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ABSTRACT 

Because of their sophisticated vocal behaviour, their social nature, their high plasticity and 

their robustness, starlings have become an important model species that is widely used in 

studies of neuroethology of song production and perception. Since Magnetic Resonance 

Imaging (MRI) represents an increasingly relevant tool for comparative neuroscience, a 3-

dimensional MRI-based atlas of the starling brain becomes essential. Using multiple imaging 

protocols we delineated several sensory systems as well as the song control system. This 

starling brain atlas can easily be used to determine the stereotactic location of identified 

neural structures at any angle of the head. Additionally, the atlas is useful to find the optimal 

angle of sectioning for slice experiments, stereotactic injections and electrophysiological 

recordings. The starling brain atlas is freely available for the scientific community.       

 

 



INTRODUCTION 

The European starling (Sturnus vulgaris) is one of the most widely used passerine species in 

fundamental biological research (almost 2500 starlings were used in more than 100 studies 

published between 2000 and 2004; (Asher and Bateson 2008)). Starlings have been an 

important animal model in studies of ethology (e.g. Adret-Hausberger 1982; Henry et al. 

1994; Hausberger et al. 1995; Hausberger et al. 1997; Henry et al. 2013), behavioural 

ecology (e.g. Powell 1974; Tinbergen 1981; Lima 1983), ecophysiology (e.g. Grue and 

Franson 1986; Eng et al. 2014) and neuroethology of song production and perception 

(Leppelsack and Vogt 1976; Hausberger and Cousillas 1995; Gentner et al. 2001; Ball and 

Balthazart 2001; George et al. 2004; Heimovics et al. 2011; De Groof et al. 2013; Ellis and 

Riters 2013). 

Within the last decades, the song control system (SCS) and, to a lesser extent, the auditory 

systems and social behavioural network of starlings have been thoroughly examined. Up to 

now no atlas is available for the brain of this species, and researchers are forced to use the 

atlas of other songbird species like the zebra finch (Nixdorf-Bergweiler and Bischof 2007) or 

the canary brain (Stokes et al. 1974). Although zebra finch and canary brains are similar in 

size, the brain of a starling is almost three times the volume, making it hard to extrapolate 

stereotactic coordinates from either atlases to that of the starling brain. Both atlases of the 

songbird brain are still widely used but obviously have the limitations of all brain atlases that 

are based on drawings of brain sections: they not only provide a mere 2-dimensional 

perspective of the brain, but they are also dependent of previously specified sectioning 

angles.  



To further neurobiological studies in starlings, we therefore decided to create the first 3D 

MRI atlas of the starling brain as a freely available tool for the scientific community. The 

atlas is based on several scanning protocols, each with their own advantages and 

disadvantages, to visualize a wide range of neural structures. Reflecting the traditional 

interest in the song production and perception processes in starling, we tried to visualize the 

song control and auditory systems, as complete as possible. In addition we describe the 

different brain subdivisions as well as the main fibre tracts. We tried to establish a combined 

atlas that allows not only for the identification of a larger number of brain structures, but 

also allows researchers to select those datasets that fit best with their scientific interests. 

The starling brain atlas presented here can be easily adapted to match any surgical setup or 

histological protocol, and should be appealing for future birdbrain studies. We hope that this 

starling brain atlas will advance studies in this songbird model in an era where traditional 

and MRI-based studies will intermingle more and more.  

  



MATERIALS AND METHODS 

Specimen preparation 

For this study, one wild adult male European starling (Sturnus vulgaris) caught in Normandy 

(France) in 2006 and kept in outdoor aviaries in Rennes (France) until the experiment, was 

deeply anesthetized with pentobarbital and transcardially perfused with a phosphate-

buffered heparinized saline solution (PBS, 0.12M), followed by a mixture of 

paraformaldehyde (PFA, 4%) and Dotarem® (1%), a paramagnetic MR contrast agent. After 

decapitation, the head was post-fixed in a mixture of PFA (4%) and Dotarem (1%) for at least 

5 days at 5°C. The starling (body weight of 99.4g) was perfused during the breeding season 

(25th March 2009) and the colour of the beak was yellow indicating high plasma testosterone 

levels (Bullough 1942; Dawson and Howe 1983; Ball and Wingfield 1987) at the time of 

perfusion. 

