A. Aarabi and B. He, Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach, Clinical Neurophysiology, vol.125, issue.5, pp.930-970, 2014.
DOI : 10.1016/j.clinph.2013.10.051

G. Alarcon, C. Guy, C. Binnie, S. Walker, R. Elwes et al., Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation., Journal of Neurology, Neurosurgery & Psychiatry, vol.57, issue.4, pp.435-484, 1994.
DOI : 10.1136/jnnp.57.4.435

C. Alvarado-rojas, G. Huberfeld, M. Baulac, S. Clemenceau, S. Charpier et al., Different mechanisms of ripple-like oscillations in the human epileptic subiculum, Annals of Neurology, vol.6, issue.pt 2, 2014.
DOI : 10.1002/ana.24324

R. Andrzejak, O. David, V. Gnatkovsky, F. Wendling, F. Bartolomei et al., Localization of Epileptogenic Zone on Pre-surgical Intracranial EEG Recordings: Toward a Validation of Quantitative Signal Analysis Approaches, Brain Topography, vol.33, issue.Suppl 1, 2014.
DOI : 10.1007/s10548-014-0380-8

URL : https://hal.archives-ouvertes.fr/hal-01260562

A. Aubert and R. Costalat, A Model of the Coupling between Brain Electrical Activity, Metabolism, and Hemodynamics: Application to the Interpretation of Functional Neuroimaging, NeuroImage, vol.17, issue.3, pp.1162-81, 2002.
DOI : 10.1006/nimg.2002.1224

M. Avoli, A brief history on the oscillating roles of thalamus and cortex in absence seizures, Epilepsia, vol.66, issue.5, pp.779-89, 2012.
DOI : 10.1111/j.1528-1167.2012.03421.x

M. Avoli, G. Biagini, D. Curtis, and M. , Do interictal spikes sustain seizures and epileptogenesis? Epilepsy currents, p.203, 2006.

J. Bancaud, J. Talairach, A. Bonis, C. Schaub, G. Szikla et al., La stéréoélectroencéphalographie dans l'épilepsie: informations neurophysiopathologiques apportées par l'investigation fonctionnelle stereotaxique, 1965.

F. Bartolomei, P. Chauvel, and F. Wendling, Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG, Brain, vol.131, issue.7, pp.1818-1848, 2008.
DOI : 10.1093/brain/awn111

URL : https://hal.archives-ouvertes.fr/inserm-00291170

F. Bartolomei, M. Guye, and F. Wendling, Abnormal binding and disruption in large scale networks involved in human partial seizures, EPJ Nonlinear Biomedical Physics, vol.54, issue.183, p.4, 2013.
DOI : 10.1140/epjnbp11

URL : https://hal.archives-ouvertes.fr/inserm-00839181

F. Bartolomei, F. Wendling, J. Bellanger, J. Regis, and P. Chauvel, Neural networks involving the medial temporal structures in temporal lobe epilepsy, Clinical Neurophysiology, vol.112, issue.9, pp.1746-60, 2001.
DOI : 10.1016/S1388-2457(01)00591-0

M. Bartos, I. Vida, and J. P. , Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks, Nature Reviews Neuroscience, vol.17, issue.1, pp.45-56, 2007.
DOI : 10.1111/j.1460-9568.1994.tb00994.x

C. Benar, L. Chauviere, F. Bartolomei, and F. Wendling, Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on ???false??? ripples, Clinical Neurophysiology, vol.121, issue.3, pp.301-311, 2010.
DOI : 10.1016/j.clinph.2009.10.019

URL : https://hal.archives-ouvertes.fr/inserm-00747120

O. Benjamin, T. Fitzgerald, P. Ashwin, K. Tsaneva-atanasova, F. Chowdhury et al., A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy, The Journal of Mathematical Neuroscience, vol.2, issue.1, p.1, 2012.
DOI : 10.1523/JNEUROSCI.4250-04.2005

C. Bernard, S. Naze, T. Proix, and V. Jirsa, Modern Concepts of Seizure Modeling, Int Rev Neurobiol, vol.114, pp.121-53, 2014.
DOI : 10.1016/B978-0-12-418693-4.00006-6

G. Birot, L. Albera, F. Wendling, and I. Merlet, Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach, NeuroImage, vol.56, issue.1, pp.102-115, 2011.
DOI : 10.1016/j.neuroimage.2011.01.054

URL : https://hal.archives-ouvertes.fr/inserm-00588305

G. Birot, A. Kachenoura, L. Albera, C. Benar, and F. Wendling, Automatic detection of fast ripples, Journal of Neuroscience Methods, vol.213, issue.2, pp.236-285, 2013.
DOI : 10.1016/j.jneumeth.2012.12.013

URL : https://hal.archives-ouvertes.fr/hal-00782646

S. Blanchard, T. Papadopoulo, C. Benar, N. Voges, M. Clerc et al., Relationship Between Flow and Metabolism in BOLD Signals: Insights from Biophysical Models, Brain Topography, vol.24, issue.7, pp.40-53, 2011.
DOI : 10.1007/s10548-010-0166-6

