J. Butler, G. Raviola, C. Miller, and A. Friedmann, Fine structural defects in a case of congenital microcoria, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.182, issue.1, pp.88-94, 1989.
DOI : 10.1007/BF02169832

W. Simpson and M. Parsons, The Ultrastructural Pathological Features of Congenital Microcoria, Archives of Ophthalmology, vol.107, issue.1, 1989.
DOI : 10.1001/archopht.1989.01070010101036

A. Pietropaolo, C. Corvino, A. Deblasi, and F. Calabrò, Congenital microcoria: case report and histological study, J Pediatr Ophthalmol Strabismus, vol.35, pp.125-132, 1998.

A. Ramirez-miranda, J. Paulin-huerta, E. Chavez-mondragón, I. Vega, G. Rodriguez-reyes et al., Ultrabiomicroscopic-Histopathologic Correlations in Individuals with Autosomal Dominant Congenital Microcoria: Three-Generation Family Report, Case Reports in Ophthalmology, vol.2, issue.2, pp.160-165, 2011.
DOI : 10.1159/000328751

P. Toulemont, M. Urvoy, G. Coscas, A. Lecallonnec, and A. Cuvilliers, Association of congenital microcoria with myopia and glaucoma. A study of 23 patients with congenital microcoria, 1995.

Y. Kallberg, U. Oppermann, H. Jörnvall, and B. Persson, Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes, Protein Science, vol.15, issue.132, 2002.
DOI : 10.1110/ps.26902

J. Adamski and U. Oppermann, The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative, Chem Biol Interact, vol.178, pp.94-102, 2009.

S. Allard, K. Beis, M. Giraud, A. Hegeman, J. Gross et al., Toward a Structural Understanding of the Dehydratase Mechanism, Structure, vol.10, issue.1, pp.81-92, 2002.
DOI : 10.1016/S0969-2126(01)00694-3

M. Levin, T. Hashimshony, F. Wagner, and I. Yanai, Developmental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo, Developmental Cell, vol.22, issue.5, pp.1101-1109, 2012.
DOI : 10.1016/j.devcel.2012.04.004

H. Manzke and S. Mundlos, Homozygous and compound-heterozygous mutations in TGDS cause Catel-Manzke syndrome, Am J Hum Genet, vol.95, pp.763-70, 2014.

M. Anderson, N. Hawes, C. Trantow, B. Chang, and S. John, Iris phenotypes and pigment dispersion caused by genes influencing pigmentation, Pigment Cell & Melanoma Research, vol.243, issue.Suppl 8, pp.565-78, 2008.
DOI : 10.1111/j.1755-148X.2008.00482.x

K. Grønskov, J. Ek, and K. Brondum-nielsen, Oculocutaneous albinism, Orphanet Journal of Rare Diseases, vol.2, issue.1, p.43, 2007.
DOI : 10.1186/1750-1172-2-43

P. Bhansali, I. Rayport, A. Rebsam, and C. Mason, Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice, Neural Development, vol.9, issue.1, p.11, 2014.
DOI : 10.1073/pnas.0712168105

A. Kuzmichev, S. Kim, D. 'alessio, A. Chenoweth, J. Wittko et al., Sox2 Acts through Sox21 to Regulate Transcription in Pluripotent and Differentiated Cells, Current Biology, vol.22, issue.18, pp.1705-1715, 2012.
DOI : 10.1016/j.cub.2012.07.013

D. Matsushima, W. Heavner, and L. Pevny, Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6, Development, vol.138, issue.3, pp.443-454, 2011.
DOI : 10.1242/dev.055178

M. Uchikawa, Y. Kamachi, and H. Kondoh, Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken, Mechanisms of Development, vol.84, issue.1-2, pp.103-123, 1999.
DOI : 10.1016/S0925-4773(99)00083-0

X. Lan, L. Wen, K. Li, X. Liu, B. Luo et al., Comparative analysis of duplicated sox21 genes in zebrafish, Development, Growth & Differentiation, vol.3, issue.3, pp.347-56, 2011.
DOI : 10.1111/j.1440-169X.2010.01239.x

S. Pauls, S. Smith, and G. Elgar, Lens development depends on a pair of highly conserved Sox21 regulatory elements, Developmental Biology, vol.365, issue.1, pp.310-318, 2012.
DOI : 10.1016/j.ydbio.2012.02.025

M. Kiso, S. Tanaka, R. Saba, S. Matsuda, A. Shimizu et al., The disruption of Sox21-mediated hair shaft cuticle differentiation causes cyclic alopecia in mice, Proceedings of the National Academy of Sciences, vol.106, issue.23, pp.9292-9299, 2009.
DOI : 10.1073/pnas.0808324106

S. Figure, Alpha-smooth muscle actin (?SMA) immunostaining of wildtype, gpr180+/-and grp180-null mice. Four-micrometer dewaxed sections of wildtype