MAPKAPK3 Mitogen-activated protein kinase-activated protein kinase 3 MAP3K14 Mitogen-activated protein kinase kinase kinase 14

MAPKAPK5 Mitogen-activated protein kinase-activated protein kinase 5 MAP3K6 Mitogen-activated protein kinase kinase kinase 6

MARK1 MAP/microtubule affinity-regulating kinase 1 MAPK6 Mitogen-activated protein kinase 6

MPP3 Membrane protein, palmitoylated 3 NAGK N-acetylglucosamine kinase

PDIK1L PDLIM1 interacting kinase 1 like NEK10 NIMA (never in mitosis gene a)- related kinase 10

PDK2 Pyruvate dehydrogenase kinase, isozyme 2 PDZD2 PDZ domain containing 2

PGK2 Phosphoglycerate kinase 2 PGK1 Phosphoglycerate kinase 1

PHKA1 Phosphorylase kinase, alpha 1 (muscle) PIM3 Pim-3 oncogene

PHKG2 Phosphorylase kinase, gamma 2 (testis) PKMYT1 Protein kinase, membrane associated tyrosine/threonine 1

PIK3CB Phosphoinositide-3-kinase, catalytic, beta polypeptide PLK1 Polo-like kinase 1 (Drosophila)

PRKAA2 Protein kinase, AMP-activated, alpha 2 catalytic subunit PLK2 Polo-like kinase 2 (Drosophila)

PRKCE Protein kinase C, epsilon PMVK Phosphomevalonate kinase

RIPK2 Receptor-interacting serine-threonine kinase 2 PRKAR2B Protein kinase, cAMP-dependent, regulatory, type II, beta

RIPK4 Receptor-interacting serine-threonine kinase 4 PRKCB1 Protein kinase C, beta 1

SPHK2 sphingosine kinase 2 PRKD3 Protein kinase D3

STC1 Stanniocalcin 1 PRKDC Protein kinase, DNA-activated, catalytic polypeptide

STK40 Serine/threonine kinase 40 PRPS1L1 Phosphoribosyl pyrophosphate synthetase 1-like 1

TNK1 Tyrosine kinase, non-receptor, 1 PSKH1 Protein serine kinase H1

ULK2 Unc-51-like kinase 2 (C. elegans) PXK PX domain containing serine/threonine kinase

SNRK SNF related kinase

SRMS Src-related kinase
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Table 1 Lists of protein kinases whose inhibition leads to low and high Mitotic Index (Continued)

STK17B Serine/threonine kinase 17b

STK36 Serine/threonine kinase 36, fused homolog (Drosophila)

TNIK TRAF2 and NCK interacting kinase

TPK1 Thiamin pyrophosphokinase 1

TRPM7 Transient receptor potential cation channel, subfamily M, member 7

VRK3 Vaccinia related kinase 3

WNK3 WNK lysine deficient protein kinase 3
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Additional file 1: Figures S1 and S2 and topology ana-
lyses were further detailed in Additional file 1: Table S6.
Of note, 31/41 and 31/50 kinases from low- and high-MI
groups were respectively included in PPI graphs, the
remaining hit kinases not being documented in the Phos-
phoPOINT database. However, ontology-based compari-
son of the two PPI networks confirmed the differential
functions of the two groups. As show in Figure 6, heat-
map visualization of molecular functions showed a signi-
ficant enrichment in “cyclin-dependent protein kinase
activity” for PPI from the high-MI group, while PPI from
the low-MI group were significantly enriched in receptor
signaling-related functions such as “growth factor receptor
Figure 3 Ontology analysis of kinases. (A) Comparative annotations usin
induced either an increase (High) or a decrease (Low) in mitotic index (MI)
describing enrichment in cellular component ontology for high-MI (B) and
p value).
binding”, “protein serine_threonine tyrosine kinase” and
“receptor signaling protein activity”. These integrative PPI
analyses are in agreement with the notion of specific mo-
lecular functions associated with kinases from the low-MI
(“receptor signaling”) and high-MI groups (“cell-cycle”).
Visualization of PPI helps to identify local units of the

networks, defined as modules which function as essen-
tial components of the network. Accordingly, PPI from
the high-MI group showed a specific “mitosis regulatory
module” that includes the polo-kinase 1 PLK1, the mi-
totic checkpoint kinase BUB1, the membrane-associated
kinase PKMYT1 and the cell cycle division kinase CDC7
(Figure 4, insert). Note that PLK1 phosphorylates and
g Fatigo tool of biological processes between kinases for which siRNA
. (B) and (C), Directed acyclic graphs from GOTree Machine (GOTM)
low-MI (C) groups (significant terms are indicated as red box including