 

Data acquisition 

To obtain a 3-dimensional representation of the skull, the whole bird’  head was imaged 

with a Siemens PET-CT equipped with a rotating 80 kV X-ray source (focal spot size of 50 µm) 

and a Siemens Inveon PET-CT Camera with a 125 mm x-ray detector. Isotropic voxels were 

acquired with a resolution of 223 x 223 x 223 µm. 

3D MRI datasets of the starling brain were acquired with a 9.4 T Biospec® horizontal bore 

NMR scanner (Bruker BioSpin, Ettlingen, Germany), equipped with a 120 mm BGA12-S 

actively shielded gradient-       w        x        d               f  00  T⁄      c  d    

an AVANCE-II Bruker console and a 7T Pharmascan® horizontal bore NMR scanner (Bruker 

BioSpin, Ettlingen, Germany) equipped with a 90 mm BGA9-S actively shielded gradient-



       w        x        d               f 400  T⁄      c  d        V NC -III Bruker 

console. A Bruker cross-coil setup with a linear transmit volume coil and a parallel receive 

surface array designed for rat head MRI was used on the 9.4T. The standard Bruker cross-coil 

setup with a quadrature volume coil and a quadrature surface coil for rats was used on the 

7T. 

Proton-density weighted 3D images were acquired on the 7T using a RARE sequence with a 

RARE factor of 2, a spectral bandwidth (BW) of 50 kHz, an Nav of 2, a TR of 500 ms and an 

effective TE of 25 ms. Images had a FOV of (21.76 × 21.76 × 21.76) mm3 with an acquisition 

matrix size of (256 × 256 × 256) resulting in an isotropic spatial resolution of 85 µm in all 

three directions. Acquisition time was 9 h 6min.  

T2-weighted 3D images were acquired on the 9.4T using a spin echo sequence, a spectral 

bandwidth (BW) of 34.7 kHz, 2 averages (Nav), a repetition time (TR) of 5000 ms and an echo-

time (TE) of 60 ms. Images had a field of view (FOV) of (21.76 × 21.76 × 21.76) mm3 with an 

acquisition matrix size of (256 × 192 × 128) zero-filled to (256 x 256 x 256) resulting in an 

isotropic spatial resolution of 85 µm in all three directions. Acquisition time was 51 h 12min.  

T2*-weighted 3D images were acquired on the 7T using a FISP gradient echo sequence with 

a 15º flip-angle, a BW of 50 kHz, an Nav of 45, a TR of 14.31 ms, a TE of 6.5 ms and a scan 

repetition time of 7500 ms. Images had a field of view of (20.48 x 20.48 x 20.48) mm3 with 

an acquisition matrix of (512 x 512 x 256) zero-filled to (512 x 512 x 512) resulting in an 

isotropic spatial resolution of 40 µm in all three directions. Acquisition time was 24h. 

 

 

 



 

Brain area delineation and 3D reconstruction 

All MRI datasets and the CT dataset were co-registered with the SPM 8 package using 

normalized mutual information. The MRI images were used as such to co-register to each 

other, however to co-register the MRI images to the CT image the brain surface was 

delineated from the MRI image and used as input for coregistration. The position of the ear 

canal and thus the most likely position of stereotactic ear-bars was established with the CT-

data, and all datasets were reoriented to match a 45° angle of the ear bars and the most 

posterior part of the beak-opening to the horizontal axis.  

All atlas delineations were performed with Amira 5.5 (Mercury Computer Systems, San 

Diego, CA, USA). The delineation of the skull was based on the CT dataset and was 

conducted automatically using a signal intensity high-pass threshold. The brain surface and 

the neural subdivisions of both hemispheres were manually delineated, based on the MRI 

signal intensity differences between brain regions (Table 1). The delineation of each brain 

structure and fibre tract was performed mostly in frontal plane and subsequently controlled 

in the two other planes.  

