T. Iversen, T. Skotland, and K. Sandvig, Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies, Nano Today, vol.6, issue.2, pp.176-185, 2011.
DOI : 10.1016/j.nantod.2011.02.003

L. Bogart, G. Pourroy, C. Murphy, V. Puntes, T. Pellegrino et al., Nanoparticles for Imaging, Sensing, and Therapeutic Intervention, ACS Nano, vol.8, issue.4, pp.3107-3122, 2014.
DOI : 10.1021/nn500962q

C. Harford, A. Hamlin, and E. Parker, ELECTRON MICROSCOPY OF HELA CELLS AFTER THE INGESTION OF COLLOIDAL GOLD, The Journal of Cell Biology, vol.3, issue.5, pp.749-756, 1957.
DOI : 10.1083/jcb.3.5.749

B. Chithrani, A. Ghazani, and W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, vol.6, issue.4, pp.662-668, 2006.
DOI : 10.1021/nl052396o

M. Ehrenberg, A. Friedman, J. Finkelstein, G. Oberdörster, and J. Mcgrath, The influence of protein adsorption on nanoparticle association with cultured endothelial cells, Biomaterials, vol.30, issue.4, pp.603-610, 2009.
DOI : 10.1016/j.biomaterials.2008.09.050

L. Chou, K. Ming, and W. Chan, Strategies for the intracellular delivery of nanoparticles. Chemical Society reviews, pp.233-245, 2011.

R. Lévy, U. Shaheen, Y. Cesbron, and V. Sée, Gold nanoparticles delivery in mammalian live cells: a critical review, Nano Reviews, vol.130, issue.10, p.22110866, 2010.
DOI : 10.1517/17425247.2.2.237

S. Pujals, N. Bastús, E. Pereiro, C. López-iglesias, V. Puntes et al., Shuttling Gold Nanoparticles into Tumoral Cells with an Amphipathic Proline-Rich Peptide, ChemBioChem, vol.27, issue.6, pp.1025-1031, 2009.
DOI : 10.1002/cbic.200800843

G. Ruan, A. Agrawal, A. Marcus, and S. Nie, Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells:?? New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding, Journal of the American Chemical Society, vol.129, issue.47, pp.14759-14766, 2007.
DOI : 10.1021/ja074936k

V. Sée, P. Free, Y. Cesbron, P. Nativo, U. Shaheen et al., Cathepsin L Digestion of Nanobioconjugates upon Endocytosis, ACS Nano, vol.3, issue.9, pp.2461-2468, 2009.
DOI : 10.1021/nn9006994

K. Sandhu, C. Mcintosh, J. Simard, S. Smith, and V. Rotello, Gold Nanoparticle-Mediated Transfection of Mammalian Cells, Bioconjugate Chemistry, vol.13, issue.1, pp.3-6, 2001.
DOI : 10.1021/bc015545c

Y. Zhang and L. Yu, Microinjection as a tool of mechanical delivery, Current Opinion in Biotechnology, vol.19, issue.5, pp.506-510, 2008.
DOI : 10.1016/j.copbio.2008.07.005

S. Dokka and Y. Rojanasakul, Novel non-endocytic delivery of antisense oligonucleotides, Advanced Drug Delivery Reviews, vol.44, issue.1, pp.35-49, 2000.
DOI : 10.1016/S0169-409X(00)00082-X

A. Verma, O. Uzun, Y. Hu, Y. Hu, H. Han et al., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles, Nature Materials, vol.311, issue.7, pp.588-595, 2008.
DOI : 10.1038/nmat2202

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684029

M. Yu and F. Stellacci, Response to ???Stripy Nanoparticles Revisited???, Small, vol.73, issue.24, pp.3720-3726, 2012.
DOI : 10.1002/smll.201202322

J. Stirling, I. Lekkas, A. Sweetman, P. Djuranovic, Q. Guo et al., Critical Assessment of the Evidence for Striped Nanoparticles, PLoS ONE, vol.80, issue.11, p.25402426, 2014.
DOI : 10.1371/journal.pone.0108482.s001

C. Bechara and S. Sagan, Cell-penetrating peptides: 20 years later, where do we stand? FEBS Letters, pp.1693-1702, 2013.

L. Josephson, C. Tung, A. Moore, and R. Weissleder, High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates, Bioconjugate Chemistry, vol.10, issue.2, pp.186-191, 1999.
DOI : 10.1021/bc980125h

X. Liu, C. Liu, W. Zhang, C. Xie, G. Wei et al., Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin, International Journal of Pharmaceutics, vol.448, issue.1, pp.159-167, 2013.
DOI : 10.1016/j.ijpharm.2013.03.033

S. Santra, H. Yang, J. Stanley, P. Holloway, B. Moudgil et al., Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots, Chem Commun, pp.3144-3146, 2005.

