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Abstract

Within food webs, species can be partitioned into groups according to various criteria. Two 

notions have received particular attention: trophic groups, which have been used for decades in

the ecological literature, and more recently, modules. The relationship between these two group

concepts remains unknown in empirical food webs. While recent developments in network 

theory have led to efficient methods for detecting modules in food webs, the determination of 

trophic groups (groups of species that are functionally similar) is largely based on subjective 

expert knowledge. We develop a novel algorithm for trophic group detection. We apply this 

method to empirical food webs, and show that aggregation into trophic groups allows for the 

simplification of food webs while preserving their information content. Furthermore, we reveal

a 2-level hierarchical structure where modules partition food webs into large bottom-top 

trophic pathways whereas trophic groups further partition these pathways into groups of 

species with similar trophic connections. This provides new perspectives for the study of 

dynamical and functional consequences of food-web structure, bridging topological and 

dynamical analysis. Trophic groups have a clear ecological meaning, and are found to provide 

a trade-off between network complexity and information loss.
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INTRODUCTION

In nature, species in communities are connected by their predation links, and these 

complex interactions can be represented by a network. The topology of these food webs is non-

random and can have a considerable influence on their functionality [1,2], including their 

ability to persist. As for many complex networks [3], the notion of a group (a collection of 

nodes with specific characteristics) is a major topological feature of food webs [4–6], with 

important functional implications [7,8]. However this notion of group covers a large set of 

definitions (trophic groups, modules, regular equivalence groups, structural role groups, ... ) 

and methods (modularity maximisation, Markov chain clustering, statistical block modelling, 

spectral approaches, ...), giving different insights on network structure (see [9,10] for reviews 

on these notions). In food-web ecology, groups have been identified mainly according to two 

distinct definitions: modules and trophic groups (Fig. 1 A-B), but we still do not know how 

these two notions are related.

The notion of modularity (or community structure) refers to groups of nodes interacting 

more frequently between themselves than with other nodes. Modularity detection is 

challenging in view of its relation with network functionality [11]. For example, a modular 

structure can buffer the propagation of perturbations, determining the stability or resilience of 

ecological networks [8]. Mechanisms that give rise to modularity in food webs are not totally 

understood. Modules have been related to a variety of attributes, from niche organisation of 

species and their diet [12] to phylogeny [13] or spatial segregation between species [14]. For 

example, in the food web of Chesapeake Bay, the split found between two large modules 

corresponds closely to the division between pelagic and benthic species [15].
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The study of food-web modularity is only recent, and historically, food webs have been 

mainly described in terms of trophic groups, in relation with the notion of trophic relationship 

introduced by Elton [16]. Trophic groups are constituted of species that share similar sets of 

preys and predators. Aggregation into trophic groups has been used to simplify the 

representation of food webs, circumventing methodological difficulties induced by the 

complexity of trophic relationships in empirical data [4,17], and allowing the comparison of 

datasets and models of similar resolution [18]. In fact, food webs were for a long time 

described at the trophic group level rather than at the species level [19,20]. The simplification 

of food webs into trophic groups is also central to the study of ecosystem dynamical and 

functional properties [21].

Several methods have been developed in order to detect trophic groups in food webs, 

based on two different notions. First, a set of methods inherited from the notion of structural 

equivalence [22]. Two nodes in a graph are said structurally equivalent if they relate to the 

same group of nodes. This assumption was then relaxed in order to allow nodes with similar 

but not identical relations to be said structurally equivalent. A classical method is to measure 

interaction similarity between nodes and then use a hierarchical clustering method (a stepwise 

classification process) to define structurally equivalent groups. In ecology, the Jaccard index 

has been used to define the amount of trophic overlap between taxa [23,24]. The main limit of 

the use of hierarchical clustering methods is that the number of groups does not appear as an 

emergent property, a threshold value for trophic similarity delimiting the groups or for the 

number of groups itself has to be preset. 