 

Insert Table 1 around here 

  



RESULTS 

Scanning protocols and structural delineations  

Different imaging protocols provide different and complementary possibilities to delineate 

neural structures. X-ray CT imaging is essential to anchor the precise position of the brain 

within the skull. It thus represents a crucial first step to enable the construction of a 

stereotactic atlas since the brain position within the skull can be co-registered with the MR-

based structural positions. We first defined a reference plane from three CT imaging based 

reference points: both ear canals, and the most posterior end of the beak opening. The 

horizontal plane of the brain atlas was then defined as a plane tilted by 45 degrees to the 

reference plane about the axis running through both ear canals (Fig. 1). CT imaging is not 

useful to visualize brain areas. This is best done with the protocols outlined below (Table 1).  

 

Insert Figure 1 around here 

 

T2-weighted imaging produces images where water-containing areas become bright and 

fatty/cell-dense structures become dark. This sequence produced a very good anatomical 

image of the birdbrain with most of the brain nuclei clearly visible and delineable (Fig. 2A 

and B). Also the larger fibre tracts and several of the forebrain lamina could be distinguished. 

Although the strong signal deriving from the fluid-filled lateral ventricle made it easily 

detectable, this also caused a slight over- saturation, decreasing delineation accuracy of this 

structure. The images provided very nice contrast especially in the sagittal images. Due to 

zero-filling, we got more smoothed images for axial and to a lesser extent coronal images. 

Proton-density weighted imaging provides images with an intermediate contrast between T1 

and T2 weighted images, increasing delineation accuracy. Here we had less oversaturation of 



the liquid-filled lateral ventricle seen in the T2 weighted images (Fig. 2C). Since the images 

were obtained without zero-filling, we had very nice contrast and sharpness in all three 

orthogonal directions.  

T2*-weighted imaging gives rise to the same type of contrast as normal T2-weighted 

imaging, but with much lower signal and contrast properties. However, because a gradient-

echo sequence is many times faster than a spin-echo sequence, a very high resolution can be 

achieved within a normal time frame. Thus at the cost of contrast, those regions that were 

visible could be delineated much more accurately. Also, the high resolution of these images 

allowed for the detailed visualization of most of the fibre tracts (Fig. 2D). The images provide 

very nice contrast especially in the coronal plane. Due to zero-filling we got slightly more 

smoothed images for axial and sagittal images. 

Although T1 imaging is commonly used for anatomical inspection of human brains in clinical 

practices, in songbird measurements this technique offers only poor regional contrast within 

the brain, making it rather difficult to distinguish individual brain areas from the brain's 

background (Vellema et al. 2011). It was therefore not used here. 

 

Insert Figure 2 around here 

 

Data presentation and validation 

The co-registered MRI and CT datasets, including skull, and 46 brain subdivisions are freely 

available for download from our website: https://www.uantwerpen.be/en/rg/bio-imaging-

lab/research/mri-atlases/starling-brain-atlas/. Data are available in Analyze format, which is 

supported by most 3D visualization software packages, including the free software MRIcro 

https://www.uantwerpen.be/en/rg/bio-imaging-lab/research/mri-atlases/starling-brain-atlas/
https://www.uantwerpen.be/en/rg/bio-imaging-lab/research/mri-atlases/starling-brain-atlas/


(http://www.cabiatl.com/mricro/mricro/mricro.html). Documentation describing how to 

visualize and customize the 3D datasets in MRIcro can also be found on our website. 

 

The default data orientation is presented in a similar fashion as previously published atlases 

(Stokes et al. 1974; Nixdorf-Bergweiler and Bischof 2007), with a head-angle of 45 degrees. 

The 45° angle has been calculated based on the axis through the ear canal (the most likely 

position for fixating ear bars) and the most posterior end of the beak opening relative to the 

horizontal plane. When loaded into MRIcro, the junction formed by the dorsocaudal cerebral 

vein and two branches of the transverse venous sinus (two major blood vessels running 

along the brain's midline), a V-shaped stereotactic landmark often used for surgical 

procedures, is reset to the zero-coordinate by default. This reference-point can be manually 

altered however, if another zero-coordinate is preferred. In this reference frame, the X-axis 

  p            b    ’    f -to-right axis, the Y-axis corresponds to the posterior-anterior axis, 

and the Z-axis corresponds to the dorsal-ventral axis of the brain. The stereotactic 

coordinates of a specific brain area can be easily acquired by moving the cursor onto the 

desired region. 