H. Xia, X. Gao, G. Gu, Z. Liu, Q. Hu et al., Penetratin-functionalized PEG???PLA nanoparticles for brain drug delivery, International Journal of Pharmaceutics, vol.436, issue.1-2, p.22841849, 2012.
DOI : 10.1016/j.ijpharm.2012.07.029

P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello, Gold nanoparticles in delivery applications???, Advanced Drug Delivery Reviews, vol.60, issue.11, pp.1307-1315, 2008.
DOI : 10.1016/j.addr.2008.03.016

D. Pissuwan, T. Niidome, and M. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems, Journal of Controlled Release, vol.149, issue.1, pp.65-71, 2011.
DOI : 10.1016/j.jconrel.2009.12.006

J. Yguerabide and E. Yguerabide, Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications, Analytical Biochemistry, vol.262, issue.2, pp.137-156, 1998.
DOI : 10.1006/abio.1998.2759

J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico et al., Image-based analysis of lipid nanoparticle???mediated siRNA delivery, intracellular trafficking and endosomal escape, Nature Biotechnology, vol.20, issue.7, pp.638-646, 2013.
DOI : 10.1093/nar/gkq568

Z. Krpetic, S. Saleemi, I. Prior, V. See, R. Qureshi et al., Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles, ACS Nano, vol.5, issue.6, pp.5195-5201, 2011.
DOI : 10.1021/nn201369k

P. Nativo, I. Prior, and M. Brust, Uptake and Intracellular Fate of Surface-Modified Gold Nanoparticles, ACS Nano, vol.2, issue.8, pp.1639-1644, 2008.
DOI : 10.1021/nn800330a

J. De-la-fuente and C. Berry, Tat Peptide as an Efficient Molecule To Translocate Gold Nanoparticles into the Cell Nucleus, Bioconjugate Chemistry, vol.16, issue.5, pp.1176-1180, 2005.
DOI : 10.1021/bc050033+

C. Berry, J. De-la-fuente, M. Mullin, S. Chu, and A. Curtis, Notice of Violation of IEEE Publication Principles<BR>Nuclear Localization of HIV-1 Tat Functionalized Gold Nanoparticles, IEEE Transactions on NanoBioscience, vol.6, issue.4, pp.262-269, 2007.
DOI : 10.1109/TNB.2007.908973

J. Conde, A. Ambrosone, V. Sanz, Y. Hernandez, V. Marchesano et al., Gene Silencing, ACS Nano, vol.6, issue.9, pp.8316-8324, 2012.
DOI : 10.1021/nn3030223

S. Santra, H. Yang, D. Dutta, J. Stanley, P. Holloway et al., TAT conjugated, FITC doped silica nanoparticles for bioimaging applications, Chemical Communications, issue.24, pp.2810-2811, 2004.
DOI : 10.1039/b411916a

P. Yin, J. Wang, L. Ren, Z. Wang, T. Wang et al., Conjugation of membrane-destabilizing peptide onto gelatin???siloxane nanoparticles for efficient gene expression, Materials Science and Engineering: C, vol.30, issue.8, pp.1260-1265, 2010.
DOI : 10.1016/j.msec.2010.07.006

B. Gupta, T. Levchenko, and V. Torchilin, Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.637-651, 2005.
DOI : 10.1016/j.addr.2004.10.007

A. Frankel and C. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, vol.55, issue.6, pp.1189-1193, 1988.
DOI : 10.1016/0092-8674(88)90263-2

M. Green and P. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, vol.55, issue.6, pp.1179-1188, 1988.
DOI : 10.1016/0092-8674(88)90262-0

I. Kaplan, J. Wadia, and S. Dowdy, Cationic TAT peptide transduction domain enters cells by macropinocytosis, Journal of Controlled Release, vol.102, issue.1, pp.571-572, 2005.
DOI : 10.1016/j.jconrel.2004.10.018

J. Wadia, R. Stan, and S. Dowdy, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis, Nature Medicine, vol.10, issue.3, pp.310-315, 2004.
DOI : 10.1038/nm996

T. Sugita, T. Yoshikawa, Y. Mukai, N. Yamanada, S. Imai et al., Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochemical and biophysical research communications, pp.1027-1032, 2007.

