D. Leech, P. Kavanagh, and W. Schuhmann, Enzymatic fuel cells: Recent progress, Electrochimica Acta, vol.84, pp.223-234, 2012.
DOI : 10.1016/j.electacta.2012.02.087

S. Cosnier, A. L. Goff, and M. Holzinger, Towards glucose biofuel cells implanted in human body for powering artificial organs: Review, Electrochemistry Communications, vol.38, pp.19-23, 2014.
DOI : 10.1016/j.elecom.2013.09.021

D. Pakratov, P. Falkman, Z. Blum, and S. Shleev, A hybrid electric power device for simultaneous generation and storage of electric energy, Energy & Environmental Science, vol.8, issue.3, pp.989-993, 2014.
DOI : 10.1039/c3ee43413c

A. De-poulpiquet, D. Ranava, K. Monsalve, M. Giudici-orticoni, and E. Lojou, Biohydrogen for a new generation of H 2 /O 2 biofuel cells: a sustainable energy perspective, pp.1724-1750, 2014.

L. Xu and F. Armstrong, Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2???air mixtures, Energy & Environmental Science, vol.10, issue.7, pp.2166-2171, 2013.
DOI : 10.1038/ncomms1365

S. Krishnan and F. Armstrong, Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures, Chemical Science, vol.1, issue.4, pp.1015-1023, 2012.
DOI : 10.1039/c2sc01103d

E. Innocent and . Lojou, An innovative powerful and mediatorless H 2 /O 2 biofuel cell based on an outstanding bioanode, Electrochem. Commun, vol.23, pp.25-28, 2012.

M. C. Daniel and D. Astruc, Gold Nanoparticles:?? Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chemical Reviews, vol.104, issue.1, pp.293-346, 2004.
DOI : 10.1021/cr030698+

S. Chen and Y. Liu, Electrochemistry at nanometer-sized electrodes, Phys. Chem. Chem. Phys., vol.361, issue.2, pp.635-652, 2014.
DOI : 10.1039/C3CP53773K

U. Jensen, E. Ferapontova, and D. Sutherland, Quantifying Protein Adsorption and Function at Nanostructured Materials: Enzymatic Activity of Glucose Oxidase at GLAD Structured Electrodes, Langmuir, vol.28, issue.30, pp.11106-11114, 2012.
DOI : 10.1021/la3017672

R. Villalonga, P. Diez, P. Yanez-sedeno, and J. Pingarron, Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor, Electrochimica Acta, vol.56, issue.12, pp.4672-4677, 2011.
DOI : 10.1016/j.electacta.2011.02.108

R. Villalonga, P. Diez, M. Eguilaz, P. Martinez, and J. Pingarron, Supramolecular Immobilization of Xanthine Oxidase on Electropolymerized Matrix of Functionalized Hybrid Gold Nanoparticles/Single-Walled Carbon Nanotubes for the Preparation of Electrochemical Biosensors, ACS Applied Materials & Interfaces, vol.4, issue.8, pp.4312-4319, 2012.
DOI : 10.1021/am300983u

P. Soulimane and . Hellwig, Evidence for distinct electron transfer processes in terminal oxidases from different origin by means of protein film voltammetry, J. Am. Chem. Soc, vol.136, pp.10854-10857, 2014.

P. Jensen, Q. Chi, F. Grumsen, J. Abad, A. Horsewell et al., Gold Nanoparticle Assisted Assembly of a Heme Protein for Enhancement of Long-Range Interfacial Electron Transfer, The Journal of Physical Chemistry C, vol.111, issue.16, pp.6124-6132, 2007.
DOI : 10.1021/jp068453z

T. Meyer, J. Gross, C. Blanck, M. Schmutz, B. Ludwig et al., from the Respiratory Chain of Thermus thermophilus Immobilized on Gold Nanoparticles, The Journal of Physical Chemistry B, vol.115, issue.21, pp.7165-7170, 2011.
DOI : 10.1021/jp202656w

. Hellwig, Direct electrochemistry of cytochrome bo3 oxidase at a series of gold nanoparticlesmodified electrodes, Electrochem. Commun, vol.26, pp.105-108, 2013.