Figure 4 Protein-protein interaction network for the high-MI group. Nodes are proteins extracted from the PhosphoPOINT database using
the name of kinases in the low-MI group as input. Edges represent the relationship between proteins: black edge (1) for interacting proteins; blue
edges (2) for interacting proteins as well as phosphoproteins; red edges (3) for substrates and purple edges (4) for substrates as well as interacting
phosphoproteins. The insert shows the mitosis regulatory module” that includes the polo-kinase 1 PLK1, the mitotic checkpoint kinase BUB1, the
membrane-associated kinase PKMYT1 and the cell cycle division kinase CDC7.
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activates BUB1 to localize it to the kinetochore, phos-
phorylates and inhibits the negative regulator PKMYTI
and interacts with the G1/S kinase Cdc7p to target it to
initiation complexes late in G1.
Focusing on signaling kinases from the low-MI group,

we identified an unexpected module that includes CRKL
and FER kinases and three members of the epidermal
growth factor (EGF) receptor family of receptor tyrosine
kinases, EGFR, ERBB2 and ERBB3 (Figure 5, insert). These
interactions support a possible role of these two protein
kinases as key regulators of G1/S phase progression, which
is known to be driven by EGFR signaling. To validate this
hypothesis, we next investigated the role of these two ki-
nases using direct experimental approaches.



Figure 5 Protein-protein interaction network for the low-MI group. Nodes are proteins extracted from the PhosphoPOINT database using
the name of kinases in the high-MI group as input. Edges represent the relationship between proteins: black edge (1) for interacting proteins; blue
edges (2) for interacting proteins as well as phosphoproteins; red edges (3) for substrates and purple edges (4) for substrates as well as interacting
phosphoproteins. The insert shows the EGFR sub-network connected to the FER and CRKL kinases.
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Figure 6 Ontologic annotation of PPI networks. Comparative annotation of PPIs from the low- and high-MI groups was performed using
ClueGO tool as Cytoscape plug-in. Results are expressed as a graph of differential enrichment of molecular function GO terms. The color gradient
shows the kinase proportion of each cluster associated with the term (green nodes for the high-MI group and red nodes for the low-MI group).
Equal proportions of the two clusters are represented as white nodes.
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Identification of FER and CRKL as pivotal protein kinases
involved in mitogenic signaling pathways
While CRKL (CRK-like) and FER non-receptor tyro-
sine kinase have been previously identified using high-
throughoutput screening, we demonstrate here that these
two kinases work together to control the EGFR signaling
pathway. Indeed, CRKL has been described as an “essen-
tial cancer-causing gene” in 12 cancer cell lines repre-
senting diverse cancer types [5]. In agreement with this
observation, CRKL expression has been correlated with
aggressive and malignant behavior of cancer cells, making
CRKL a potential cancer marker and therapeutic target
[21]. Similarly, the FER non-receptor tyrosine kinase has
been previously associated with cell proliferation and can-
cer [22-26]. FER was initially discovered in studies focus-
ing on the proto-oncogene Fes/Fps and was shown to play
a critical role in cytoskeletal regulation, cell adhesion,
migration and proliferation. FER has been associated
with signaling complexes containing insulin receptor
substrate-1, IGF1R and phosphatidylinositol 3-kinase
[27]. Canonical IGF-IR/IRS1 signaling is activated through
the binding of IRS1 to phosphorylated IGF-IR, resulting
in the activation of the ERK/HIF-1α/NF-κB signaling
pathway [28]. As demonstrated in Figure 5, IRS1 and
IGF1R respectively interact with FER and CRKL, pro-
viding additional evidence for crosstalk between FER
and CRKL in the activation of the ERK/HIF-1α/NF-κB
signaling pathway.
To validate and further investigate the effects of CRKL