H. Michiue, K. Tomizawa, F. Wei, M. Matsushita, Y. Lu et al., The NH2 Terminus of Influenza Virus Hemagglutinin-2 Subunit Peptides Enhances the Antitumor Potency of Polyarginine-mediated p53 Protein Transduction, Journal of Biological Chemistry, vol.280, issue.9, pp.8285-8289, 2005.
DOI : 10.1074/jbc.M412430200

K. Cross, W. Langley, R. Russell, J. Skehel, and D. Steinhauer, Composition and Functions of the Influenza Fusion Peptide, Protein & Peptide Letters, vol.16, issue.7, pp.766-778, 2009.
DOI : 10.2174/092986609788681715

X. Han, J. Bushweller, D. Cafiso, and L. Tamm, Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin, Nature Structural Biology, vol.8, issue.8, pp.715-720, 2001.
DOI : 10.1038/90434

B. Alberts and . Retraction, Retraction, Science, vol.324, issue.5926, pp.463-463, 2009.
DOI : 10.1126/science.324_463a

S. Kumar, N. Harrison, R. Richards-kortum, and K. Sokolov, Plasmonic Nanosensors for Imaging Intracellular Biomarkers in Live Cells, Nano Letters, vol.7, issue.5, pp.1338-1343, 2007.
DOI : 10.1021/nl070365i

A. Wu and P. Senter, Arming antibodies: prospects and challenges for immunoconjugates, Nature Biotechnology, vol.90, issue.9, pp.1137-1146, 2005.
DOI : 10.1021/bc050039z

N. Todorova, C. Chiappini, M. Mager, S. B. Patel, I. Stevens et al., Surface Presentation of Functional Peptides in Solution Determines Cell Internalization Efficiency of TAT Conjugated Nanoparticles, Nano Letters, vol.14, issue.9, pp.5229-5237, 2014.
DOI : 10.1021/nl5021848

H. Hirose, T. Takeuchi, H. Osakada, S. Pujals, S. Katayama et al., Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells, Molecular Therapy, vol.20, issue.5, pp.984-993, 2012.
DOI : 10.1038/mt.2011.313

J. Liou, B. Liu, A. Martin, Y. Huang, H. Chiang et al., Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence, Peptides, vol.37, issue.2, pp.273-284, 2012.
DOI : 10.1016/j.peptides.2012.07.019

Y. Lee, G. Johnson, G. Peltier, and J. Pellois, A HA2-Fusion tag limits the endosomal release of its protein cargo despite causing endosomal lysis, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1810, issue.8, pp.752-758, 2011.
DOI : 10.1016/j.bbagen.2011.05.013

R. Lévy, N. Thanh, R. Doty, I. Hussain, R. Nichols et al., Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles, Journal of the American Chemical Society, vol.126, issue.32, pp.10076-10084, 2004.
DOI : 10.1021/ja0487269

R. Lévy, Z. Wang, L. Duchesne, R. Doty, A. Cooper et al., A Generic Approach to Monofunctionalized Protein-Like Gold Nanoparticles Based on Immobilized Metal Ion Affinity Chromatography, ChemBioChem, vol.125, issue.4, pp.592-594, 2006.
DOI : 10.1002/cbic.200500457

J. Slot and H. Geuze, A new method of preparing gold probes for multiple-labeling cyto-chemistry, European Journal of Cell Biology, vol.38, pp.87-93, 1985.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot et al., Turkevich Method for Gold Nanoparticle Synthesis Revisited, The Journal of Physical Chemistry B, vol.110, issue.32, pp.15700-15707, 2006.
DOI : 10.1021/jp061667w

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.20-22, 1973.
DOI : 10.1038/physci241020a0

E. Reynolds, THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY, The Journal of Cell Biology, vol.17, issue.1, pp.208-212, 1963.
DOI : 10.1083/jcb.17.1.208

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Observation of Intrinsic Size Effects in the Optical Response of Individual Gold Nanoparticles, Nano Letters, vol.5, issue.3, pp.515-518, 2005.
DOI : 10.1021/nl050062t