P. Jensen, Q. Chi, J. Zhang, and J. Ulstrup, Azurin???Gold Nanoparticle Hybrid Systems, The Journal of Physical Chemistry C, vol.113, issue.31, pp.13993-14000, 2009.
DOI : 10.1021/jp902611x

J. Holland, C. Lau, S. Brozik, P. Atanassov, and S. Banta, Engineering of Glucose Oxidase for Direct Electron Transfer via Site-Specific Gold Nanoparticle Conjugation, Journal of the American Chemical Society, vol.133, issue.48, pp.133-19262, 2011.
DOI : 10.1021/ja2071237

U. Jensen, E. Ferapontova, and D. Sutherland, Quantifying Protein Adsorption and Function at Nanostructured Materials: Enzymatic Activity of Glucose Oxidase at GLAD Structured Electrodes, Langmuir, vol.28, issue.30, pp.11106-11114, 2012.
DOI : 10.1021/la3017672

S. Frasca, O. Rojas, J. Salewski, B. Neumann, K. Stiba et al., Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode, Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode, pp.33-41, 2012.
DOI : 10.1016/j.bioelechem.2011.11.012

K. Murata, K. Kajiya, N. Nakamura, and H. Ohno, Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell, Energy & Environmental Science, vol.156, issue.12, pp.1280-1285, 2009.
DOI : 10.1002/adma.200900206

M. Pita, C. Gutierrez-sanchez, M. Toscano, S. Shleev, and A. De-lacey, Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode, Bioelectrochemistry, vol.94, pp.94-69, 2013.
DOI : 10.1016/j.bioelechem.2013.07.001

H. Matsumura, R. Ortiz, R. Ludwig, K. Igarashi, M. Samejima et al., Direct Electrochemistry of Phanerochaete chrysosporium Cellobiose Dehydrogenase Covalently Attached onto Gold Nanoparticle Modified Solid Gold Electrodes, Langmuir, vol.28, issue.29, pp.10925-10933, 2012.
DOI : 10.1021/la3018858

C. Guttierez-sanchez, M. Pita, C. Vaz-dominguez, S. Shleev, and A. D. Lacey, Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes, Journal of the American Chemical Society, vol.134, issue.41, pp.134-17212, 2012.
DOI : 10.1021/ja307308j

. Mazzei, Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications, Biosensors Bioelec, vol.55, pp.430-437, 2014.

D. Brondani, N. De-souza, B. Souza, A. Neves, and I. Vieira, PEI-coated gold nanoparticles decorated with laccase: A new platform for direct electrochemistry of enzymes and biosensingapplications, Biosensors and Bioelectronics, vol.42, pp.42-242, 2013.
DOI : 10.1016/j.bios.2012.10.087

V. Krikstolaityte, A. Barrantes, A. Ramanavicius, T. Arnebrant, S. Shleev et al., Bioelectrocatalytic reduction of oxygen at gold nanoparticles modified with laccase, Bioelectrochemistry, vol.95, pp.95-96, 2014.
DOI : 10.1016/j.bioelechem.2013.09.004

K. Murata, M. Suzuki, K. Kajiya, N. Nakamura, and H. Ohno, High performance bioanode based on direct electron transfer of fructose dehydrogenase at gold nanoparticle-modified electrodes, Electrochemistry Communications, vol.11, issue.3, pp.11-668, 2009.
DOI : 10.1016/j.elecom.2009.01.011

S. Gorton and . Shleev, Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticles-modified electrodes, Biosensors Bioelec, pp.31-219, 2012.