A second way for detecting trophic groups in food webs is based on the notion of regular 

equivalence, inherited from the concept of role in social sciences [25]. A group of regularly 
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equivalent nodes contains species that are connected to the same set of groups containing 

regularly equivalent nodes. Regular equivalence was introduced not to detect groups of nodes 

with similar interaction patterns but to aggregate entities with the same role. Regular 

equivalence is classically illustrated with the example of interactions in a hospital: two nurses 

do not necessarily interact with the same persons (they can have different patients, or interact 

with different doctors) but they interact with similar types of persons (patients, doctors...). 

Thus, nurses have the same role in the hospital The method of Luczkovich et al. [26] uses the 

notion of regular equivalence in ecology to group species, but the number of groups used for 

model selection has to be predefined and it potentially creates groups of species that do not 

share any trophic interactions. Block modelling approaches introduce an objective criterion for 

model selection. In their seminal paper, Allesina and Pascual [5] use AIC to select among 

models. In subsequent articles, Bayes Factors [14,27] or Normalized Maximum Likelihoods

[28] were used. The main advantage of block modelling is the use of objective criteria for 

model selection, implying that the number of groups is not predefined. It however shares the 

same limit as all methods using the notion of regular equivalence by potentially aggregating 

nodes without any common connection (Fig 1C). 

We propose here a new method of trophic group detection based on structural equivalence 

in order to avoid the limits of regular equivalence (lumping in the same group species without 

any common prey or predator), but with the ability to determine the number of groups as an 

emergent property of the system. 

We then use the different notions of groups used in ecology to understand whether food 

webs are better described when grouped according to trophic groups or to modules, and 

whether modules and trophic groups give opposite, similar, or complementary descriptions of 
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food-web topology. While modularity is gaining increasing interest in food-web studies

[6,12,29], its relationship with trophic group arrangements is unknown as both network 

patterns have been studied independently. Detecting how different network decompositions are 

combined in food webs is important for understanding their structure and can reveal new 

network properties. It is also critical to assess the relevant and redundant features of network 

structure and to move beyond a disconnected view of food-web patterns. It has been shown 

that species aggregation into trophic groups did not affect the perception of food-web response 

to top-predator manipulation in an experiment [17]. Such result suggests that food webs might 

be mostly structured in trophic groups. 

We therefore address here two different questions. First, we propose an efficient method to

detect trophic groups in food webs. Second, using 9 aquatic food webs of different resolutions, 

we compare these trophic groups to groups obtained by modularity detection [15] and groups 

obtained by the model of Allesina and Pascual [5], thereafter referred as the AP model. The AP 

model is a block modelling approach that achieves the best compromise between the number of

groups (network complexity) and information loss, using AIC for model selection. Depending 

on the structure of the considered network, the AP model will detect modules (i.e. groups of 

nodes interacting more frequently between themselves) or groups of regular equivalent species.

The point is that classical methods for role detection create groups of regularly equivalent 

species (species in different groups are connected exactly to the same set of groups), whereas 

the AP method creates groups with group-specific connections to other groups. We show that 

trophic groups give a reliable picture of food webs in regard to information theory while 

preserving ecological significance, as we obtain close correspondences between the trophic 

group model and the AP model. This close matching does not hold when the methods are 
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applied to two social networks, the Zachary’s karate club [30] and the social prison inmate

[31]. By comparing the trophic position of species in module and trophic group arrangements, 

we reveal a previously undetected link between trophic groups and modules: modules 

decompose the food web into disjoint vertical pathways of energy flow, and, within modules, 

trophic groups are composed of species of similar trophic levels. 
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MATERIALS AND METHODS

A model for the detection of trophic groups

A trophic group (TG) is usually defined as a group of species that interact with similar preys 

and predators. We mathematically translate this definition using the notion of trophic similarity

[23] and the conceptual framework of modularity detection [32]. The notion of trophic 

similarity is related to the notion of structural equivalence. It allows to avoid the drawback of 

regular equivalence where species without any common interactions can be grouped in the 

same trophic group. Using comparison to a random model, modularity detection allows to 

obtain the number of groups as an emergent property, which is not possible when hierarchical 

classification methods are used to detect groups of structural equivalence.