URL : https://hal.archives-ouvertes.fr/inserm-00613116

A. Blenkinsop, A. Valentin, M. Richardson, and J. Terry, The dynamic evolution of focal-onset epilepsies - combining theoretical and clinical observations, European Journal of Neuroscience, vol.102, issue.2, pp.2188-200, 2012.
DOI : 10.1111/j.1460-9568.2012.08082.x

I. Bojak, T. Oostendorp, A. Reid, and R. Kotter, Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.369, issue.1952, pp.3785-801, 2011.
DOI : 10.1098/rsta.2011.0120

A. Bragin, J. Engel, J. Wilson, C. Fried, I. Buzsaki et al., High-frequency oscillations in human brain, Hippocampus, vol.15, issue.2, pp.137-179, 1999.
DOI : 10.1002/(SICI)1098-1063(1999)9:2<137::AID-HIPO5>3.0.CO;2-0

A. Bragin, J. Engel, J. Wilson, C. Fried, I. Mathern et al., Hippocampal and Entorhinal Cortex High-Frequency Oscillations (100-500 Hz) in Human Epileptic Brain and in Kainic Acid-Treated Rats with Chronic Seizures, Epilepsia, vol.37, issue.2, pp.127-164, 1999.
DOI : 10.1016/0920-1211(89)90030-2

A. Bragin, J. Engel, J. Wilson, C. Vizentin, E. Mathern et al., Electrophysiologic Analysis of a Chronic Seizure Model After Unilateral Hippocampal KA Injection, Epilepsia, vol.15, issue.9, pp.1210-1231, 1999.
DOI : 10.1016/S0920-1211(98)00063-1

M. Breakspear, J. Roberts, J. Terry, S. Rodrigues, N. Mahant et al., A Unifying Explanation of Primary Generalized Seizures Through Nonlinear Brain Modeling and Bifurcation Analysis, Cerebral Cortex, vol.16, issue.9, pp.1296-313, 2006.
DOI : 10.1093/cercor/bhj072

M. Brodie, Status epilepticus in adults, The Lancet, vol.336, issue.8714, pp.551-553, 1990.
DOI : 10.1016/0140-6736(90)92098-3

L. Chauviere, T. Doublet, A. Ghestem, S. Siyoucef, F. Wendling et al., Changes in interictal spike features precede the onset of temporal lobe epilepsy, Annals of Neurology, vol.4, issue.suppl 5, pp.805-819, 2012.
DOI : 10.1002/ana.23549

URL : https://hal.archives-ouvertes.fr/hal-00881508

C. Chiang, M. Ju, and C. Lin, Description and computational modeling of the whole course of status epilepticus induced by low dose lithium???pilocarpine in rats, Brain Research, vol.1417, pp.151-62, 2011.
DOI : 10.1016/j.brainres.2011.08.045

S. Coombes, Waves, bumps, and patterns in neural field theories, Biological Cybernetics, vol.16, issue.2, pp.91-108, 2005.
DOI : 10.1007/s00422-005-0574-y

D. Cosandier-rimele, J. Badier, P. Chauvel, and F. Wendling, A Physiologically Plausible Spatio-Temporal Model for EEG Signals Recorded With Intracerebral Electrodes in Human Partial Epilepsy, IEEE Transactions on Biomedical Engineering, vol.54, issue.3, pp.380-388, 2007.
DOI : 10.1109/TBME.2006.890489

URL : https://hal.archives-ouvertes.fr/inserm-00144531

D. Cosandier-rimele, F. Bartolomei, I. Merlet, P. Chauvel, and F. Wendling, Recording of fast activity at the onset of partial seizures: Depth EEG vs. scalp EEG, NeuroImage, vol.59, issue.4, pp.3474-87, 2012.
DOI : 10.1016/j.neuroimage.2011.11.045

URL : https://hal.archives-ouvertes.fr/inserm-00664028

D. Cosandier-rimele, I. Merlet, J. Badier, P. Chauvel, and F. Wendling, The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy, NeuroImage, vol.42, issue.1, pp.135-181, 2008.
DOI : 10.1016/j.neuroimage.2008.04.185

URL : https://hal.archives-ouvertes.fr/inserm-00285582

D. Cosandier-rimele, I. Merlet, F. Bartolomei, J. Badier, and F. Wendling, Computational Modeling of Epileptic Activity: From Cortical Sources to EEG Signals, Journal of Clinical Neurophysiology, vol.27, issue.6, pp.465-70, 2010.
DOI : 10.1097/WNP.0b013e3182005dcd

URL : https://hal.archives-ouvertes.fr/hal-00909517

G. Curia, D. Longo, G. Biagini, R. Jones, and M. Avoli, The pilocarpine model of temporal lobe epilepsy, Journal of Neuroscience Methods, vol.172, issue.2, pp.143-57, 2008.
DOI : 10.1016/j.jneumeth.2008.04.019