and FER, we analyzed cell-cycle progression in two pro-
liferating cell lines: the cervical cancer HeLa cell line
and the HuH7 human hepatoma cell line. HuH7 cells
are highly proliferating cells in which signaling pathways
are strongly activated in response to extracellular stimuli
[29,30]. CRKL and FER expressions were silenced using
2 different siRNAs per targeted gene and progression
through the G1/S phase was analyzed by EdU (5-ethynyl-
2’-deoxyuridine) and/or methyl-3H thymidine incorpor-
ation in siRNA-inhibited vs. control cells. The efficiency of
siRNA was validated by the 85% and 90% decrease in the
expression levels of CRKL and FER in HeLa and HuH7
cell lines, respectively (Figure 7A and B). As shown in
Figure 7C, D and E, CRKL and FER silencing induced a
strong decrease in EdU and methyl-3H thymidine in-
corporation in both HeLa and HuH7 cells, highlighting
a decrease in DNA replication. In addition, these effects
were associated with a decrease in ERK phosphoryl-
ation (Additional file 1: Figure S3) and Ki67 expression
(Additional file 1: Figure S4) thereby suggesting the im-
plication of FER and CRKL in regulation of cell prolif-
eration through mitogenic ERK-dependent pathways.
To illustrate the cell cycle distribution with knockdown
of CRKL and FER, we analyzed the cyclin D1 which plays
a critical role in late G1 phase progression. We showed
that cyclin D1 expression accumulated in CRKL and FER
silenced cells while expression of CDK1 was not changed
compared to controls. These data, together with methyl-
thymidine inhibitions, support evidences for the implica-
tion of CRKL and FER in late G1 and G1/S transition
(Additional file 1: Figure S5).
Interestingly we further observed a diminished migra-

tion of cells silenced for FER and CRKL (Additional file 1:
Figure S6) that confirm and extend previous work show-
ing that CRKL and FER could be associated with the
metastatic potential of hepatocellular carcinoma (HCC)
cells. Phosphoproteomic techniques based on LC-MS/MS



Figure 7 Implication of the FER and CRKL kinases in S-phase replication of HeLa and HuH7 cells. Cells were transfected with FER, CRKL or
control siRNAs and analyzed 72 h post-transfection. (A, B), western blot analysis of FER and CRKL expression in HeLa (A) and HuH7 (B). (C),
Representative fluorescence microcopy images from HeLa cells (EDU labeling). (D, E), Cell proliferation assay. EDU or methyl-Thymidine
incorporations were performed 72 h (a) and 96 h (b) after transfections of HeLa (D) and HuH7 (E) cells. Replication is expressed as the
proliferation index (EDU for HeLa cells) and cpm/μg of protein (methyl-3H-Thymidine for HuH7). The statistical significance was (P < 0.05) and
(P < 0.001) in HeLa and HuH7 cells, respectively, relative to the control siRNA.
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and protein-protein interactions in crosstalk pathways
first implicated FER in the invasive ability of metastatic
hepatoma cells [26]. More recently, Liu et al. [31] dem-
onstrated that CRKL could be a novel prognostic marker
in HCC, whereby knockdown of CRKL in HCC cells leads
to a decrease in cell migration and in the epithelial-
mesenchymal transition process. In addition, high ex-
pression levels of CRKL and of the CRKL-FLT1 complex
(a member of the vascular endothelial growth factor re-
ceptor family) strongly correlate with reduced disease-free
and overall survival in HCC patients. Together these data
demonstrate that targeting FER and CRKL might consti-
tute a promising new therapeutic approach.

Conclusions
Unlike previous RNAi-based screens, we have developed
an original integrative data analysis to identify kinases re-
quired for cell proliferation. Using ontology annotation,
we first identified two functional kinase groups differen-
tially implicated in the control of cell proliferation by
regulating either the cell cycle and cell division or, more
broadly, signaling pathways. Second, we integrated sig-
naling kinases with protein and phosphoproteomic inter-
actions to generate a global view of kinase networks,
including substrates and interacting proteins. Network
analysis then allows for the identification of functional
modules that regroup kinases working together. This is
the case for FER and CRKL, which control mitogenic
ERK-dependent signaling pathways.
Targeting specific signaling kinases that control cell pro-

liferation has been developed as a strategy for cancer ther-
apy, but resistance often emerges as a major impediment
to effective chemotherapy. Systems biology approaches
are necessary to take into account signaling complexity
and to implement effective combinatorial therapies. The
simple framework proposed in this work should serve as a
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useful basis to improve our understanding and interpret-
ation of screening data and to facilitate the identification
of new kinase functionalities that can in turn be used as
part of new therapeutic strategies.

