P. Cullen, G. Sprague, and J. , The Regulation of Filamentous Growth in Yeast, Genetics, vol.190, issue.1, pp.23-49, 2012.
DOI : 10.1534/genetics.111.127456

A. Neiman, Sporulation in the Budding Yeast Saccharomyces cerevisiae, Genetics, vol.189, issue.3, pp.737-65, 2011.
DOI : 10.1534/genetics.111.127126

A. Goranov and A. Amon, Growth and division???not a one-way road, Current Opinion in Cell Biology, vol.22, issue.6, pp.795-800, 2010.
DOI : 10.1016/j.ceb.2010.06.004

G. Giaever, P. Flaherty, J. Kumm, M. Proctor, C. Nislow et al., Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast, Proceedings of the National Academy of Sciences, vol.101, issue.3, pp.793-801, 2004.
DOI : 10.1073/pnas.0307490100

U. Schlecht, S. Onge, R. Walther, T. Francois, J. Davis et al., Cationic Amphiphilic Drugs Are Potent Inhibitors of Yeast Sporulation, PLoS ONE, vol.7, issue.8, p.42853, 2012.
DOI : 10.1371/journal.pone.0042853.s007

D. Santos, S. Teixeira, M. Cabrito, and T. , Sa-Correia I. Yeast toxicogenomics: genomewide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in genetics, p.63, 2012.

A. Goffeau, B. Barrell, H. Bussey, R. Davis, B. Dujon et al., Life with 6000 Genes, Science, vol.274, issue.5287, pp.546-63, 1996.
DOI : 10.1126/science.274.5287.546

J. Cherry, E. Hong, C. Amundsen, R. Balakrishnan, G. Binkley et al., Saccharomyces Genome Database: the genomics resource of budding yeast, Nucleic Acids Research, vol.40, issue.D1, pp.700-705, 2012.
DOI : 10.1093/nar/gkr1029

D. Lashkari, J. Derisi, J. Mccusker, A. Namath, C. Gentile et al., Yeast microarrays for genome wide parallel genetic and gene expression analysis, Proceedings of the National Academy of Sciences, vol.94, issue.24, pp.13057-62, 1997.
DOI : 10.1073/pnas.94.24.13057

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nature Reviews Genetics, vol.328, issue.1, pp.57-63, 2009.
DOI : 10.1038/nrg2484

L. David, W. Huber, M. Granovskaia, J. Toedling, C. Palm et al., A high-resolution map of transcription in the yeast genome, Proceedings of the National Academy of Sciences, vol.103, issue.14, pp.5320-5325, 2006.
DOI : 10.1073/pnas.0601091103

U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha et al., The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing, Science, vol.320, issue.5881, pp.1344-1353, 2008.
DOI : 10.1126/science.1158441

L. De-godoy, J. Olsen, J. Cox, M. Nielsen, N. Hubner et al., Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast, Nature, vol.66, issue.7217, pp.1251-1255, 2008.
DOI : 10.1038/nature07341

P. Picotti, B. Bodenmiller, L. Mueller, B. Domon, and R. Aebersold, Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics, Cell, vol.138, issue.4, pp.795-806, 2009.
DOI : 10.1016/j.cell.2009.05.051

S. Thakur, T. Geiger, B. Chatterjee, P. Bandilla, F. Frohlich et al., Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation, Molecular & Cellular Proteomics, vol.10, issue.8, pp.110-003699, 2011.
DOI : 10.1074/mcp.M110.003699

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149084

N. Nagaraj, N. Kulak, J. Cox, N. Neuhauser, K. Mayr et al., System-wide perturbation analysis with nearly complete coverage of the yeast proteome by singleshot ultra HPLC runs on a bench top Orbitrap, Molecular & cellular proteomics : MCP, vol.11, pp.111-013722, 2012.