The modularity of a given partition E  (a particular arrangement of the species in non-

intersecting groups) in a network is given by the difference between the within-groups link 

density and its random expectation [33]:
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where E  is the number of elements in the partition (the number of modules), sl  is the 

number of links between nodes in the s  module, L  is the total number of links of the food 

web, and sd  is the sum of degrees of species belonging to module s . The parameter Lls /  is 

the fraction of links inside module s  (within-group link density), and  22/ Lds  is an 

approximation of this expected quantity by chance alone.
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For trophic group detection, we keep the comparison with a random null model, but 

instead of using the proportion of within-group links, our index is based on trophic similarity. 

The trophic similarity of two species is their number of common preys and predators divided 

by their total number of preys and predators. We transpose this definition using an analogy 

with the modularity index, by comparing the observed trophic similarity between all pairs of 

species in the same group to its expected value in a random graph. For a given partition E , our

index is defined as 

(2)

where g  is the number of nodes in group g , E  is the number of groups in the partition

E . ),( jiT  (and its expected value in a random graph ) is the ratio between the 

number of preys and predators interacting with species i  and j , and the number of preys and 

predators interacting with species i  or species j :

(3)

.

Here iP  and ip  represent respectively the set of predators and prey of species i,  is 

the cardinality of the intersection of iP  and jP  (i.e., the number of prey and predators 

common to species i  and j ). The value of ),( jiT  is directly obtained from the in- and out-
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degrees of species i  and j  in the food web. The computation of  is described in 

the Supplementary Information S1.

Group detection is performed by maximizing the trophic group index G(E) using a 

simulated annealing algorithm for each of the considered networks (Table 3). The N_W 

computer program was used to perform the computations [34].

Networks studied

Analyses were made on a dataset of 9 food webs and 2 social networks. Food webs were 

chosen for their low level of aggregation (i.e. most trophic interactions are described at species 

and genus level and not at the level of large trophic groups). The 9 food webs are: Benguela

[35], Bridge Brooke Lake [36], Carribean Reef [37], Chesapeake Bay [38], Créteil Lake 

(Supplementary Information S3), Tuesday Lake [39], Carpinteria [40], DempsterSu [41], Ythan

estuary [42]. The two social networks, the Prison inmate [31] and Zachary’s karate club [30] 

graphs are classical examples in social science studies. They were used to assess whether the 

specific results we found for food webs were also relevant for other kinds of networks. A 

specific focus was put on the Lake Créteil food-web to investigate the characteristics of the 

trophic groups found by our method. The Lake Créteil food-web was created on the basis of a 

summer mesocosm study [4] conducted by G. Lacroix and colleagues; we thus have a good 

knowledge of the ecology of this food web. 

Comparison between group arrangements of the different detection methods
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In order to assess whether food webs are better described when grouped according to trophic 

groups or to modules, we compare the trophic groups obtained with our method and the 

modules to the groups obtained by the AP model. For both modularity and the AP model, we 

used a simulated annealing algorithm to detect groups in the considered food webs. To assess 

the correspondences between the different group detection methods, we used a mutual 

information criteria [33]. The normalised mutual information  between two partitions is 

defined as the ratio between the mutual information of the partitions and the mean of their 

respective entropy [43]: 
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Here,  is the number of species, E  and F  are the number of groups in partitions E  and

F  respectively, E
iN  and F

jN  are the number of nodes in group i  of partition E  and group

j  of partition F . Finally, EF
ijn  is the number of nodes that are both in group i  of partition

E  and in group j  of partition F . The mutual information between partitions E  and F  is 

equal to 1 if both partitions are identical, and 0 if there is no matching.

Relations between trophic groups and modules
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We investigated the links between trophic groups and modules in three ways: first by 

comparing the distribution of species trophic level between these two types of groups, second 

by measuring whether trophic groups were embedded in modules, and third by characterizing 

the contribution to modularity of species belonging to trophic groups that were split across 

different modules.

