K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, vol.23, issue.6, pp.291-298, 2005.
DOI : 10.1016/j.tibtech.2005.04.008

D. P. Strik, H. V. Hamelers, J. F. Snel, and C. J. Buisman, Green electricity production with living plants and bacteria in a fuel cell, International Journal of Energy Research, vol.40, issue.9, pp.32-870, 2008.
DOI : 10.1002/er.1397

. Verstraete, Microbial fuel cells generating electricity from rhizodeposits of rice plants, Environ Sci Technol, vol.42, pp.3053-3058, 2008.

Y. R. Thomas, M. Picot, A. Carer, O. Berder, O. Sentieys et al., A single sedimentmicrobial fuel cell powering a wireless telecommunication system, J Power Sources, pp.241-703, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00832354

W. Aelterman, K. Verstraete, and . Rabaey, Microbial fuel cells: Methodology and technology, Environ Sci Technol, vol.40, pp.5181-5192, 2006.

D. P. Strik, M. Picot, C. J. Buisman, and F. , Barrière, pH and temperature determine performance of oxygen reducing biocathodes, Electroanal, pp.25-652, 2013.

A. Bergel, D. Féron, and A. Mollica, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm, Electrochemistry Communications, vol.7, issue.9, pp.900-904, 2005.
DOI : 10.1016/j.elecom.2005.06.006

L. Lapinsonnière, M. Picot, and F. Barrière, Enzymatic versus Microbial Bio-Catalyzed Electrodes in Bio-Electrochemical Systems, ChemSusChem, vol.108, issue.6, pp.995-1005, 2012.
DOI : 10.1002/cssc.201100835

A. Ter-heijne, D. P. Strik, H. V. Hamelers, and C. J. Buisman, Cathode Potential and Mass Transfer Determine Performance of Oxygen Reducing Biocathodes in Microbial Fuel Cells, Environmental Science & Technology, vol.44, issue.18, pp.44-7151, 2010.
DOI : 10.1021/es100950t

F. Strik, C. J. Barrière, H. V. Buisman, and . Hamelers, Identifying charge and mass transfer resistances of an oxygen reducing biocathode, Energy Environ Sci, vol.4, pp.5035-5043, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658390

P. Liang, M. Fan, X. Cao, and X. Huang, Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells, Journal of Chemical Technology & Biotechnology, vol.53, issue.5, pp.794-799, 2009.
DOI : 10.1002/jctb.2114

X. Xia, J. C. Tokash, F. Zhang, P. Liang, X. Huang et al., Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells, Environmental Science & Technology, vol.47, issue.4, pp.47-2085, 2013.
DOI : 10.1021/es3027659

B. Erable, A. Féron, and A. , Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review, ChemSusChem, vol.102, issue.6, pp.5-975, 2012.
DOI : 10.1002/cssc.201100836

URL : https://hal.archives-ouvertes.fr/hal-00786371

M. Rosenbaum, F. Aulenta, M. Villano, and L. T. Angenent, Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?, Bioresource Technology, vol.102, issue.1, pp.324-333, 2011.
DOI : 10.1016/j.biortech.2010.07.008

E. Lyautey, A. Cournet, S. Morin, S. Bouletreau, L. Etcheverry et al., Electroactivity of Phototrophic River Biofilms and Constitutive Cultivable Bacteria, Applied and Environmental Microbiology, vol.77, issue.15, pp.77-5394, 2011.
DOI : 10.1128/AEM.00500-11

URL : https://hal.archives-ouvertes.fr/hal-00655900

A. Cournet, M. Délia, A. Bergel, C. Roques, and M. Bergé, Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive, Electrochemistry Communications, vol.12, issue.4, pp.12-505, 2010.
DOI : 10.1016/j.elecom.2010.01.026

S. Parot, O. Nercessian, M. L. Delia, W. Achouak, and A. , Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost, Journal of Applied Microbiology, vol.9, issue.4, pp.1350-1359, 2009.
DOI : 10.1111/j.1365-2672.2008.04103.x

A. Cournet, M. Bergé, C. Roques, A. Bergel, and M. Délia, Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa, Electrochimica Acta, vol.55, issue.17, pp.55-4902, 2010.
DOI : 10.1016/j.electacta.2010.03.085