A. Hebert, A. Richards, D. Bailey, A. Ulbrich, E. Coughlin et al., The One Hour Yeast Proteome, Molecular & Cellular Proteomics, vol.13, issue.1, pp.339-386, 2014.
DOI : 10.1074/mcp.M113.034769

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879625

J. Gancedo, Yeast carbon catabolite repression. Microbiology and molecular biology reviews : MMBR, pp.334-61, 1998.
DOI : 10.1007/978-3-642-78046-2_9

URL : http://hdl.handle.net/10261/78553

S. Zaman, S. Lippman, X. Zhao, and J. Broach, Responds to Nutrients, Annual Review of Genetics, vol.42, issue.1, pp.27-81, 2008.
DOI : 10.1146/annurev.genet.41.110306.130206

Y. Lee, J. Jang, K. Kim, and P. Maeng, TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae, Yeast, vol.262, issue.pt 1, pp.153-66, 2011.
DOI : 10.1002/yea.1828

A. Gutteridge, P. Pir, J. Castrillo, P. Charles, K. Lilley et al., Nutrient control of eukaryote cell growth: a systems biology study in yeast, BMC Biology, vol.8, issue.1, p.68, 2010.
DOI : 10.1186/1741-7007-8-68

V. Boer, J. De-winde, J. Pronk, and M. Piper, The Genome-wide Transcriptional Responses of Saccharomyces cerevisiae Grown on Glucose in Aerobic Chemostat Cultures Limited for Carbon, Nitrogen, Phosphorus, or Sulfur, Journal of Biological Chemistry, vol.278, issue.5, pp.3265-74, 2003.
DOI : 10.1074/jbc.M209759200

J. Castrillo, L. Zeef, D. Hoyle, N. Zhang, A. Hayes et al., Growth control of the eukaryote cell: a systems biology study in yeast, Journal of Biology, vol.6, issue.2, p.4, 2007.
DOI : 10.1186/jbiol54

R. Diaz-ruiz, M. Rigoulet, and D. A. , The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.6, pp.568-76, 2011.
DOI : 10.1016/j.bbabio.2010.08.010

URL : https://hal.archives-ouvertes.fr/hal-00520968

D. Kadosh and K. Struhl, Targeted Recruitment of the Sin3-Rpd3 Histone Deacetylase Complex Generates a Highly Localized Domain of Repressed Chromatin In Vivo, Molecular and Cellular Biology, vol.18, issue.9, pp.5121-5128, 1998.
DOI : 10.1128/MCB.18.9.5121

S. Rundlett, A. Carmen, N. Suka, B. Turner, and M. Grunstein, Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3, Nature, vol.392, pp.831-836, 1998.

J. Goldmark, T. Fazzio, P. Estep, G. Church, and T. Tsukiyama, The Isw2 Chromatin Remodeling Complex Represses Early Meiotic Genes upon Recruitment by Ume6p, Cell, vol.103, issue.3, pp.423-456, 2000.
DOI : 10.1016/S0092-8674(00)00134-3

C. Steber and R. Esposito, UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression., Proceedings of the National Academy of Sciences, vol.92, issue.26, pp.12490-12494, 1995.
DOI : 10.1073/pnas.92.26.12490

R. Strich, R. Surosky, C. Steber, E. Dubois, F. Messenguy et al., UME6 is a key regulator of nitrogen repression and meiotic development., Genes & Development, vol.8, issue.7, pp.796-810, 1994.
DOI : 10.1101/gad.8.7.796

R. Williams, M. Primig, B. Washburn, E. Winzeler, M. Bellis et al., The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast, Proceedings of the National Academy of Sciences, vol.99, issue.21, pp.13431-13437, 2002.
DOI : 10.1073/pnas.202495299

C. Harbison, D. Gordon, T. Lee, N. Rinaldi, K. Macisaac et al., Transcriptional regulatory code of a eukaryotic genome, Nature, vol.18, issue.7004, pp.99-104, 2004.
DOI : 10.1093/bioinformatics/15.7.607

M. Mallory, M. Law, D. Sterner, S. Berger, and R. Strich, Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p, Molecular Biology of the Cell, vol.23, issue.9, pp.1609-1626, 2012.
DOI : 10.1091/mbc.E11-06-0536

R. Strich, S. Khakhina, and M. Mallory, Ume6p is required for germination and early colony development of yeast ascospores, FEMS Yeast Research, vol.11, issue.1, pp.104-117, 2011.
DOI : 10.1111/j.1567-1364.2010.00696.x

R. Lavigne, E. Becker, Y. Liu, B. Evrard, A. Lardenois et al., Direct Iterative Protein Profiling (DIPP) - an Innovative Method for Large-scale Protein Detection Applied to Budding Yeast Mitosis, Molecular & Cellular Proteomics, vol.11, issue.2, pp.111-012682, 2012.
DOI : 10.1074/mcp.M111.012682

URL : https://hal.archives-ouvertes.fr/hal-00682837

E. Winzeler, D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, vol.285, issue.5429, pp.901-907, 1999.
DOI : 10.1126/science.285.5429.901