O. David, T. Blauwblomme, A. Job, S. Chabardes, D. Hoffmann et al., Imaging the seizure onset zone with stereo-electroencephalography, Brain, vol.134, issue.10, pp.2898-911, 2011.
DOI : 10.1093/brain/awr238

URL : https://hal.archives-ouvertes.fr/inserm-00640161

M. De-curtis and G. Avanzini, Interictal spikes in focal epileptogenesis, Progress in Neurobiology, vol.63, issue.5, pp.541-67, 2001.
DOI : 10.1016/S0301-0082(00)00026-5

S. Demont-guignard, P. Benquet, U. Gerber, A. Biraben, B. Martin et al., Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes, Annals of Neurology, vol.554, issue.pt 12, pp.342-52, 2012.
DOI : 10.1002/ana.22610

URL : https://hal.archives-ouvertes.fr/inserm-00700398

S. Demont-guignard, P. Benquet, U. Gerber, and F. Wendling, Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model, IEEE Transactions on Biomedical Engineering, vol.56, issue.12, pp.2782-95, 2009.
DOI : 10.1109/TBME.2009.2028015

URL : https://hal.archives-ouvertes.fr/inserm-00426352

A. Destexhe, Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? The European journal of neuroscience, pp.2175-81, 1999.

A. Destexhe, Network Models of Absence Seizures, Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, pp.11-35
DOI : 10.1016/B978-0-12-415804-7.00002-2

A. Destexhe, Spike-and-wave oscillations based on the properties of GABAB receptors, J Neurosci, vol.18, pp.9099-111, 1998.

A. Destexhe, D. Mccormick, and T. Sejnowski, A model for 8???10 Hz spindling in interconnected thalamic relay and reticularis neurons, Biophysical Journal, vol.65, issue.6, pp.2473-2480, 1993.
DOI : 10.1016/S0006-3495(93)81297-9

A. Destexhe and T. Sejnowski, G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus., Proceedings of the National Academy of Sciences, vol.92, issue.21, pp.9515-9524, 1995.
DOI : 10.1073/pnas.92.21.9515

A. Draguhn, R. Traub, D. Schmitz, and J. Jefferys, Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro, Nature, vol.391, issue.6689, pp.189-92, 1998.
DOI : 10.1038/28184

V. Dzhala and K. Staley, Mechanisms of Fast Ripples in the Hippocampus, Journal of Neuroscience, vol.24, issue.40, pp.8896-906, 2004.
DOI : 10.1523/JNEUROSCI.3112-04.2004

L. El-hassar, M. Milh, F. Wendling, N. Ferrand, M. Esclapez et al., Cell domain-dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region, The Journal of Physiology, vol.26, issue.1, pp.193-211, 2007.
DOI : 10.1113/jphysiol.2006.119297

E. Houssaini, K. Ivanov, A. Bernard, C. Jirsa, and V. , Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical review. E, Statistical, nonlinear, and soft matter physics, p.10701, 2015.

R. Fisher, Deep brain stimulation for epilepsy, Handb Clin Neurol, vol.116, pp.217-251, 2013.
DOI : 10.1016/B978-0-444-53497-2.00017-6

G. Foffani, Y. Uzcategui, B. Gal, and L. Menendez-de-la-prida, Reduced Spike-Timing Reliability Correlates with the Emergence of Fast Ripples in the Rat Epileptic Hippocampus, Neuron, vol.55, issue.6, pp.930-971, 2007.
DOI : 10.1016/j.neuron.2007.07.040

K. Franca, A. De-almeida, A. Infantosi, M. Duarte, G. Da-silveira et al., Enhanced Synaptic Connectivity in the Dentate Gyrus during Epileptiform Activity: Network Simulation, Computational Intelligence and Neuroscience, vol.83, issue.3, p.949816, 2013.
DOI : 10.1038/nrn2416

W. Freeman, The Electrical Activity of A Priaaary Sensory Cortex: Analysis of Eeg Waves, Int Rev Neurobiol, vol.5, pp.53-119, 1963.
DOI : 10.1016/S0074-7742(08)60594-2

W. Freeman, A model of the olfactory system, Neural modeling, pp.41-62, 1973.

W. Freeman, Patterns of variation in waveform of averaged evoked potentials from prepyriform cortex of cats, J Neurophysiol, vol.31, pp.1-13, 1968.

K. Friston, On the modelling of seizure dynamics, Brain, vol.137, issue.8, pp.2110-2113, 2014.
DOI : 10.1093/brain/awu147

W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge, 2002.