1 - Distribution of species’ trophic level in trophic groups and modules

The trophic level of a species is defined as 1 plus the mean trophic level of its prey, with the 

trophic level of basal species set to 0. For all food webs, we calculated the variance in species 

trophic level either within modules or within trophic groups. To test whether variance of 

species trophic levels within modules differed from random expectation we used a null model 

approach. This null model distributes species randomly in different modules, whilst keeping 

the number of modules and their respective sizes as in the original network (100,000 

replications, p-value is the probability to obtain a higher variance of trophic levels within the 

food web modules than expected from the null model). To test whether variance of species 

trophic levels within trophic groups differed from random expectation, we used the same null 

model as described above, but with a random attribution of species to trophic groups instead of 

modules (100,000 replications, in this case the p-value is the probability to obtain a lower 

variance of trophic levels within the trophic groups than expected from the null model). 

2- Module diversity of trophic groups

To assess whether species affiliated to the same trophic group also belong to the same module, 

we measured an index of module diversity for trophic groups:
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where sg  is the number of species of group g  that belong to module s  (i.e., the cardinality 

of the intersection of g  and s ), and g  is the number of species in g  (the underlying 

partition is implicit in this notation). Dg is 0 if all species of a trophic group belong to the same 

module and is 1 when all species in the group belong to different modules. These values 

are compared to a null model where the partition into trophic groups is identical to that 

obtained with our model, but where species are randomly distributed among modules whilst 

keeping the same number of modules and their respective sizes as in the original food web. 

Comparisons are made with 100,000 values of diversity obtained with the null model. 

3 - Participation coefficient of species to modules 

We observed that each trophic group was in general embedded into a single module. We tested 

whether species of trophic groups that were split across different modules occupied a particular

position within the modular structure. In order to determine the species contribution to network

modularity, we computed the participation coefficient [44] . Based on the Simpson diversity 

index, the participation coefficient measures the diversity of connections of species i  to the 

different modules of the network:

(6)
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Here, m  is the number of modules, isl  is the number of links between species i and the 

species of module s , and id  is the degree (number of preys and predators) of species i . 

iP  equals 0 when all links of i  are in its own module, and is  when links are 

uniformly distributed among modules. Student’s t- tests are then used to compare indices found

for species in trophic groups belonging to different modules and species in trophic groups 

belonging to only one module.

RESULTS

The different aggregation methods are expected to return different groups

This is shown using a simple network, a directed tree in which all species except the basal 

species have the same number of prey (Fig. 1). We can notice on Fig. 1 a major difference 

between AP groups and trophic groups: in the case of AP groups, all basal species are lumped 

together while it is not the case for trophic groups. With AP groups, species can belong to the 

same group even if they do not share any common predator (Table 1). In this particular 

topology, AP groups are equivalent to groups found using a regular equivalence method [26]. 

Example of functional divisions in the food web of Lake Créteil

In the food web of Lake Créteil, the trophic group (TG) method identifies 13 trophic groups. 

They tend to discriminate species according to trophic level (either phytoplankton, 

zooplankton, carnivorous or omnivorous) as well as body size, taxonomy and habitat (Table 2).
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Note that it is difficult to assess the relevance of the group constituted of the trophospecies 

‘Bacteria’, ‘DOM and POM’ (dissolved and particulate organic matter) and ‘Biofilm’, as the 

ecological role of these constituents can be different. This part of the network, which groups 

together detrital and littoral components of the food web, is not well known. Considering more 

precisely bacterial diversity and biofilm composition could lead to a different result.

Using module detection [33], we observe that most species within a trophic group belong 

to the same module (i.e., trophic groups are a sub-partition of modules, Fig. 2, Table 3). Thus, 

within a module, trophic groups interact mostly between themselves. Moreover, we can 

appreciate in Fig. 2B that modules assemble trophic groups along energetic pathways in the 

food web (vertical component). The first module (left part of Fig. 2B) brings together food 

chains involving small herbivorous zooplankton and Calanoids. The second module (middle 

part of Fig. 2B) brings together food chains involving large filter feeders (Cladocera). These 

two modules are mainly pelagic, and separate energetic pathways according to body size and 

behaviour of herbivores (small vs large graspers and filter feeders). The third module (right 

part of Fig. 2B) brings together trophic pathways dominated by organisms that are mainly 

omnivorous and are able to feed on littoral and benthic organisms. Hence, in the food web of 

Lake Créteil, modules appear as assemblages of trophic chains that link trophic groups with 

common major characteristics (size, behaviour, edibility, spatial niche).