A. Lardenois, Y. Liu, T. Walther, F. Chalmel, B. Evrard et al., Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6, Proceedings of the National Academy of Sciences, vol.108, issue.3, pp.1058-63, 2011.
DOI : 10.1073/pnas.1016459108

URL : https://hal.archives-ouvertes.fr/hal-00682830

H. Scherthan and E. Trelles-stricken, Yeast FISH: Delineation of Chromosomal Targets in Vegetative and Meiotic Yeast Cells, pp.329-374, 2002.
DOI : 10.1007/978-3-642-56404-8_27

P. Meluh and D. Koshland, Budding yeast centromere composition and assembly as revealed by in vivo??cross-linking, Genes & Development, vol.11, issue.24, pp.3401-3413, 1997.
DOI : 10.1101/gad.11.24.3401

M. Riffle, L. Malmstrom, and T. Davis, The Yeast Resource Center Public Data Repository, Nucleic Acids Research, vol.33, issue.Database issue, pp.378-82, 2005.
DOI : 10.1093/nar/gki073

M. Primig, R. Williams, E. Winzeler, G. Tevzadze, A. Conway et al., The core meiotic transcriptome in budding yeasts, Nat Genet, vol.26, pp.415-438, 2000.

U. Schlecht, P. Demougin, R. Koch, L. Hermida, C. Wiederkehr et al., Expression Profiling of Mammalian Male Meiosis and Gametogenesis Identifies Novel Candidate Genes for Roles in the Regulation of Fertility, Molecular Biology of the Cell, vol.15, issue.3, pp.1031-1074, 2004.
DOI : 10.1091/mbc.E03-10-0762

G. Smyth, limma: Linear Models for Microarray Data
DOI : 10.1007/0-387-29362-0_23

R. Team, R: A language and environment for statistical computing.: R Foundation for Statistical Computing, 2012.

M. Trepos-pouplard, A. Lardenois, C. Staub, N. Guitton, I. Dorval-coiffec et al., Proteome analysis and genome-wide regulatory motif prediction identify novel potentially sex-hormone regulated proteins in rat efferent ducts, International Journal of Andrology, vol.23, issue.5, pp.661-74, 2010.
DOI : 10.1111/j.1365-2605.2009.01006.x

URL : https://hal.archives-ouvertes.fr/inserm-00517333

S. Ghaemmaghami, W. Huh, K. Bower, R. Howson, A. Belle et al., Global analysis of protein expression in yeast, Nature, vol.425, issue.6959, pp.737-778, 2003.
DOI : 10.1038/nature02046

D. Martin, C. Brun, R. E. Mouren, P. Thieffry, D. Jacq et al., GOToolBox: functional analysis of gene datasets based on Gene Ontology, Genome Biology, vol.5, issue.12, p.101, 2004.
DOI : 10.1186/gb-2004-5-12-r101

URL : https://hal.archives-ouvertes.fr/hal-00311020

A. Lardenois, A. Gattiker, O. Collin, F. Chalmel, and M. Primig, GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle, Database, vol.2010, issue.0, p.30, 2010.
DOI : 10.1093/database/baq030

URL : https://hal.archives-ouvertes.fr/hal-00639961

L. Galdieri, S. Mehrotra, S. Yu, and A. Vancura, Transcriptional Regulation in Yeast during Diauxic Shift and Stationary Phase, OMICS: A Journal of Integrative Biology, vol.14, issue.6, pp.629-667, 2010.
DOI : 10.1089/omi.2010.0069

M. Hillenmeyer, E. Fung, J. Wildenhain, S. Pierce, S. Hoon et al., The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes, Science, vol.320, issue.5874, pp.362-367, 2008.
DOI : 10.1126/science.1150021

S. Klapholz, C. Waddell, and R. Esposito, The role of the SPO11 gene in meiotic recombination in yeast, Genetics, vol.110, pp.187-216, 1985.