The 3D datasets can also be used to determine the optimal head angle for stereotactic 

operations or the best cutting angle for sectioning. If it is important to have multiple brain 

areas of interest in one single brain section, rotation and oblique slicing tools can easily be 

used to estimate the best cutting angle (Fig 3).  

 

Insert Figure 3 around here 

 

http://www.cabiatl.com/mricro/mricro/mricro.html


Different datasets and delineations can be superimposed and manipulated synchronously to 

attain the desired brain image. The delineation sets can further be used to generate a 3-

dimensional representation of the brain that gives an accurate description of the relative 

location, shape and volume of brain areas (Fig. 4 and 5).  

 

Insert Figure 4 and 5 around here 

 

  



DISCUSSION 

Because of their sophisticated vocal behaviour, their social nature, their high plasticity and 

their robustness, starlings have become an important model species that is widely used in 

the field of neuroscience (e.g. Bigalke-Kunz et al. 1987; Bee and Klump 2004; Austad 2011; 

Feinkohl and Klump 2011), and especially in studies of neuroethology of song production 

and perception (e.g. Bernard et al. 1996; Bolhuis and Eda-Fujiwara 2003; Alger et al. 2009; 

George and Cousillas 2012; Ellis and Riters 2013). Being a seasonal species, they are also well 

suited for studies of neuroendocrinology and seasonal brain plasticity (e.g. Bernard and Ball 

1997; Ball et al. 1999; Bentley et al. 1999; Absil et al. 2003; Alger and Riters 2006; De Groof 

et al. 2008; De Groof et al. 2009; De Groof et al. 2013; Cousillas et al. 2013). 

One limitation of using starling for neuroscience research is that no detailed brain maps are 

available. Neurobiological scientists are forced to use 2D atlases of either the canary brain 

(Stokes et al. 1974) or the zebra finch brain (Nixdorf-Bergweiler and Bischof 2007) as the 

closest songbird brain species. However both canary and zebra finch brains are considerably 

smaller than that of the starling, making it sometimes hard to find the complementary 

structure in the starling brain (Fig 6). Also there might be a slight difference in relative 

positioning of the different nuclei between species. Traditional atlases are often based on 

drawings of histological brain sections, and are dependent on the interests of the researcher 

constructing the atlas both in sectioning orientation as well as delineation of brain 

structures. 3D imaging techniques such as MRI however, give us the opportunity to examine 

the brain from a 3-dimensional, whole-brain point of view (Ma et al. 2005; Van Essen 2005; 

Saleem and Logothetis 2007; Poirier et al. 2008; Datta et al. 2012; Muñoz-Moreno et al. 

2013; Güntürkün et al. 2013; Nie et al. 2013; Kumazawa-Manita et al. 2013; Ullmann et al. 

2014). Here we present the first 3-dimensional MRI-based atlas of the starling brain, a model 



system often used for neurobiological and behavioural studies. We tried to capture as many 

different brain regions as possible, making this atlas suitable for many different fields of 

birdbrain research. There are several advantages in the brain atlas that we present here over 

the previously published 2D atlas of the canary brain (Stokes et al. 1974), and similar brain 

atlases of other bird species (e.g. Karten and Hodos 1967; Nixdorf-Bergweiler and Bischof 

2007; Puelles et al. 2007). First and foremost, the 3-dimensional capturing methods used in 

this study allowed us to study the anatomy of a single brain from any possible angle, 

eliminating the limitations of 2D atlases that are inherently restricted to a specified 

orientation.  

Insert Figure 6 around here 

 

This approach is particularly useful in combination with other whole-brain imaging 

techniques such as functional MRI (Van Meir et al. 2005; Voss et al. 2007; Poirier et al. 2009; 

De Groof et al. 2013; Van Ruijssevelt et al. 2013) and Diffusion Tensor Imaging (De Groof et 

al. 2009). The atlas could be applied as a template for (future) studies of these types in 

starlings (De Groof et al. 2013). 