Comparison between group arrangements of the different detection methods

In the 9 empirical food webs considered, TG always leads to partitions with a higher number of

groups than modularity (Table 3). Indeed, modularity leads to partitions with a very low 

number of modules, suggesting that the number of independent subnets is limited (Table 3). 
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The number of groups obtained with the AP method is always higher than with modularity and 

lower than with TG (with one exception for the Benguela food web, Table 3). 

Correspondence indices between groups obtained by TG and AP are significantly higher than 

correspondence indices between modularity and AP (paired Student’s t-test, p<0.001). The high

degree of overlap between TG and AP (Table 3, correspondence close to 1) suggests that an 

important part of the information carried by food-web structure can be attributed to trophic 

groups. Strikingly, and despite totally different goals, the AP method (looking for the most 

informative partitions) and the TG method lead to similar results (Table 3) even if the AP 

method still groups species without any common interaction whereas the TG method does not 

(Table 1). This close match between the two methods seems to be specific to food webs. 

Indeed, when comparisons are made on the two social networks, the Zachary’s karate club and 

the prison inmate, correspondence indices are much lower with values of 0.531 and 0.478 

respectively. 

Relations between trophic groups and modules

Distribution of species’ trophic level in trophic groups and modules

Food-web representations combining trophic levels of species and their affiliation to modules 

and trophic groups (Figs 2-3, Supplementary Information S2) suggest that, whereas species in 

the same trophic group tend to occupy the same trophic level, species in the same module often

belong to different trophic levels. We computed the variance of species trophic levels within 

either modules or trophic groups. In all the food webs studied, the average variance of species 

trophic levels in modules was always higher than in trophic groups (p<10-4 for all networks). 

Furthermore, the variance of trophic levels of species belonging to the same module was higher
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to what is expected by chance alone (p<10-4 for all food webs). The opposite pattern was found 

when considering the variance of trophic levels of species sharing the same trophic groups 

(p<10-4 for all networks). By definition, species in a module are highly connected. As most 

trophic relations occur between species of different trophic levels, this could explain why 

species in the same module tend to belong to different trophic levels. Therefore, modules 

reflect particular energetic pathways, representing parallel trophic chains.

Modules diversiy of trophic groups and participation coefficient of species to modules

We observe that species in a trophic group tend to belong to a same module (Figs 2-3, 

Supplementary Information S2). Thus, trophic groups tend to be embedded in modules. For all 

food webs, the average module diversity gD  of trophic groups was close to 0 and belonged to 

the 5% lowest values generated from the null model. This highlights a hierarchical two-level 

structure of food webs, where a partition into modules is further partitioned into trophic 

groups.

Although striking, this arrangement of trophic groups into modules is not perfect. Species of a 

given trophic group are in some instances dispatched in different modules. The mean 

participation coefficients to modules of species in trophic groups dispatched in different 

modules are in most cases significantly lower than species in groups that belong to a single 

module. Indeed, in most food webs, the species of trophic groups that are split in several 

modules are those that contribute the least to the modular structure of the food webs (Table 3). 
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DISCUSSION

Thanks to the development of a new algorithm to identify trophic groups in food webs, our 

study reveals two important features of the structure of empirical food webs. First, we show 

that lumping species according to trophic groups allows the simplification of food webs while 

preserving the information carried by the initial network structure. Second, by considering 

together trophic groups and modules, we put forward a previously unnoticed pattern of 

organisation of food webs: modules are composed of species from different trophic levels, and 

are further partitioned into trophic groups; they represent energetic pathways linking trophic 

groups from the bottom to the top of the food web. 

