Y. Kozutsumi, M. Segal, K. Normington, M. Gething, and J. Sambrook, The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins, Nature, vol.332, issue.6163, pp.462-466, 1988.
DOI : 10.1038/332462a0

J. Cox and P. Walter, A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein Response, Cell, vol.87, issue.3, pp.391-404, 1996.
DOI : 10.1016/S0092-8674(00)81360-4

Y. Shi, K. Vattem, R. Sood, A. J. Liang, J. Stramm et al., Identification and Characterization of Pancreatic Eukaryotic Initiation Factor 2 ??-Subunit Kinase, PEK, Involved in Translational Control, Molecular and Cellular Biology, vol.18, issue.12, pp.7499-509, 1998.
DOI : 10.1128/MCB.18.12.7499

K. Haze, H. Yoshida, H. Yanagi, T. Yura, and K. Mori, Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress, Molecular Biology of the Cell, vol.10, issue.11, pp.3787-99, 1999.
DOI : 10.1091/mbc.10.11.3787

K. Mori, W. Ma, M. Gething, and J. Sambrook, A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus, Cell, vol.74, pp.743-56, 1993.

A. Bertolotti, Y. Zhang, L. Hendershot, H. Harding, and R. D. , Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat Cell Biol, vol.2, pp.326-358, 2000.

J. Shen, X. Chen, L. Hendershot, and R. Prywes, ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization Signals, Developmental Cell, vol.3, issue.1, pp.99-111, 2002.
DOI : 10.1016/S1534-5807(02)00203-4

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nature Reviews Molecular Cell Biology, vol.300, issue.7, pp.519-548, 2007.
DOI : 10.1038/nrm2199

J. Blais, V. Filipenko, M. Bi, H. Harding, R. D. Koumenis et al., Activating Transcription Factor 4 Is Translationally Regulated by Hypoxic Stress, Molecular and Cellular Biology, vol.24, issue.17, pp.7469-82, 2004.
DOI : 10.1128/MCB.24.17.7469-7482.2004

J. Ye, C. Koumenis, H. Zinszner, M. Kuroda, X. Wang et al., ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha, Curr Mol Med. Genes Dev. J Cell Biol, vol.912153, issue.12, pp.411-6982, 1998.

D. Vecchio, C. Feng, Y. Sokol, E. Tillman, E. Sanduja et al., Dedifferentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress, PLoS Biol. Mol Cell Biol. J Biol Chem, vol.1223279, issue.15, pp.1001945-147198, 2003.

W. Zhang, V. Hietakangas, S. Wee, S. Lim, J. Gunaratne et al., ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation, Genes Dev. Bobrovnikova-Marjon E Mol Cell Biol, vol.2732, issue.17, pp.441-92268, 2012.

J. Axten, J. Medina, Y. Feng, A. Shu, S. Romeril et al., ]pyrimidin-4-amine (GSK2606414), a Potent and Selective First-in-Class Inhibitor of Protein Kinase R (PKR)-like Endoplasmic Reticulum Kinase (PERK), Journal of Medicinal Chemistry, vol.55, issue.16, pp.7193-207, 2012.
DOI : 10.1021/jm300713s

C. Atkins, Q. Liu, E. Minthorn, S. Zhang, D. Figueroa et al., Characterization of a novel PERK kinase inhibitor with anti-tumor and anti-angiogenic activity. Cancer Res, 1920.

J. Shen and R. Prywes, Dependence of site-2 protease cleavage of ATF6 on prior site-1

J. Ye, R. Rawson, R. Komuro, X. Chen, U. Dave et al., ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress, Mol Cell. Mol Cell Biol, vol.627, issue.23, pp.1355-641027, 2000.

K. Yamamoto, T. Sato, T. Matsui, M. Sato, T. Okada et al., Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1 ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response, Dev Cell. Mol Cell Biol, vol.1320, issue.26, pp.365-766755, 2000.