The possibility to reset the coordinate system of the brain-model to any preferred 

orientation makes it customizable to any stereotactic device that may be used for brain 

injections or electrophysiological recordings. Besides locating target areas based on 

stereotactic coordinates, the 3D brain atlas is well suited to optimize surgical protocols to 

avoid damage in specified regions. When injecting a tract-tracer in RA for example (e.g. Kirn 

et al. 1999; Roberts et al. 2008), the brain atlas could be used to calculate the optimal head 

angle to avoid any leakage from the injection tract into its afferent nucleus HVC, which is 



located directly above RA at certain angles. Alternatively, one might want to angle the head 

to the side to avoid puncturing the lateral ventricle, which could lead to an unwanted spread 

of a chemical through the brain. 

The reorientation possibilities of the atlas are also well suited to calculate the best angle for 

making brain sections that contain multiple regions of interest (Fig. 3). This could be very 

useful for histological staining procedures or in situ hybridization protocols (e.g. Jarvis and 

Nottebohm 1997; Tramontin et al. 1998; Metzdorf et al. 1999) in which two or more brain 

areas are requested in a single brain section, potentially making comparative quantification 

studies more reliable and less time consuming. 

For electrophysiological recordings in brain slices (Mooney and Prather 2005; Gale and 

Perkel 2006; Meitzen et al. 2009) it can be useful to calculate the ideal sectioning angles, not 

only to include two targets of interest, but also to include intact fibre tracts running between 

the two regions within one recording slice. The same is true for high density multi-electrode 

recordings (Amin et al. 2013; Cousillas et al. 2013), where the final measurement sites are 

highly dependent on the insertion angle of the electrode array. 

Finally, because the brain atlas has been constructed with the skull intact, without the need 

for dehydration or freeze-protection steps, the shape of the brain will be relatively close to 

the in-vivo situation. In contrast, 2D atlases that are based on histological sections have to 

deal with inaccuracies that are introduced during the histological procedures (Ma et al. 

2005; Vellema et al. 2011). Dehydration steps that are often necessary for histological 

preparations cause a severe shrinkage of the brain, and additional shape-artefacts are 

virtually unavoidable during the cutting and mounting process.  



As with 2D histological atlases, this 3D MRI brain atlas is based on one individu  ’  d   , in 

this case a male starling during the breeding season. This is important because of both 

sexual dimorphisms and seasonal differences in brain nuclei size. One should therefore be 

cautious when attempting to obtain coordinates for certain nuclei of female starling studies 

(although starlings show less sexual dimorphism than e.g. the zebra finch; (Bernard et al. 

1993; Ball et al. 1994)) or non-breeding season male starlings. Regions known to be variable 

in size according to season are most of the song control nuclei (e.g. HVC, RA and Area X)(Ball 

and Bentley 2000; Tramontin and Brenowitz 2000), nuclei of the social behaviour network 

(e.g. POM (Riters et al. 2000)) and NCM (De Groof et al. 2009). 

The 3D starling brain atlas presented here could be used as a framework for researchers 

working on the starling brain, and for avian brain research in general. Together with our 

previously published 3D brain atlases of the zebra finch (Poirier et al. 2008), of the canary 

(Vellema et al. 2011) and of a non-songbird species (e.g. the pigeon brain (Güntürkün et al. 

2013)), we now have four detailed, easily adaptable brain atlases for four commonly studied 

species of birds that should appeal to scientists from different disciplines working on the 

function, physiology and anatomy of the avian brain. 
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Figure Captions 

 
 
Fig. 1 Overlap of MRI starling brain with delineated structures within the CT head data and the 

        ’  b     p       . T   b  y     c     b c     more transparent from left to right and from 

top to bottom, giving a better view onto the brain. The lower right shows the brain (with 

subdivisions) without the skull. 