V. Gnatkovsky, S. Francione, F. Cardinale, R. Mai, L. Tassi et al., Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals, Epilepsia, vol.131, issue.suppl 1, pp.477-88, 2011.
DOI : 10.1111/j.1528-1167.2010.02931.x

V. Gnatkovsky, L. Librizzi, F. Trombin, and M. De-curtis, Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro, Annals of Neurology, vol.61, issue.6, pp.674-86, 2008.
DOI : 10.1002/ana.21519

M. Goodfellow, K. Schindler, and G. Baier, Self-organised transients in a neural mass model of epileptogenic tissue dynamics, NeuroImage, vol.59, issue.3, pp.2644-60, 2012.
DOI : 10.1016/j.neuroimage.2011.08.060

M. Goodfellow, P. Taylor, Y. Wang, D. Garry, and G. Baier, Modelling the role of tissue heterogeneity in epileptic rhythms, European Journal of Neuroscience, vol.55, issue.Pt 9, pp.2178-87, 2012.
DOI : 10.1111/j.1460-9568.2012.08093.x

F. Grenier, I. Timofeev, and M. Steriade, Neocortical Very Fast Oscillations (Ripples, 80-200 Hz) During Seizures: Intracellular Correlates, Journal of Neurophysiology, vol.89, issue.2, pp.841-52, 2003.
DOI : 10.1152/jn.00420.2002

B. Grewe, D. Langer, H. Kasper, B. Kampa, and F. Helmchen, High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision, Nature Methods, vol.487, issue.5, pp.399-405, 2010.
DOI : 10.1038/nmeth.1453

M. Guye, J. Regis, M. Tamura, F. Wendling, A. Mcgonigal et al., The role of corticothalamic coupling in human temporal lobe epilepsy, Brain, vol.129, issue.7, pp.1917-1945, 2006.
DOI : 10.1093/brain/awl151

A. Heilman and J. Quattrochi, Computational models of epileptiform activity in single neurons, Biosystems, vol.78, issue.1-3, pp.1-21, 2004.
DOI : 10.1016/j.biosystems.2004.06.002

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

C. Huneau, P. Benquet, G. Dieuset, A. Biraben, B. Martin et al., Shape features of epileptic spikes are a marker of epileptogenesis in mice, Epilepsia, vol.31, issue.Suppl. 3, pp.2219-2246, 2013.
DOI : 10.1111/epi.12406

URL : https://hal.archives-ouvertes.fr/hal-00982262

J. Ibarz, G. Foffani, E. Cid, M. Inostroza, and L. Menendez-de-la-prida, Emergent Dynamics of Fast Ripples in the Epileptic Hippocampus, Journal of Neuroscience, vol.30, issue.48, pp.16249-61, 2010.
DOI : 10.1523/JNEUROSCI.3357-10.2010

J. Jacobs, P. Levan, C. Chatillon, A. Olivier, F. Dubeau et al., High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type, Brain, vol.132, issue.4, pp.1022-1059, 2009.
DOI : 10.1093/brain/awn351

J. Jacobs, R. Staba, E. Asano, H. Otsubo, J. Wu et al., High-frequency oscillations (HFOs) in clinical epilepsy, Progress in Neurobiology, vol.98, issue.3, pp.302-317, 2012.
DOI : 10.1016/j.pneurobio.2012.03.001

J. Jacobs, M. Zijlmans, R. Zelmann, C. Chatillon, J. Hall et al., High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery, Annals of Neurology, vol.50, issue.pt 4, pp.209-229, 2010.
DOI : 10.1002/ana.21847

B. Jansen, G. Zouridakis, and M. Brandt, A neurophysiologically-based mathematical model of flash visual evoked potentials, Biological Cybernetics, vol.31, issue.3, pp.275-83, 1993.
DOI : 10.1007/BF00224863

V. Jirsa and H. Haken, Field Theory of Electromagnetic Brain Activity, Physical Review Letters, vol.77, issue.5, pp.960-963, 1996.
DOI : 10.1103/PhysRevLett.77.960

V. Jirsa, W. Stacey, P. Quilichini, A. Ivanov, and C. Bernard, On the nature of seizure dynamics, Brain, vol.137, issue.8, pp.2210-2240, 2014.
DOI : 10.1093/brain/awu133

P. Kahane and A. Depaulis, Deep brain stimulation in epilepsy: what is next?, Current Opinion in Neurology, vol.23, issue.2, pp.177-82, 2010.
DOI : 10.1097/WCO.0b013e3283374a39

URL : https://hal.archives-ouvertes.fr/inserm-00528329

S. Kalitzin, M. Koppert, G. Petkov, and F. Da-silva, MULTIPLE OSCILLATORY STATES IN MODELS OF COLLECTIVE NEURONAL DYNAMICS, International Journal of Neural Systems, vol.24, issue.06, p.1450020, 2014.
DOI : 10.1142/S0129065714500208

S. Kalitzin, M. Koppert, G. Petkov, D. Velis, and F. Da-silva, Computational model prospective on the observation of proictal states in epileptic neuronal systems, Epilepsy & Behavior, vol.22, issue.1, pp.102-111, 2011.
DOI : 10.1016/j.yebeh.2011.08.017

S. Kalitzin, D. Velis, and F. Da-silva, Stimulation-based anticipation and control of state transitions in the epileptic brain, Epilepsy & Behavior, vol.17, issue.3, pp.310-333, 2010.
DOI : 10.1016/j.yebeh.2009.12.023

K. Kobayashi, T. Akiyama, I. Ohmori, H. Yoshinaga, and J. Gotman, Action potentials contribute to epileptic highfrequency oscillations recorded with electrodes remote from neurons, Clin Neurophysiol, 2014.