R. Asada, S. Kanemoto, S. Kondo, A. Saito, and K. Imaizumi, The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology, Journal of Biochemistry, vol.149, issue.5, pp.507-525, 2011.
DOI : 10.1093/jb/mvr041

K. Hino, A. Saito, M. Kido, S. Kanemoto, R. Asada et al., Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2, J Biol Chem. Mol Cell, vol.28953, issue.28, pp.13810-20127, 2013.

Y. Adachi, K. Yamamoto, T. Okada, H. Yoshida, A. Harada et al., ATF6 Is a Transcription Factor Specializing in the Regulation of Quality Control Proteins in the Endoplasmic Reticulum, Cell Structure and Function, vol.33, issue.1, pp.75-89, 2008.
DOI : 10.1247/csf.07044

D. Schewe, J. Aguirre-ghiso, H. Zeng, F. Urano, J. Till et al., ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Proc Natl Acad Sci U S A. Nature, vol.105415, pp.10519-2492, 2002.

X. Shen, R. Ellis, K. Lee, C. Liu, K. Yang et al., Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor, Cell. Cell, vol.107107, issue.33, pp.893-903881, 2001.

K. Lee, W. Tirasophon, X. Shen, M. Michalak, R. Prywes et al., IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response, Genes & Development, vol.16, issue.4, pp.452-66, 2002.
DOI : 10.1101/gad.964702

M. Maurel, E. Chevet, J. Tavernier, and S. Gerlo, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends in Biochemical Sciences, vol.39, issue.5, pp.245-54, 2014.
DOI : 10.1016/j.tibs.2014.02.008

J. Hollien, J. Lin, H. Li, N. Stevens, P. Walter et al., Regulated Ire1-dependent decay of messenger RNAs in mammalian cells, The Journal of Cell Biology, vol.186, issue.3, pp.323-354, 2009.
DOI : 10.1128/MCB.22.11.3864-3874.2002

J. Hollien and J. Weissman, Decay of Endoplasmic Reticulum-Localized mRNAs During the Unfolded Protein Response, Science, vol.313, issue.5783, pp.104-111, 2006.
DOI : 10.1126/science.1129631

A. Lerner, J. Upton, P. Praveen, R. Ghosh, Y. Nakagawa et al., IRE1?? Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress, Cell Metabolism, vol.16, issue.2, pp.250-64, 2012.
DOI : 10.1016/j.cmet.2012.07.007

C. Hetz, F. Martinon, D. Rodriguez, L. Glimcher, L. Ryno et al., The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha Stressindependent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments, Physiol Rev. Shoulders MD Cell Rep, vol.913, issue.42, pp.1219-431279, 2011.

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nature Reviews Molecular Cell Biology, vol.22, pp.89-102, 2012.
DOI : 10.1038/nrm3270

A. Tam, A. Koong, M. Niwa, A. Higa, S. Fribourg et al., Ire1 Has Distinct Catalytic Mechanisms for XBP1/HAC1 Splicing and RIDD Peptides derived from the bifunctional kinase/RNase enzyme IRE1{alpha} modulate IRE1{alpha} activity and protect cells from endoplasmic reticulum stress, Cell Reports. Bouchecareilh M FASEB J, vol.925, issue.45, pp.1-93115, 2011.

F. Prischi, P. Nowak, M. Carrara, M. Ali, C. Rubio et al., Phosphoregulation of Ire1 RNase splicing activity Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase, Nat Commun. J Cell Biol. J Cell Biol, vol.5193193, issue.48, pp.3554-47171, 2011.

J. Jurkin, T. Henkel, A. Nielsen, M. Minnich, J. Popow et al., The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells The RtcB RNA ligase is an essential component of the metazoan unfolded protein response, EMBO Rep, p.51, 2014.

Y. Lu, F. Liang, X. Wang, A. Ray, S. Zhang et al., A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB RTCB-1 Mediates Neuroprotection via XBP-1 mRNA Splicing in the Unfolded Protein Response Pathway, Mol Cell. J Neurosci, vol.5534, issue.52, pp.758-7016076, 2014.