K. Rabaey, S. T. Read, P. Clauwaert, S. Freguia, P. L. Bond et al., Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells, The ISME Journal, vol.30, issue.5, pp.519-527, 2008.
DOI : 10.1021/es060332p

S. Carbajosa, M. Malki, R. Caillard, M. F. Lopez, F. J. Palomares et al., Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen, Biosensors and Bioelectronics, vol.26, issue.2, pp.26-877, 2010.
DOI : 10.1016/j.bios.2010.07.037

M. Picot, L. Lapinsonnière, M. Rothballer, and F. Barrière, Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output, Biosensors and Bioelectronics, vol.28, issue.1, pp.28-181, 2011.
DOI : 10.1016/j.bios.2011.07.017

URL : https://hal.archives-ouvertes.fr/hal-01151352

D. Bélanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.31, issue.551, pp.3995-4048, 2011.
DOI : 10.1021/la104125n

S. Baranton and D. Bélanger, Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations, The Journal of Physical Chemistry B, vol.109, issue.51, pp.24401-24410, 2005.
DOI : 10.1021/jp054513+

N. Boon, J. Goris, P. De-vos, W. Verstraete, and E. M. Top, Bioaugmentation of Activated Sludge by an Indigenous 3-Chloroaniline-Degrading Comamonas testosteroni Strain, I2gfp, Applied and Environmental Microbiology, vol.66, issue.7, pp.2-66, 2000.
DOI : 10.1128/AEM.66.7.2906-2913.2000

G. Muyzer, E. C. Dewaal, and A. G. Uitterlinden, Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16s ribosomal-RNA, Appl Environ Microbiol, pp.59-695, 1993.

S. Read, M. Marzorati, B. C. Guimaraes, and N. Boon, Microbial Resource Management revisited: successful parameters and new concepts, Applied Microbiology and Biotechnology, vol.21, issue.17, pp.90-861, 2011.
DOI : 10.1007/s00253-011-3223-5

S. Juretschko, G. Timmermann, M. Schmid, K. H. Schleifer, A. Pommerening-röser et al., Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations, Appl Environ Microbiol, pp.64-3042, 1998.

B. Hartmann, C. Hamelers, and . Buisman, Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell, Appl Microbiol Biotechnol, pp.94-2012

O. Strunk and W. Ludwig, ARB: A software environment for sequence data [www, 1997.

Ø. Hammer, D. A. Harper, and P. D. Ryan, PAST: Paleontological statistics software package for education and data analysis, Palaeontol Electron, vol.4, p.9, 2001.

R. Amann, N. Springer, W. Ludwig, H. D. Gortz, and K. Schleifer, Identification in situ and phylogeny of uncultured bacterial endosymbionts, Nature, vol.351, issue.6322, pp.351-161, 1991.
DOI : 10.1038/351161a0

W. Manz, R. Amann, W. Ludwig, M. Wagner, and K. Schleifer, Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions, Systematic and Applied Microbiology, vol.15, issue.4, pp.25-593, 1992.
DOI : 10.1016/S0723-2020(11)80121-9

R. I. Amann, B. Zarda, D. A. Stahl, and K. Schleifer, Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes, Appl Environ Microbiol, pp.58-3007, 1992.

D. M. Stamper, M. Walch, and R. N. Jacobs, Bacterial Population Changes in a Membrane Bioreactor for Graywater Treatment Monitored by Denaturing Gradient Gel Electrophoretic Analysis of 16S rRNA Gene Fragments, Applied and Environmental Microbiology, vol.69, issue.2, pp.69-852, 2003.
DOI : 10.1128/AEM.69.2.852-860.2003

K. Kaewpipat and C. P. Grady, Microbial population dynamics in laboratory-scale activated sludge reactors, Water Sci Technol, pp.46-65, 2002.

A. Hiraishi, J. Sugiyama, and Y. K. Shin, Brachymonas denitrificans gen, nov., sp. Nov., an aerobic chemoorganotrophic bacterium which contains rhodoquinons, and evolutionary relationships of rhodoquinone producers to bacterial species with various quinone classes, J Gen Appl Microbiol, pp.41-99, 1995.