E. Labyt, P. Frogerais, L. Uva, J. Bellanger, and F. Wendling, Modeling of Entorhinal Cortex and Simulation of Epileptic Activity: Insights Into the Role of Inhibition-Related Parameters, IEEE Transactions on Information Technology in Biomedicine, vol.11, issue.4, pp.450-61, 2007.
DOI : 10.1109/TITB.2006.889680

URL : https://hal.archives-ouvertes.fr/inserm-00183634

E. Labyt, L. Uva, M. De-curtis, and F. Wendling, Realistic Modeling of Entorhinal Cortex Field Potentials and Interpretation of Epileptic Activity in the Guinea Pig Isolated Brain Preparation, Journal of Neurophysiology, vol.96, issue.1, pp.363-77, 2006.
DOI : 10.1152/jn.01342.2005

URL : https://hal.archives-ouvertes.fr/inserm-00147359

N. Laxpati, W. Kasoff, and R. Gross, Deep Brain Stimulation for the Treatment of Epilepsy: Circuits, Targets, and Trials, Neurotherapeutics, vol.64, issue.Suppl. 3, pp.508-534, 2014.
DOI : 10.1007/s13311-014-0279-9

S. Lee, D. Spencer, and S. Spencer, Intracranial EEG Seizure-Onset Patterns in Neocortical Epilepsy, Epilepsia, vol.2, issue.3, pp.297-307, 2000.
DOI : 10.1016/0920-1211(95)00014-2

K. Lehnertz, S. Bialonski, M. Horstmann, D. Krug, A. Rothkegel et al., Synchronization phenomena in human epileptic brain networks, Journal of Neuroscience Methods, vol.183, issue.1, pp.42-50, 2009.
DOI : 10.1016/j.jneumeth.2009.05.015

T. Lewis and J. Rinzel, Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions, Network: Computation in Neural Systems, vol.11, issue.4, pp.299-320, 2000.
DOI : 10.1088/0954-898X_11_4_304

F. Lopes-da-silva, W. Blanes, S. Kalitzin, J. Parra, P. Suffczynski et al., Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity, Epilepsia, vol.143, issue.s12, pp.72-83, 2003.
DOI : 10.1007/s002210100682

F. Lopes-da-silva, A. Hoeks, H. Smits, and L. Zetterberg, Model of brain rhythmic activity, Kybernetik, vol.1, issue.1, pp.27-37, 1974.
DOI : 10.1007/BF00270757

F. Lopes-da-silva, A. Van-rotterdam, P. Barts, E. Van-heusden, and W. Burr, Models of Neuronal Populations: The Basic Mechanisms of Rhythmicity, Prog Brain Res, vol.45, pp.281-308, 1976.
DOI : 10.1016/S0079-6123(08)60995-4

W. Lytton, Computer modelling of epilepsy, Nature Reviews Neuroscience, vol.23, issue.8, pp.626-663, 2008.
DOI : 10.1038/nrn2416

W. Lytton, D. Contreras, A. Destexhe, and M. Steriade, Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures, J Neurophysiol, vol.77, pp.1679-96, 1997.

W. Lytton, R. Orman, and M. Stewart, Computer simulation of epilepsy: Implications for seizure spread and behavioral dysfunction, Epilepsy & Behavior, vol.7, issue.3, pp.336-380, 2005.
DOI : 10.1016/j.yebeh.2005.06.011

W. Lytton and T. Sejnowski, Computer model of ethosuximide's effect on a thalamic neuron, Annals of Neurology, vol.10, issue.2, pp.131-140, 1992.
DOI : 10.1002/ana.410320204

H. Matsumoto and C. Ajmone-marsan, Cortical cellular phenomena in experimental epilepsy: Interictal manifestations, Experimental Neurology, vol.9, issue.4, pp.286-304, 1964.
DOI : 10.1016/0014-4886(64)90025-1

A. Mercer, Electrically coupled excitatory neurones in cortical regions, Brain Research, vol.1487, pp.192-199, 2012.
DOI : 10.1016/j.brainres.2012.03.069

F. Mina, P. Benquet, A. Pasnicu, A. Biraben, and F. Wendling, Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects, Frontiers in Computational Neuroscience, vol.7, p.94, 2013.
DOI : 10.3389/fncom.2013.00094

URL : https://hal.archives-ouvertes.fr/hal-00982265

B. Molaee-ardekani, P. Benquet, F. Bartolomei, and F. Wendling, Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ???altered structure??? to ???dysfunction???, NeuroImage, vol.52, issue.3, pp.1109-1131, 2010.
DOI : 10.1016/j.neuroimage.2009.12.049

URL : https://hal.archives-ouvertes.fr/inserm-00443065

E. Munro and C. Borgers, Mechanisms of very fast oscillations in networks of axons coupled by gap junctions, Journal of Computational Neuroscience, vol.15, issue.1 Pt. 1, pp.539-55, 2010.
DOI : 10.1007/s10827-010-0235-6

D. Nair, M. A. Burgess, R. Luders, and H. , A critical review of the different conceptual hypotheses framing human focal epilepsy, Epileptic Disord, vol.6, pp.77-83, 2004.