A. Jambhekar and A. Amon, Control of Meiosis by Respiration, Current Biology, vol.18, issue.13, pp.969-75, 2008.
DOI : 10.1016/j.cub.2008.05.047

C. Burtner, C. Murakami, B. Olsen, B. Kennedy, and M. Kaeberlein, A genomic analysis of chronological longevity factors in budding yeast, Cell Cycle, vol.11, issue.9, pp.1385-96, 2011.
DOI : 10.1007/978-1-59745-540-4_6

J. Hyle, R. Shaw, and D. Reines, Functional Distinctions between IMP Dehydrogenase Genes in Providing Mycophenolate Resistance and Guanine Prototrophy to Yeast, Journal of Biological Chemistry, vol.278, issue.31, pp.28470-28478, 2003.
DOI : 10.1074/jbc.M303736200

J. Reinders, R. Zahedi, N. Pfanner, C. Meisinger, and A. Sickmann, Toward the Complete Yeast Mitochondrial Proteome:?? Multidimensional Separation Techniques for Mitochondrial Proteomics, Journal of Proteome Research, vol.5, issue.7, pp.1543-54, 2006.
DOI : 10.1021/pr050477f

M. Renvoise, L. Bonhomme, M. Davanture, B. Valot, M. Zivy et al., Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae, Journal of Proteomics, vol.106, pp.140-50, 2014.
DOI : 10.1016/j.jprot.2014.04.022

A. Sickmann, J. Reinders, Y. Wagner, C. Joppich, R. Zahedi et al., The proteome of Saccharomyces cerevisiae mitochondria, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13207-13219, 2003.
DOI : 10.1073/pnas.2135385100

J. Tkach, A. Yimit, A. Lee, M. Riffle, M. Costanzo et al., Dissecting DNA damage response pathways by analysing protein localization and abundance changes??during DNA replication stress, Nature Cell Biology, vol.327, issue.1, pp.966-76, 2012.
DOI : 10.1038/ncb2549

M. Mallory, K. Cooper, and R. Strich, Meiosis-Specific Destruction of the Ume6p Repressor by the Cdc20-Directed APC/C, Molecular Cell, vol.27, issue.6, pp.951-61, 2007.
DOI : 10.1016/j.molcel.2007.08.019

M. Law, M. Mallory, R. Dunbrack, J. Strich, and R. , Acetylation of the Transcriptional Repressor Ume6p Allows Efficient Promoter Release and Timely Induction of the Meiotic Transient Transcription Program in Yeast, Molecular and Cellular Biology, vol.34, issue.4, pp.631-673, 2014.
DOI : 10.1128/MCB.00256-13

K. Rabitsch, A. Toth, M. Galova, A. Schleiffer, G. Schaffner et al., A screen for genes required for meiosis and spore formation based on whole-genome expression, Current Biology, vol.11, issue.13
DOI : 10.1016/S0960-9822(01)00274-3

S. Paiva, F. Devaux, S. Barbosa, C. Jacq, and M. Casal, Ady2p is essential for the acetate permease activity in the yeastSaccharomyces cerevisiae, Yeast, vol.21, issue.3, pp.201-211, 2004.
DOI : 10.1002/yea.1056

H. Park, R. Luche, and T. Cooper, repressor binding site, Nucleic Acids Research, vol.20, issue.8, pp.1909-1924, 1992.
DOI : 10.1093/nar/20.8.1909

A. Vershon, N. Hollingsworth, and A. Johnson, Meiotic induction of the yeast HOP1 gene is controlled by positive and negative regulatory sites., Molecular and Cellular Biology, vol.12, issue.9, pp.3706-3720, 1992.
DOI : 10.1128/MCB.12.9.3706

G. Tevzadze, J. Pierce, and R. Esposito, Genetic Evidence for a SPO1-Dependent Signaling Pathway Controlling Meiotic Progression in Yeast, Genetics, vol.175, issue.3, pp.1213-1240, 2007.
DOI : 10.1534/genetics.106.069252

J. Engebrecht, S. Masse, L. Davis, K. Rose, and T. Kessel, Yeast meiotic mutants proficient for the induction of ectopic recombination, Genetics, vol.148, pp.581-98, 1998.

L. Krisak, R. Strich, R. Winters, J. Hall, M. Mallory et al., SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae., Genes & Development, vol.8, issue.18, pp.2151-61, 1994.
DOI : 10.1101/gad.8.18.2151

D. Law and J. Segall, The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation., Molecular and Cellular Biology, vol.8, issue.2, pp.912-934, 1988.
DOI : 10.1128/MCB.8.2.912

B. Bajgier, M. Malzone, M. Nickas, and A. Neiman, SPO21 Is Required for Meiosis-specific Modification of the Spindle Pole Body in Yeast, Molecular Biology of the Cell, vol.12, issue.6, pp.1611-1632, 2001.
DOI : 10.1091/mbc.12.6.1611

H. Cai, S. Kauffman, F. Naider, and J. Becker, Genomewide Screen Reveals a Wide Regulatory Network for Di/Tripeptide Utilization in Saccharomyces cerevisiae, Genetics, vol.172, issue.3, pp.1459-76, 2006.
DOI : 10.1534/genetics.105.053041

S. Prinz, A. Amon, and F. Klein, Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae, Genetics, vol.146, pp.781-95, 1997.