Methods
Cell culture and RNAi screening
Synthesized siRNA libraries were spotted onto 96 well mi-
croplates (200 pmole/well) by Sigma Aldrich (MISSION®
siRNA Human Gene Family Panels). The panel contains
over 2142 siRNA duplexes that target 714 kinase genes. 3
individual siRNA duplexes per target gene were designed
using the Rosetta Inpharmatics design algorithm. siRNAs
were solubilized in 25 μl serum-free OptiMem cell culture
medium containing 0.3 μl DharmaFECT transfection re-
agents (Thermo Scientific Dharmacon®, Illkirch, France)
for 20 min. HeLa cells were retrotransfected by plat-
ing 2.5×104 cells per well in 175 μl of antibiotic-free
Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum. After a medium change, full me-
dium was added 5 h post-transfection and cells were cul-
tured for 48 h under 5% CO2 at 37°C. Plk1, a highly
efficient inhibitor of cell proliferation and mitosis, was se-
lected as an internal control in our study and it was spot-
ted in all plates.

Immunofluorescence and image acquisition
48 h post-transfection, cells were centrifuged and fixed
with 8% formaldehyde for 20 minutes. The superna-
tants were discarded and the cells were washed twice
with phosphate-buffered saline (PBS). Cells were perme-
abilized in PBS containing 0.1% Triton X-100 for 5 mi-
nutes. After washing with PBS, non-specific sites were
blocked with 1% BSA for 15 minutes and cells were then
incubated with monoclonal Anti-phospho-Histone H3
(Ser10) (Millipore, Molsheim, France) for 90 minutes at
room temperature. Cells were washed twice with PBS,
incubated with Alexa Fluor® 488 goat anti-mouse (In
Vitrogen-Lifr technologies, CA, USA) for 30 minutes
before staining DNA with DAPI (5 mg/ml for 5 minutes
at room temperature). Color micrographs were taken
using a Zeiss Axiolmager M1 equipped with a motor-
ized stage (Märzhäuser Wetzlar). Images from the Zeiss
ZVI files were converted into jpeg format and Cell Pro-
filer software (http://www.cellprofiler.org/) was used to
perform automatic identification and measurement of
biological objects. Briefly, the original color image was
first converted to an image with varying grayscale in-
tensities. Images were corrected for uneven illumination
for each channel (DAPI and Alexa488 signals) and con-
verted into binary images by grayscale Image Threshold-
ing. Using the IdentifyPrimAutomatic module, regions of
interest were then identified on the basis of size and fluor-
escent intensity. All parameters for each channel, DAPI
for total cell number and Alexa488 for mitotic cells were
exported and used for statistical analyses.
siRNA transfection
Small interfering RNA (siRNA) oligonucleotides (Euro-
gentec, Belgium) were designed according to the manufac-
ture’s recommendations. The following sequences with
two 3’ deoxythymidine overhangs were used: siFER(d1),
5’-GAA AGA GCC ACC UCC AGU A-3’; siFER(d2),5’-
GAA GGA AUU ACU AGA GCA A-3’ ; siCRKL (d1),
5’-CUC UCA UAG GCA AGU CAC A-3’; siCRKL (d2),
5’-GGA UGA AUA UAA AUG GCC A-3’; and a scramble
control siRNA. Transfection of siRNAs was performed at
24 h of culture using Transfectin lipid reagent (BioRad,
France). Cells cultured in 35-mm diameter plates were
incubated with the transfection mix containing 100 nM
siRNA and 5 μl of Transfectin in 1 ml of OptiMEM
(Invitrogen, France), according to the manufacturer’s in-
structions. After 5 h of incubation, the transfection
medium was removed and cells were switched to serum-
free medium.
EDU staining and cell proliferation assay
EdU (5-ethynyl-2’-deoxyuridine) directly measures de
novo DNA synthesis or S-phase synthesis of the cell
cycle using a method of covalently coupling an azide
with an alkyne. Cells were cultured in DMEM medium
supplemented with 5% FCS and treated with 1 μM EdU
for three hours. After removal of supernatant, cells were
washed with PBS and detection of EdU incorporation into
the DNA was performed with the Click-iT1 EdU Alexa
Fluor1 488 Cell Proliferation Assay Kit (Molecular Probes,
Invitrogen, OR, USA) according to the manufacturer’s
instructions.
[3H] thymidine incorporation
The rate of DNA synthesis was also measured by adding
2 μCi of [methyl-3H] thymidine (5 Ci/mmol, Amersham
Pharmacia Biotech) for given periods of time prior to cell
harvesting and precipitation with ice-cold trichloroacetic
acid (5%). Results are expressed as a percentage of control
[methyl-3H] thymidine incorcoration.
Migration assay
The scratch wound healing assay has been used to study
the effects of CRKL and FER silencing on cell migration.
Cells were grown in DMEM supplemented with 10% FBS.
The confluent monolayer was scratched using a pipette
tip and gently washed twice with medium to remove the
detached cells. Cells were grown for additional 72 h and
images were captured on a microscope.