 

Fig. 2 Different imaging protocols offer different contrast properties. Each row shows 3 sagittal views 

of the starling brain at respectively 2.55 mm, 1.19 mm and 0.60 mm from midline and one axial view 

at 3.50 mm anterior from the sagittal sinus bifurcation. A: Schematic drawings illustrating important 

brain structures. B: T2 images show good overall anatomy, with contrasting brain nuclei. Note also 

the strong oversaturated signal from the lateral ventricle. C: Proton density weighted images show 

good overall anatomy, with contrasting brain nuclei and less oversaturated ventricles. D: T2
* images 

show a high quality overall anatomy with distinguishable fibre tracts, at the cost of contrast in brain 

nuclei. Abbreviations: CA Anterior commissure, Cb cerebellum, CP Posterior commissure, HP 

hippocampus, HVC used as proper name, LV lateral ventricle, MLd Dorsolateral nucleus of 

mesencephalon, MMAN Medial magnocellular nucleus of anterior nidopallium, NCM Caudal medial 

nidopallium, OB olfactory bulb, RA Robust nucleus of the Arcopallium, TSM Septopallio-

mesencephalic tract. 

 

Fig. 3 Oblique slicing. 3D renderings of the brain surface showing the best cutting angle to include 

HVC and its efferent Area X (top), and DLM (Dorsolateral nucleus of medial thalamus) and its efferent 

LMAN (bottom; Lateral magnocellular nucleus of anterior nidopallium) of both hemispheres in one 

sectioning plane. T2-weighted image data are shown as raw data with overlay showing subdivisions 

and nuclei (right). 



 

Fig. 4 A: 3D rendering of the brain with subdivisions. B: Transparent overlay showing the brain (T2 

weighted image) with delineated subdivisions on sagittal slices. C: Transparent overlay showing the 

brain (T2 weighted image) with delineated subdivisions on axial slices. 

 

Fig. 5 3D rendering of the brain. A: Non-transparent rendering showing the outer brain surface with 

delineated subdivisions. B: Transparent rendering showing the brain nuclei. 

 

Fig. 6 Para-sagittal MRI slice through HVC, RA (Robust nucleus of arcopallium) and LMAN (Lateral 

magnocellular nucleus of anterior nidopallium) in three different songbird species. MRI images are all 

T2 weighted. Canary data is from (Vellema et al. 2011) and zebra finch data is from (Poirier et al. 

2008). The approximate volume of the brain per species is indicated below each slice. 
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Table 1 

Table 1: Delineated Structures, their systems 

System Abbreviation Structure 

   Song Control System HVC HVC 

 
RA Robust nucleus of arcopallium 

 
X Area X 

 
MMAN Medial magnocellular nucleus of anterior nidopallium 

 
LMAN Lateral magnocellular nucleus of anterior nidopallium 

 
DLM Dorsolateral nucleus of medial thalamus 

   Auditory System Field L Field L 

 
NCM Caudal medial nidopallium 

 
CMM Caudomedial mesopallium 

 
Ov Nucleus ovoidalis 

 
MLd Dorsolateral nucleus of mesencephalon 

   Visual system E Entopallium 

 
Rt Nucleus rotundus 

 
TeO Optic tectum 

   Olfactory system OB Olfactory bulb 

   Social Behaviour Network POM Medial preoptic nucleus 

 
TnA Nucleus taeniae amygdala 

 
GCt Midbrain central grey 

 
LS Lateral septum 

 
MS Medial septum 

 
PVN Paraventricular nucleus 

 
VMH Ventromedial nucleus of the hypothalamus 

 
VTA Ventral tegmental area 

   Fibre tracts TSM Septopallio-mesencephalic tract 

 
CoA Anterior commissure 

 
CoP Posterior commissure 

 
N3 Oculomotor nerve 

 
OM Occipito-mesencephalic tract 

 
MFB Medial forebrain bundle 

 
LFB Lateral forebrain bundle 

 
QF Quintofrontal tract 

 
FA Fronto-arcopallial tract 

 
Opt Optic tract 

Table 1



 
DSD Dorsal supraoptic decussation 

 
HiC Hippocampal commissure 

   Subdivisions N Nidopallium 

 
M Mesopallium 

 
A Arcopallium 

 
H Hyperpallium 

 
Hp Hippocampus 

 
St Striatum 

 
Mb Midbrain 

 
Di Diencephalon 

 
Cb Cerebellum 

 
Pont Pont 

 
LV Lateral ventricle 

 