A. Nevado-holgado, F. Marten, M. Richardson, and J. Terry, Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: Application to epilepsy seizure evolution, NeuroImage, vol.59, issue.3, pp.2374-92, 2012.
DOI : 10.1016/j.neuroimage.2011.08.111

J. Pallud, L. Van-quyen, M. Bielle, F. Pellegrino, C. Varlet et al., Cortical GABAergic excitation contributes to epileptic activities around human glioma, Science Translational Medicine, vol.6, issue.244, pp.244-89, 2014.
DOI : 10.1126/scitranslmed.3008065

A. Pasnicu, Y. Denoyer, C. Haegelen, E. Pasqualini, and A. Biraben, Modulation of paroxysmal activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation, Epilepsy Research, vol.104, issue.3, pp.264-272, 2013.
DOI : 10.1016/j.eplepsyres.2012.10.012

J. Pijn, P. Vijn, F. Lopes-da-silva, W. Van-ende-boas, and W. Blanes, Localization of epileptogenic foci using a new signal analytical approach, Neurophysiologie Clinique/Clinical Neurophysiology, vol.20, issue.1, pp.1-11, 1990.
DOI : 10.1016/S0987-7053(05)80165-0

A. Prinz, D. Bucher, and E. Marder, Similar network activity from disparate circuit parameters, Nature Neuroscience, vol.7, issue.12, pp.1345-52, 2004.
DOI : 10.1038/nn1352

P. Quilichini, D. Diabira, C. Chiron, M. Milh, Y. Ben-ari et al., Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro, Epilepsia, vol.548, issue.suppl 1, pp.1365-74, 2003.
DOI : 10.1046/j.1528-1157.2003.19503.x

URL : https://hal.archives-ouvertes.fr/inserm-00484785

S. Ratnadurai-giridharan, R. Stefanescu, P. Khargonekar, P. Carney, and S. Talathi, Genesis of interictal spikes in the CA1: a computational investigation, Frontiers in Neural Circuits, vol.8, issue.2, 2014.
DOI : 10.3389/fncir.2014.00002

J. Roberts and P. Robinson, Modeling absence seizure dynamics: Implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies, Journal of Theoretical Biology, vol.253, issue.1, pp.189-201, 2008.
DOI : 10.1016/j.jtbi.2008.03.005

P. Robinson, C. Rennie, D. Rowe, O. Connor, S. Wright et al., Neurophysical Modeling of Brain Dynamics, Neuropsychopharmacology, vol.28, issue.S1, pp.74-83, 2003.
DOI : 10.1038/sj.npp.1300143

S. Rodrigues, D. Barton, R. Szalai, O. Benjamin, M. Richardson et al., Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model, Journal of Computational Neuroscience, vol.19, issue.3, pp.507-533, 2009.
DOI : 10.1007/s10827-009-0166-2

A. Roopun, J. Simonotto, M. Pierce, A. Jenkins, C. Nicholson et al., A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.338-381, 2010.
DOI : 10.1073/pnas.0912652107

P. Sanz-leon, S. Knock, A. Spiegler, and V. Jirsa, Mathematical framework for large-scale brain network modeling in The Virtual Brain, NeuroImage, vol.111, 2015.
DOI : 10.1016/j.neuroimage.2015.01.002

S. Leon, P. Knock, S. Woodman, M. Domide, L. Mersmann et al., The Virtual Brain: a simulator of primate brain network dynamics, Front Neuroinform, vol.7, p.10, 2013.

S. Schiff, D. Colella, G. Jacyna, E. Hughes, J. Creekmore et al., Brain chirps: spectrographic signatures of epileptic seizures, Clinical Neurophysiology, vol.111, issue.6, pp.953-961, 2000.
DOI : 10.1016/S1388-2457(00)00259-5

K. Schindler, H. Leung, C. Elger, and K. Lehnertz, Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG, Brain, vol.130, issue.1, pp.65-77, 2007.
DOI : 10.1093/brain/awl304

H. Schmidt, G. Petkov, M. Richardson, and J. Terry, Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity, PLoS Computational Biology, vol.20, issue.11, p.1003947, 2014.
DOI : 10.1371/journal.pcbi.1003947.t001