URL : https://hal.archives-ouvertes.fr/hal-00143957

D. Lasne, G. Blab, S. Berciaud, M. Heine, L. Groc et al., Single Nanoparticle Photothermal Tracking (SNaPT) of 5-nm Gold Beads in Live Cells, Biophysical Journal, vol.91, issue.12, pp.4598-4604, 2006.
DOI : 10.1529/biophysj.106.089771

URL : https://hal.archives-ouvertes.fr/hal-00143902

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment, Physical Review B, vol.73, issue.4, p.45424, 2006.
DOI : 10.1103/PhysRevB.73.045424

L. Bogart, A. Taylor, Y. Cesbron, P. Murray, and R. Lévy, Photothermal Microscopy of the Core of Dextran-Coated Iron Oxide Nanoparticles During Cell Uptake, ACS Nano, vol.6, issue.7, pp.5961-5971, 2012.
DOI : 10.1021/nn300868z

S. Berciaud, L. Cognet, and B. Lounis, Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, pp.77402-18764579, 2008.
DOI : 10.1103/PhysRevLett.101.077402

URL : https://hal.archives-ouvertes.fr/hal-00719454

S. Berciaud, L. Cognet, P. Poulin, R. Weisman, and B. Lounis, Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes, Nano Letters, vol.7, issue.5, pp.1203-1207, 2007.
DOI : 10.1021/nl062933k

URL : https://hal.archives-ouvertes.fr/hal-00143899

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals, Physical Review Letters, vol.93, issue.25, pp.257402-15697940, 2004.
DOI : 10.1103/PhysRevLett.93.257402

URL : https://hal.archives-ouvertes.fr/hal-00002698

C. Brandenberger, C. Muhlfeld, Z. Ali, A. Lenz, O. Schmid et al., Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles, Small, vol.170, issue.15, pp.1669-1678, 2010.
DOI : 10.1002/smll.201000528

. Arnida, A. Malugin, and H. Ghandehari, Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres, Journal of Applied Toxicology, vol.1, pp.212-217, 2010.
DOI : 10.1002/jat.1486

Y. Cesbron, U. Shaheen, and R. Levy, CCALNN-PEG monolayer proportion influence on gold nanoparticles uptake (Fig. S3. dataset); 2014. Database: figshare [Internet], 2015.

Y. Cesbron, P. Free, and R. Levy, Intracellular delivery of gold nanoparticles assisted by monolayer functionalisation with HA2/TAT peptides (Fig. 1 dataset), Database: figshare [Internet], 2014.

G. Tünnemann, R. Martin, S. Haupt, C. Patsch, F. Edenhofer et al., Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells, The FASEB Journal, vol.20, issue.11, pp.1775-1784, 2006.
DOI : 10.1096/fj.05-5523com

U. Shaheen and R. Levy, Effect of PEG on the intracellular localisation of HA2 fusion peptides functionalised gold nanoparticles; nanoparticles capped with HA2 and CALNN (Fig. 2A-B dataset); 2014. Database: figshare [Internet], 2014.

U. Shaheen and R. Levy, Effect of PEG on the intracellular localisation of HA2 fusion peptides functionalised gold nanoparticles; nanoparticles capped with HA2, PEG and CALNN (Fig. 2C-D dataset); 2014. Database: figshare [Internet], 2014.

U. Shaheen and R. Levy, Influence of the proportion of CCALNN?dHA2 peptides in the monolayer of gold nanoparticles; 50% CCALNN-dHA2, 50% CALNN capped gold nanoparticles (Fig. 3A dataset), 2014.

U. Shaheen and R. Levy, Influence of the proportion of CCALNN?dHA2 peptides in the monolayer of gold nanoparticles; 100% CCALNN-dHA2 capped gold nanoparticles (Fig. 3B dataset); 2014. Database: figshare [Internet], 2014.

U. Shaheen and R. Levy, Orientation of HA2 peptide 20% CCALNN-HA2 in SAM of gold nanoparticles (Fig. 4A dataset), Database: figshare [Internet], 2014.

U. Shaheen and R. Levy, Orientation of HA2 peptide 20% HA2-NNLACC in SAM of gold nanoparticles (Fig. 4B dataset), Database: figshare [Internet], 2014.

U. Shaheen and R. Levy, Orientation of HA2 peptide 50% CCALNN-HA2 in SAM of gold nanoparticles (Fig. 4C dataset), Database: figshare [Internet], 2014.

U. Shaheen and R. Levy, Orientation of HA2 peptide 50% HA2-NNLACC in SAM of gold nanoparticles (Fig. 4D dataset), Database: figshare [Internet], 2014.