An algorithm to identify trophic groups

Whereas the concept of trophic group is widely used in the ecological literature since 

Elton [16] and Lindeman [45], the characterization of trophic groups is usually based on 

(subjective) expert knowledge. In the existing methods of food-web aggregation into trophic 

groups [23,24], the number of trophic groups is defined by the user and is not an emergent 

property of the network. Using the methodology developed for modularity indices, our method 

of trophic group detection circumvents previous limitations [5,46] where the ecological 

meaning of the partitions returned does not come from the method itself. By contrast, our 

method is based on the ecological notion of trophic similarity, and by extension on the notion 

of nodes with similar patterns of connections.

Trophic groups: main underlying structure of food webs?

The trophic group method and the AP method detect groups according to totally different 

criteria. The AP method aims at finding partitions corresponding to the best trade off between 

18



information loss and reduction of complexity using the AIC, without any notion of ecology. 

The trophic group method finds clusters of species with similar sets of prey and predators. The 

match found between the partitions returned by the two methods shows that trophic groups 

support a large part of the information carried by the underlying structure of the food web, as 

given by the AP method. The relevance of species aggregation into trophic groups has already 

been suggested to reflect functional properties [4,17,21,47] or to identify structural patterns

[14]. We highlight here that food-web decomposition into trophic groups aggregates species 

with minimal loss of information while keeping a clear ecological meaning, and with the 

potential to reflect the functioning of the network. The relevance of such aggregation criteria 

(groups of nodes interacting with similar groups of nodes) seems very general for food webs. 

On the other hand, the aggregation process did not prevent information loss when it was 

applied to the two social networks. An intuitive explanation might be that species with similar 

prey and predators do not predate on each other while in social networks, actors with similar 

relationships tend to know each other and are often not precluded from interacting.

Trophic groups and modules: complementary views of food-web structure

Though we show that the notion of trophic group prevails in food webs, our study also 

confirms that modules are an important feature. Previous studies have already shown that food 

webs are more modular than random networks [12]. This suggests patterns of organization 

similar to those observed in other biological networks (gene-protein, plant-pollinator, 

neuronal), and in some small-world networks [48]. While modular patterns still need to be 

explained in food webs, we observe that modules represent parallel pathways of energy from 

producers to consumers, delimiting distinct food chains (Figs. 2-3, Supplementary Information 

S2). This is in accordance with previous results [12] showing that species in the same module 
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(according to the notion of directed modularity) are globally located on trophic chains coming 

from similar basal species. We reveal that the variance of species trophic levels within modules

is higher than expected by chance. The opposite result is found when groups are determined 

only accordingly to prey or predator similarity [12].

Despite having intuitively nearly opposite definitions (modules represent groups of species

interacting mostly with one another whereas trophic groups correspond to groups of species 

interacting with other well-defined groups of species), modules and trophic groups are linked 

and provide complementary pictures of food-web structure. It appears that food webs present a 

two-level hierarchical structure, with each trophic group belonging globally to a single module.

The existence of network hierarchical structure has already been described for social networks

[49]. Some trophic groups are however sometimes split across several modules. Species of 

such trophic groups share the same neighbourhood, as they are in the same trophic group, but 

belong to different communities (modules). These species are connected more diversely to 

modules than other species, therefore, they potentially bridge different modules. As the 

modular structure limits the propagation of perturbations [8], species bridging different 

modules could play a key role by interconnecting distinct subnets of energetic pathways, and 

allowing different ecological processes (perturbations, trophic cascades, ...) to shift from a 

module to another. 

Implications for future research

The functional implications of modularity are currently widely explored [8,50], but little is

known about the functional implications of the trophic group structure. Indeed, while modules 

are characterized by a high density of within links, the implications of the architecture defined 
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by trophic groups (few links within trophic groups, and a large number of links between some 

trophic groups) have not been addressed. Trophic groups are often used as a simplification, 

making the system more readable, sometimes as a consequence of external constraints (spatial 

segregation [14]), but the functional implications of trophic group patterns are worth exploring.