A. Mckee and N. Kleckner, A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2, Genetics, vol.146, pp.797-816, 1997.

S. Su and A. Mitchell, Identification of functionally related genes that stimulate early meiotic gene expression in yeast, Genetics, vol.133, pp.67-77, 1993.

W. Li and A. Mitchell, Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth, Genetics, vol.145, pp.63-73, 1997.

C. Donnini, T. Lodi, I. Ferrero, and P. Puglisi, IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization inSaccharomyces cerevisiae, Yeast, vol.32, issue.2, pp.83-93, 1992.
DOI : 10.1002/yea.320080203

M. Soushko and A. Mitchell, An RNA???binding protein homologue that promotes sporulation???specific gene expression in Saccharomyces cerevisiae, Yeast, vol.16, issue.7, pp.631-640, 2000.
DOI : 10.1002/(SICI)1097-0061(200005)16:7<631::AID-YEA559>3.3.CO;2-L

C. Deng and W. Saunders, RIM4 encodes a meiotic activator required for early events of meiosis in Saccharomyces cerevisiae, Mol Genet Genomics, vol.266, pp.497-504, 2001.

L. Berchowitz, A. Gajadhar, F. Van-werven, D. Rosa, A. Samoylova et al., A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern, Genes & Development, vol.27, issue.19, pp.2147-63, 2013.
DOI : 10.1101/gad.224253.113

M. Conrad, C. Lee, G. Chao, M. Shinohara, H. Kosaka et al., Rapid Telomere Movement in Meiotic Prophase Is Promoted By NDJ1, MPS3, and CSM4 and Is Modulated by Recombination, Cell, vol.133, issue.7, pp.1175-87, 2008.
DOI : 10.1016/j.cell.2008.04.047

J. Wanat, K. Kim, R. Koszul, S. Zanders, B. Weiner et al., Csm4, in Collaboration with Ndj1, Mediates Telomere-Led Chromosome Dynamics and Recombination during Yeast Meiosis, PLoS Genetics, vol.4, issue.9, p.1000188, 2008.
DOI : 10.1371/journal.pgen.1000188.s008

A. Garber and J. Segall, The SPS4 gene of Saccharomyces cerevisiae encodes a major sporulation-specific mRNA., Molecular and Cellular Biology, vol.6, issue.12, pp.4478-85, 1986.
DOI : 10.1128/MCB.6.12.4478

G. Giaever, A. Chu, L. Ni, C. Connelly, L. Riles et al., Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.57, issue.6896, pp.387-91, 2002.
DOI : 10.1073/pnas.95.25.14863

M. Lee, B. Kim, H. Choi, M. Ryu, S. Kim et al., Global protein expression profiling of budding yeast in response to DNA damage, Yeast, vol.266, issue.3, pp.145-54, 2007.
DOI : 10.1002/yea.1446

D. Finley, E. Ozkaynak, and A. Varshavsky, The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses, Cell, vol.48, issue.6, pp.1035-1081, 1987.
DOI : 10.1016/0092-8674(87)90711-2

S. Kuhlmann, E. Valkov, and M. Stewart, Structural basis for the molecular recognition of polyadenosine RNA by Nab2 Zn fingers, Nucleic Acids Research, vol.42, issue.1, pp.672-80, 2014.
DOI : 10.1093/nar/gkt876

G. Muthukumar, S. Suhng, P. Magee, R. Jewell, and D. Primerano, The Saccharomyces cerevisiae SPR1 gene encodes a sporulation-specific exo-1,3-beta-glucanase which contributes to ascospore thermoresistance., Journal of Bacteriology, vol.175, issue.2, pp.386-94, 1993.
DOI : 10.1128/jb.175.2.386-394.1993

A. Mitchell, Control of meiotic gene expression in Saccharomyces cerevisiae, Microbiol Rev, vol.58, pp.56-70, 1994.

A. Lardenois, I. Stuparevic, Y. Liu, M. Law, E. Becker et al., The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development, Nucleic Acids Research, vol.43, issue.1, 2014.
DOI : 10.1093/nar/gku1185

URL : https://hal.archives-ouvertes.fr/hal-01122128