P. Schwartzkroin and H. Wheal, Electrophysiology of Epilepsy, 1984.

U. Seneviratne, M. Cook, D. Souza, and W. , The electroencephalogram of idiopathic generalized epilepsy, Epilepsia, vol.2, issue.Suppl. 4, pp.234-282, 2012.
DOI : 10.1111/j.1528-1167.2011.03344.x

Z. Shiri, F. Manseau, M. Levesque, S. Williams, and M. Avoli, Interneuron activity leads to initiation of low-voltage fast-onset seizures, Annals of Neurology, vol.33, issue.3, 2014.
DOI : 10.1002/ana.24342

R. Sotero and N. Trujillo-barreto, Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism, NeuroImage, vol.39, issue.1, pp.290-309, 2008.
DOI : 10.1016/j.neuroimage.2007.08.001

K. Staley, Neurons Skip a Beat during Fast Ripples, Neuron, vol.55, issue.6, pp.828-858, 2007.
DOI : 10.1016/j.neuron.2007.09.005

K. Staley and F. Dudek, Interictal Spikes and Epileptogenesis, Epilepsy Currents, vol.6, issue.6, pp.199-202, 2006.
DOI : 10.1111/j.1535-7511.2006.00145.x

P. Suffczynski, S. Kalitzin, F. Da-silva, J. Parra, D. Velis et al., Active paradigms of seizure anticipation: computer model evidence for necessity of stimulation. Physical review. E, Statistical, nonlinear, and soft matter physics, p.51917, 2008.

P. Suffczynski, S. Kalitzin, L. Silva, and F. , Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience, vol.126, issue.2, pp.467-84, 2004.
DOI : 10.1016/j.neuroscience.2004.03.014

J. Talairach, J. Bancaud, A. Bonis, G. Szikla, and P. Tournoux, Functional Stereotaxic Exploration of Epilepsy, Stereotactic and Functional Neurosurgery, vol.22, issue.3-5, pp.328-359, 1962.
DOI : 10.1159/000104378

J. Taxidis, S. Coombes, R. Mason, and M. Owen, Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses, Hippocampus, vol.15, issue.2, pp.995-1017, 2012.
DOI : 10.1002/hipo.20930

J. Tejada, N. Garcia-cairasco, and A. Roque, Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus, PLoS Computational Biology, vol.14, issue.5, p.1003601, 2014.
DOI : 10.1371/journal.pcbi.1003601.t002

J. Terry, O. Benjamin, and M. Richardson, Seizure generation: The role of nodes and networks, Epilepsia, vol.104, issue.9, pp.166-175, 2012.
DOI : 10.1111/j.1528-1167.2012.03560.x

J. Touboul, F. Wendling, P. Chauvel, and O. Faugeras, Neural Mass Activity, Bifurcations, and Epilepsy, Neural Computation, vol.13, issue.2, pp.3232-86, 2011.
DOI : 10.1007/BF00337367

URL : https://hal.archives-ouvertes.fr/inria-00592529

K. Tovar, B. Maher, and G. Westbrook, Direct Actions of Carbenoxolone on Synaptic Transmission and Neuronal Membrane Properties, Journal of Neurophysiology, vol.102, issue.2, pp.974-982, 2009.
DOI : 10.1152/jn.00060.2009

R. Traub and A. Bibbig, A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons, J Neurosci, vol.20, pp.2086-93, 2000.

R. Traub, A. Draguhn, M. Whittington, T. Baldeweg, A. Bibbig et al., Axonal Gap Junctions Between Principal Neurons: A Novel Source of Network Oscillations, and Perhaps Epileptogenesis, Reviews in the Neurosciences, vol.13, issue.1, pp.1-30, 2002.
DOI : 10.1515/REVNEURO.2002.13.1.1

R. Traub, R. Duncan, A. Russell, T. Baldeweg, Y. Tu et al., Spatiotemporal patterns of electrocorticographic very fast oscillations (>80???Hz) consistent with a network model based on electrical coupling between principal neurons, Epilepsia, vol.131, issue.suppl 1, pp.1587-97, 2010.
DOI : 10.1111/j.1528-1167.2009.02420.x

R. Traub, W. Knowles, R. Miles, and R. Wong, Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice, Neuroscience, vol.21, issue.2, pp.457-70, 1987.
DOI : 10.1016/0306-4522(87)90135-7

R. Traub, W. Knowles, R. Miles, and R. Wong, Synchronized afterdischarges in the hippocampus: Simulation studies of the cellular mechanism, Neuroscience, vol.12, issue.4, pp.1191-200, 1984.
DOI : 10.1016/0306-4522(84)90013-7

R. Traub, S. Middleton, T. Knopfel, and M. Whittington, Model of very fast (>???75???Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells, European Journal of Neuroscience, vol.81, issue.8, pp.1603-1619, 2008.
DOI : 10.1111/j.1460-9568.2008.06477.x

R. Traub, D. Schmitz, J. Jefferys, and A. Draguhn, High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions, Neuroscience, vol.92, issue.2, pp.407-433, 1999.
DOI : 10.1016/S0306-4522(98)00755-6

R. Traub, M. Whittington, E. Buhl, F. Lebeau, A. Bibbig et al., A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures, Epilepsia, vol.42, pp.153-70, 2001.