http://www.cellprofiler.org/
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Western blot
Cells lysates were analyzed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and immunoblotting.
Proteins were transferred electrophoretically to nitrocel-
lulose membranes (Amersham, Buckinghmashire, UK).
The blots were incubated for 1 hour in TBS containing
0.1% Tween 20 and 5% non-fat dry milk and further in-
cubated for 1 hour with specific antibodies against CRKL
and FER (Cell Signaling, Boston, USA). Bound antibodies
were visualized with horseradish peroxidase-conjugated
antibodies anti-rabbit or anti-mouse IgG (BioRad, Ivry,
France) using an enhanced chemiluminescence system.

Statistical analyses and normalization
Four independent images per well were analyzed with
an average of 700 cells per image. Each 96-well plate
contained internal controls including untreated cells,
lipofectant-treated cells and siRNA Plk1-transfected cells
as control for a positive inhibitor of the cell cycle. All pa-
rameters for each image were exported from CellProfiler.
Data were pre-processed and analyzed using R and the
CellHTS2 package [32], freely available on the Biocon-
ductor project website (http://www.bioconductor.org/).
This package was especially developed to pre-process
cell-based assays. Raw measurements were pre-processed
with two non-specific filtering steps to remove unreliable
measurements. First, measurements with DAPI intensities
in the first percentile (lower bound) of the distribution
of all DAPI intensities were removed. Second, all mea-
surements where the estimated number of mitotic cells
(Alexa488 signal) was higher than the total cell number
(DAPI signal) were removed. Next, data were normalized
within each channel: each measurement was divided by
the plate median and magnified by the overall median
(across plate). The mitotic index was calculated next as
the ratio between the number of phosphohistone-positive
cells and DAPI-positive cells Then, data were summa-
rized and finally z-scores were estimated, according to
the preprocessing work-flow for two-channel screens as
described in http://bioconductor.org/packages/2.5/bioc/
vignettes/cellHTS2/inst/doc/twoChannels.pdf ). Kinases
were selected for further analysis if their mitotic index
was above or below the overall median of mitotic in-
dexes plus or minus twice the median absolute devi-
ation (median +/− 2MAD), respectively.

Gene ontology and phospho-network analysis
Using Fatigo, a web interface which carries out simple
data mining using gene ontology, we compared GO func-
tional enrichment (based on a hypergeometric distribu-
tion) of kinases for which RNA interference increased
(High) or decreased (Low) the mitotic index (MI) using
a Fisher´s exact test (http://babelomics3.bioinfo.cipf.es/)
[33]. Di-acyclic graphs for cellular component ontology
were generated using the Gene Ontology Tree Machine
(GOTM, http://bioinfo.vanderbilt.edu/webgestalt/) [34].
The kinase interactome networks were built using

PhosphoPOINT, the human interactome and phospho-
protein database (http://kinase.bioinformatics.tw/) [35].
All proteins interacting with identified kinases were ex-
tracted from the PhosphoPOINT database and parsed
into a CVS file. The Cytoscape graph editor was used to
visualize networks (http://www.cytoscape.org/index.php)
[36] and ClueGO: a Cytoscape plug-in was used to deci-
pher functionally grouped gene ontology and pathway an-
notation networks [37].

Additional file

Additional file 1: The following additional data are available with
the online version of this paper. Table S1. Lists protein kinases
screened and their associated siRNA sequences. Table S2. Describes row
data of MI for the 714 siRNAs. Table S3. Compares identified kinases
with results from the literature. Table S4. Describes protein-protein
interaction network from the low-MI group. Table S5. Describes protein-
protein interaction network from the high-MI group. Table S6. Describes
parameters of topological analyses from low and high MI graphs.
Figure S1 and S2. Are expandable views of PPIs from high- and low-MI
groups, respectively. Figure S3. Describes the effects of FER and CRKL
silencing in HuH7 cells on ERK phosphorylation. Figure S4. Shows KI67
expression in HuH7 cells silenced for FER and CRKL. Figure S5 and
Figure S6. Describes the effect of FER and CRKL silencing in HuH7 cells
on Cdk2 expression and migration, respectively.
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