M. Halpern, T. Shaked, and P. Schumann, Brachymonas chironomi sp. nov., isolated from a chironomid egg mass, and emended description of the genus Brachymonas, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.59, issue.12, pp.59-3025, 2009.
DOI : 10.1099/ijs.0.007211-0

J. Liu, W. Wu, C. Chen, F. Sun, and Y. Chen, Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems, Applied Microbiology and Biotechnology, vol.9, issue.9, pp.91-1659, 2011.
DOI : 10.1007/s00253-011-3354-8

Y. Bai, Q. Sun, R. Sun, D. Wen, and X. Tang, Bioaugmentation and Adsorption Treatment of Coking Wastewater Containing Pyridine and Quinoline Using Zeolite-Biological Aerated Filters, Environmental Science & Technology, vol.45, issue.5, pp.45-1940, 2011.
DOI : 10.1021/es103150v

X. Xia, Y. Sun, P. Liang, and X. Huang, Long-term effect of set potential on biocathodes in microbial fuel cells: Electrochemical and phylogenetic characterization, Bioresource Technology, vol.120, pp.26-33, 2012.
DOI : 10.1016/j.biortech.2012.06.017

B. J. Tindall, T. Family-name-solimonadaceae, and . Losey, The family name Solimonadaceae Losey et al. 2013 is illegitimate, proposals to create the names 'Sinobacter soli' comb. nov. and 'Sinobacter variicoloris' contravene the Code, the family name Xanthomonadaceae Saddler and Bradbury 2005 and the order name Xanthomonadales Saddler and Bradbury 2005 are illegitimate and notes on the application of the family names Solibacteraceae Zhou et al. 2008, Nevskiaceae Henrici and Johnson 1935 (Approved Lists 1980) and Lysobacteraceae Christensen and Cook 1978 (Approved Lists 1980) and order name Lysobacteriales Christensen and Cook 1978 (Approved Lists 1980) with respect to the classification of the corresponding type genera Solibacter Zhou et al. 2008, Nevskia Famintzin 1892 (Approved Lists 1980) and Lysobacter Christensen and Cook 1978 (Approved Lists 1980) and importance of accurately expressing the link between a taxonomic name, its authors and the corresponding description/circumscription/emendation, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.64, issue.Pt 1, pp.64-293, 2014.
DOI : 10.1099/ijs.0.057158-0

A. Roques, Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater, Bioresource Technol, vol.102, pp.304-311, 2011.

Z. J. Wang, Y. Zheng, Y. Xiao, S. Wu, Y. C. Wu et al., Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells, Bioresource Technology, vol.144, pp.144-74, 2013.
DOI : 10.1016/j.biortech.2013.06.093

G. D. Zhang, Q. L. Zhao, Y. Jiao, K. Wang, D. J. Lee et al., Biocathode microbial fuel cell for efficient electricity recovery from dairy manure, Biosensors and Bioelectronics, vol.31, issue.1, pp.31-2012
DOI : 10.1016/j.bios.2011.11.036

M. Rimboud, E. Desmond-le-quemener, B. Erable, T. Bouchez, and A. , The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community, Bioelectrochemistry, vol.102, pp.102-144, 2014.
DOI : 10.1016/j.bioelechem.2014.11.006

URL : https://hal.archives-ouvertes.fr/hal-01149734

Y. P. Chen, S. Li, Y. F. Ning, N. N. Hu, H. H. Cao et al., Start-up of Completely Autotrophic Nitrogen Removal Over Nitrite Enhanced by Hydrophilic-Modified Carbon Fiber, Applied Biochemistry and Biotechnology, vol.49, issue.4, pp.166-866, 2012.
DOI : 10.1007/s12010-011-9476-8

A. A. Kranz, M. A. De-souza, and . Cotta, Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development, PloS one, vol.8, p.75247, 2013.

J. Kofronova, P. Janecek, J. Halada, and . Weiser, Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation, FEMS Microbiol Lett, pp.342-147, 2013.

D. R. Absolom, F. V. Lamberti, Z. Policova, W. Zingg, C. J. Van-oss et al., Surface thermodynamics of bacterial adhesion, Appl Environ Microbiol, pp.46-90, 1983.

H. H. Tuson and D. B. , Bacteria-surface interactions, Soft matter, pp.4368-4380, 2013.