R. Traub, R. Wong, R. Miles, and H. Michelson, A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances, J Neurophysiol, vol.66, pp.635-50, 1991.

D. Treiman, Electroclinical Features of Status Epilepticus, Journal of Clinical Neurophysiology, vol.12, issue.4, pp.343-62, 1995.
DOI : 10.1097/00004691-199512040-00005

E. Urrestarazu, R. Chander, F. Dubeau, and J. Gotman, Interictal high-frequency oscillations (100 500 Hz) in the intracerebral EEG of epileptic patients, Brain, vol.130, issue.9, pp.2354-66, 2007.
DOI : 10.1093/brain/awm149

W. Van-drongelen, H. Lee, M. Hereld, Z. Chen, F. Elsen et al., Emergent Epileptiform Activity in Neural Networks With Weak Excitatory Synapses, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.13, issue.2, pp.236-277, 2005.
DOI : 10.1109/TNSRE.2005.847387

F. Ventriglia, Kinetic approach to neural systems: I, Bulletin of Mathematical Biology, vol.12, issue.5-6, pp.535-579, 1974.
DOI : 10.1007/BF02463265

F. Ventriglia, Propagation of excitation in a model of neural system, Biological Cybernetics, vol.36, issue.2, pp.75-84, 1978.
DOI : 10.1007/BF00337320

N. Vladimirov, R. Traub, and Y. Tu, Wave Speed in Excitable Random Networks with Spatially Constrained Connections, PLoS ONE, vol.14, issue.6, p.20536, 2011.
DOI : 10.1371/journal.pone.0020536.g008

N. Voges, S. Blanchard, F. Wendling, O. David, H. Benali et al., Modeling of the Neurovascular Coupling in Epileptic Discharges, Brain Topography, vol.2, issue.5, pp.136-56, 2012.
DOI : 10.1007/s10548-011-0190-1

URL : https://hal.archives-ouvertes.fr/inserm-00613123

G. Wallenstein, The role of thalamic IGABAB in generating spike-wave discharges during petit mal seizures, Neuroreport, vol.5, pp.1409-1421, 1994.

X. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, J Neurosci, vol.16, pp.6402-6415, 1996.

F. Wendling, Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation, Expert Review of Neurotherapeutics, vol.8, issue.6, pp.889-96, 2008.
DOI : 10.1586/14737175.8.6.889

URL : https://hal.archives-ouvertes.fr/inserm-00285570

F. Wendling, F. Bartolomei, J. Bellanger, J. Bourien, and P. Chauvel, Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset, Brain, vol.126, issue.6, pp.1449-59, 2003.
DOI : 10.1093/brain/awg144

URL : https://hal.archives-ouvertes.fr/inserm-00149231

F. Wendling, F. Bartolomei, J. Bellanger, and P. Chauvel, Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition, European Journal of Neuroscience, vol.38, issue.9, pp.1499-508, 2002.
DOI : 10.1007/s004220050191

F. Wendling, F. Bartolomei, F. Mina, C. Huneau, and P. Benquet, Interictal spikes, fast ripples and seizures in partial epilepsies - combining multi-level computational models with experimental data, European Journal of Neuroscience, vol.5, issue.2, pp.2164-77, 2012.
DOI : 10.1111/j.1460-9568.2012.08039.x

URL : https://hal.archives-ouvertes.fr/inserm-00728701

F. Wendling, J. Bellanger, F. Bartolomei, and P. Chauvel, Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals, Biological Cybernetics, vol.83, issue.4, pp.367-78, 2000.
DOI : 10.1007/s004220000160

F. Wendling, P. Chauvel, A. Biraben, and F. Bartolomei, From Intracerebral EEG Signals to Brain Connectivity: Identification of Epileptogenic Networks in Partial Epilepsy, Frontiers in Systems Neuroscience, vol.4, p.154, 2010.
DOI : 10.3389/fnsys.2010.00154

F. Wendling, A. Hernandez, J. Bellanger, P. Chauvel, and F. Bartolomei, Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG, J Clin Neurophysiol, vol.22, pp.343-56, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00147326

H. Wilson and J. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.
DOI : 10.1016/S0006-3495(72)86068-5

B. Yan and P. Li, An Integrative View of Mechanisms Underlying Generalized Spike-and-Wave Epileptic Seizures and Its Implication on Optimal Therapeutic Treatments, PLoS ONE, vol.92, issue.40, p.22440, 2011.
DOI : 10.1371/journal.pone.0022440.g018

L. Zetterberg, L. Kristiansson, and K. Mossberg, Performance of a model for a local neuron population, Biological Cybernetics, vol.1, issue.1, pp.15-26, 1978.
DOI : 10.1007/BF00337367