For example, we still do not know how the dynamics of trophic groups is related to the 

individual dynamics of their component species.

Species richness within trophic groups could be considered as functional redundancy. The 

deletion of a whole group might lead to the loss of an entire set of specific connections, which 

could potentially have dramatic effects on system properties. As many topological studies [51–

54] focus on the detection of key species in networks, the determination of the aggregated 

network of trophic groups addresses the question in a new way by considering potential key 

species as elements of trophic groups characterized by a low diversity.

As food-web descriptions are becoming more and more precise — recent published food 

webs contain several thousands of links — the reduction of complexity will become a critical 

issue. Our approach has the advantage of delineating trophic groups in such a way that 

complexity is reduced while keeping a clear ecological meaning. However, we need to know 

the entire network to simplify it. The next step will be to consider the correspondences between

the biological traits of species within and between trophic groups, in order to develop methods 

able to reconstruct trophic groups and their links using species attributes. Addressing this 

question may improve our comprehension of the parameters involved in the trophic niche 

space (set of ecological parameters determining the trophic relationships of species). Several 

parameters, such as size [55], phylogenetic relationships [13,27], or behaviour [56] have been 
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already considered. Even if they are limited to trophic relationships, these studies might 

provide a useful tool for the generic classification of species.

Improving our comprehension of network simplification is essential to address the 

structure-function relationship in food webs. As modelling approaches cannot encompass the 

entire complexity of food webs, food-web simplification via trophic group detection provides a

trade-off between consistency and mathematical tractability, relating structural properties and 

functional issues. 
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Table 1: The number of pairs of species belonging to the same groups but without any common
interactions is nonzero for the AP method and almost zero for the trophic group method. 

Networks AP Trophic groups

Creteil 0 0

DempsterSU 73 0

Tuesday Lake 11 0

Cheasapeake Bay 62 0

Ythan Estuary 62 0

Bridge brook lake 7 0

Caribean reef 27 1

Carpinteria 39 1

Tuesday lake 11 0
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Table 2. Groups obtained by our trophic group detection method (left) in relation to group 
characteristics (right) for the Lake Créteil food web These groups are represented by the 
corresponding colours in Fig. 2.

29

Trophic groups Group characteristics
Abramis brama, Rutilus rutilus,

Acanthocyclops robustus
Omnivorous fish and large Cyclopoids

(blue-green)

Asplanchna girodi, Asplanchna priodonta,
Thermocyclops crassus, Thermocyclops 
oithonoides

Carnivorous Rotifers and small
Cyclopoids (white)

Eudiaptomus gracilis, Eutytemora velox Omnivorous Calanoids (green)

Cephallodella sp., Chydorus sphaericus,
Lecane bulla, Lecane luna, Lecane

stichaea, Lepadella sp., Testidunella
patina,  Chironomidae

Benthic or littoral species and
detritivorous or bactivorous organisms

(brown)

Hexarthra mira, Filinia longiseta
Rotifers consuming small algal cells

and bacteria (pink)

Bdelloid species, Bosmina coregoni,
Bosmina longirostris, Brachionus

angularis, Brachionus calyciflorus,
Brachionus quadridentatus, Keratella

cochlearis, Keratella quadrata, nauplii of
calanoïda, nauplii of cyclopidae,

Polyarthra dolichoptera-vulgaris,
Polyarthra major, Pompholyx sulcata,

Trichocerca sp.

Small herbivorous zooplankton (dark
green)

Ceriodaphnia dubia, Ceriodaphnia
pulchella, Daphnia cucullata, Daphnia

galeata, Daphnia galeata x D. cucullata,
Diaphanosoma brachyurum, Synchaeta

pectinata

Large herbivorous Cladocera (purple)

DOM and POM, Bacteria, Biofilm
Components of the detrital and littoral

pathway (orange)

Ceratium hirundinella, Nitzschia sp.,
Pediastrum boryanum, Synedra ulna

Large or protected, poorly edible, algae
(light purple)

Dictyosphaerium pulchellum, Navicula
sp., Pediastrum duplex, Schroederia

indica, Staurastrum sp., Trachelomonas
sp.