P. Lamberg, S. Shleev, R. Ludwig, T. Arnebrant, and T. Ruzgas, Performance of enzymatic fuel cell in cell culture, Biosensors and Bioelectronics, vol.55, pp.168-173, 2014.
DOI : 10.1016/j.bios.2013.12.013

X. Luo, P. Tron-infossi, M. Brugna, M. T. Giudici-orticoni, and E. Lojou, Physicochemical key parameters for direct catalytic oxidation of hydrogen by hyperthermophilic [NiFe] hydrogenase immobilized at gold and carbon nanotubes-modified electrodes, J. Biol. Inorg. Chem, pp.14-1275, 2009.

W. Giudici-orticoni and . Lubitz, Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance, J. Am. Chem. Soc, vol.132, pp.6991-7004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677474

E. Lojou, Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochimica Acta, vol.56, issue.28, p.10385, 2011.
DOI : 10.1016/j.electacta.2011.03.002

URL : https://hal.archives-ouvertes.fr/hal-00677206

A. D. Poulpiquet, A. Ciaccafava, K. Szot, B. Pillain, P. Infossi et al., Biofuel Cell, Electroanalysis, vol.284, issue.3, pp.685-695, 2013.
DOI : 10.1002/elan.201200405

URL : https://hal.archives-ouvertes.fr/hal-00961067

K. Szot, A. D. Poulpiquet, A. Ciaccafava, H. Marques, M. Jonsson-niedziolka et al., Carbon nanoparticulate films as effective scaffolds for mediatorless bioelectrocatalytic hydrogen oxidation, Electrochimica Acta, vol.111, pp.434-440, 2013.
DOI : 10.1016/j.electacta.2013.08.001

. Lojou, Carbon Nanofiber Mesoporous Films: Efficient Platforms for Bio-Hydrogen Oxidation in Biofuel Cells, Phys. Chem. Chem. Phys, vol.16, pp.1366-1378, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01493456

E. Lojou, AFM and PM-IRRAS spectroscopy of immobilized hydrogenase: role of a trans-membrane helix on enzyme orientation for efficient H 2 oxidation, Angew. Chem. Int. Ed, pp.51953-956, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00677172

S. Orticoni, E. Lecomte, and . Lojou, A friendly detergent for H 2 oxidation by Aquifex aeolicus membrane-bound hydrogenase immobilized on graphite and SAM-modified gold electrodes, Electrochim. Acta, vol.82, pp.115-125, 2012.

F. Oteri, A. Ciaccafava, A. De-poulpiquet, E. Lojou, M. Baaden et al., Fluctuations in the dipole moment of membrane-bound hydrogenase from Aquifex aeolicus account for its adaptability to charged electrodes, Phys. Chem. Chem. Phys, pp.16-11318, 2014.

S. Trasatti and O. Petrii, Real surface area measurements in electrochemistry, Pure Appl. Chem, vol.63, pp.711-734, 1991.

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.241-261, 1973.
DOI : 10.1038/physci241020a0

W. Haiss, N. Thanh, J. Aveyard, and D. , Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra, Anal. Chem, pp.79-4215, 2007.

S. Link and M. A. Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, The Journal of Physical Chemistry B, vol.103, issue.21, pp.4212-4217, 1999.
DOI : 10.1021/jp984796o

D. Lacey, Enzymatic Anodes for Hydrogen Fuel Cells based on Covalent Attachment of

L. Maximov, S. Montelius, and . Shleev, The influence of nanoparticles on enzymatic bioelectrocatalysis, RSC Adv, vol.4, pp.38164-38168, 2014.

K. Singh, T. Mcardle, P. Sullivan, and C. Blanford, Sources of activity loss in the fuel cell enzyme bilirubin oxidase, Energy & Environmental Science, vol.5, issue.8, pp.2460-2464, 2013.
DOI : 10.1039/c3ee00043e

S. Shleev, G. Shumakovich, O. Morozova, and A. Yaropolov, Stable ???Floating' Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase, Fuel Cells, vol.249, issue.4, pp.10-726, 2010.
DOI : 10.1002/fuce.200900191

URL : https://hal.archives-ouvertes.fr/hal-00552369