Algae mainly consumed by graspers
within zooplankton (light blue)

Coelastrum spp, Colacium sp.,
Cosmarium sp., Cryptomonas sp.,

Desmodesmus quadricauda, Oocystis
lacustris, Scenedesmus acuminatus

Edible algae consumed by herbivorous
and omnivorous zooplankton (dark

blue)

Chroomonas sp., Crucigenia spp,
Cyclotella ocellata, Monoraphidium

contortum, Tetraedron minimum 

Edible algae consumed by herbivorous
zooplankton (yellow)

Quadricoccus ellipticus, small
undetermined unicells 

Small phytoplanktonic species, highly
Edible algae for filter feeders (red)

 



Table 3. Number of groups obtained using trophic groups (TG), modularity (M), and the Allesina 

& Pascual (AP) detection methods, with the degree of overlap between the different partitions. P sets 

the p-value of the difference of participation coefficients between species in trophic groups belonging to

different modules and species in trophic groups belonging to only one module. D is the p-value of the 

difference in diversity of modules for trophic groups compared with a null model. The star symbol 

corresponds to food webs for which all trophic groups are in a single module. Hence, statistical 

analyses on P were not relevant in this case. 

species
(links)

TG AP M
TG-AP
overlap

Module
-AP

overlap
P D

Benguala [35]
29 

(203)
7 7 3 0.841 0.397 0.0459 <10-4

Bridge Brooke
Lake [36]

75 
(553)

12 9 3 0.92 0.631 * <10-4

Carribean Reef
[37]

249 
(3313)

46 28 3 0.775 0.365 <10-4 <10-4

Chesapeake Bay
[38]

33 
(72)

13 7 3 0.745 0.428 0.4793 <10-4

Créteil Lake SI3
67 

(718)
13 12 3 0.922 0.4738 0.0194 <10-4

Tuesday Lake [57]
73

 (410)
17 11 2 0.834 0.449 * <10-4

Carpinteria [40]
128 

(2290)
37 28 3 0.872 0.379 0.289 <10-4

DempsterSu [41]
107 
(966)

25 12 3 0.7129 0.410 <10-4 <10-4

Ythan estuary [42]
92

 (409)
26 13 3 0.755 0.317 <10-4 <10-4
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Figure 1. Representation of different group detection methods for a hypothetical food web:

A) modularity (3 modules), B) trophic groups method (5 trophic groups), and C) AP method (3

AP groups). Nodes of the same colour and with the same numbers belong to the same group.

This hypothetical food web has the topology of a N -levels tree where each non basal species

has exactly d  prey. Different partitions of this example of food web ( 3N , 3d , 13S

species) are shown: 3 modules, 5 trophic groups, and 3 AP groups. In the general case of a

regular N -levels directed tree with in-degree d , the number of species is 11  NddS 

.  The  number  of  modules,  trophic  groups,  and  AP  groups  are  respectively  d ,

211  Ndd  , and N . These numbers differ in general, with more trophic groups than

modules or AP groups. We can observe here that AP groups correspond in this case to regular

groups, based on the regular equivalence definition.

Figure 2. Representation of the Lake Créteil food web partitioned with the trophic group

method (A,B), and module detection (B). In (A), trophic groups are delimited by coloured

discs whose sizes are proportional to the number of species in each trophic group, and species

are represented by small grey circles. In (B) modules are delimited by grey rectangles, and

species are represented by small circles whose colour corresponds to their trophic group in (A).

The vertical dimension corresponds to the species’ trophic levels (B) and the average trophic

level of trophic groups (A). The compositions and characteristics of the trophic groups for the

Lake Créteil food web are described in Table 2.

Figure 3. Representation of the Tuesday Lake (A,B), DempsterSu (C,D) and Ythan Estuary

(E,F)  food  webs,  with  species  sorted  according  to  their  trophic  groups  (A,C,E)  and  their

modules (B,D,F). Same conventions as in Fig. 2.
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