F. Urano, X. Wang, A. Bertolotti, Y. Zhang, P. Chung et al., Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1, Science, vol.287, issue.5453, pp.664-670, 2000.
DOI : 10.1126/science.287.5453.664

Y. Ma and L. Hendershot, The role of the unfolded protein response in tumour development: friend or foe?, Nature Reviews Cancer, vol.10, issue.12, pp.966-77, 2004.
DOI : 10.1016/j.neuint.2004.01.003

C. Greenman, P. Stephens, R. Smith, G. Dalgliesh, C. Hunter et al., Patterns of somatic mutation in human cancer genomes An integrated genomic analysis of human glioblastoma multiforme, Nature. Science, vol.446321, pp.153-81807, 2007.

C. Guichard, G. Amaddeo, S. Imbeaud, Y. Ladeiro, L. Pelletier et al., Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer, Nat Genet. Nucleic Acids Res, vol.4438, issue.58, pp.694-702, 2009.

Z. Xue, Y. He, K. Ye, Z. Gu, Y. Mao et al., A conserved structural determinant located at the interdomain region of mammalian inositol-requiring enzyme 1alpha. The Journal of biological chemistry, pp.30859-66, 2011.

L. Hart, J. Cunningham, T. Datta, S. Dey, F. Tameire et al., ER stress? mediated autophagy promotes Myc-dependent transformation and tumor growth Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster, J Clin Invest. PLoS Genet, vol.9, pp.1003664-63, 2012.

V. Cornejo, C. Hetz, N. Iwakoshi, and L. Glimcher, The unfolded protein response in Alzheimer's disease XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Semin Immunopathol. Mol Cell Biol, vol.3523, pp.277-927448, 2003.

D. Acosta-alvear, Y. Zhou, A. Blais, M. Tsikitis, N. Lents et al., XBP1 Controls Diverse Cell Type- and Condition-Specific Transcriptional Regulatory Networks, Molecular Cell, vol.27, issue.1, pp.53-66, 2007.
DOI : 10.1016/j.molcel.2007.06.011

H. Harding, Y. Zhang, H. Zeng, I. Novoa, P. Lu et al., An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress, Molecular Cell, vol.11, issue.3, pp.619-652, 2003.
DOI : 10.1016/S1097-2765(03)00105-9

A. Shaffer, M. Shapiro-shelef, N. Iwakoshi, A. Lee, S. Qian et al., XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation CBF/NF-Y controls endoplasmic reticulum stress induced transcription through recruitment of both ATF6(N) and TBP, Immunity. J Cell Biochem, vol.21104, pp.81-931708, 2004.

M. Li, P. Baumeister, R. B. Phan, T. Foti, D. Luo et al., ATF6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with NF-Y and YY1, Molecular and Cellular Biology, vol.20, issue.14, pp.5096-106, 2000.
DOI : 10.1128/MCB.20.14.5096-5106.2000

P. Gade, S. Manjegowda, S. Nallar, U. Maachani, A. Cross et al., Regulation of the Death-Associated Protein Kinase 1 Expression and Autophagy via ATF6 Requires Apoptosis Signal-Regulating Kinase 1, Molecular and Cellular Biology, vol.34, issue.21, pp.4033-4081, 2014.
DOI : 10.1128/MCB.00397-14

J. Lee, C. Sun, Y. Zhou, D. Gokalp, H. Herrema et al., MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation, Biochem J, vol.433, pp.245-52, 2010.

H. Chen and L. Qi, SUMO modification regulates the transcriptional activity of XBP1, Biochemical Journal, vol.112, issue.1
DOI : 10.1038/nrd2755

K. Ameri and A. Harris, Activating transcription factor 4, The International Journal of Biochemistry & Cell Biology, vol.40, issue.1, pp.14-21, 2008.
DOI : 10.1016/j.biocel.2007.01.020

J. Han, S. Back, J. Hur, Y. Lin, R. Gildersleeve et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells, Nat Cell Biol. Gastroenterology. EMBO J, vol.1513928, issue.78, pp.481-902038, 2009.

M. Wang, R. Kaufman, T. Mujtaba, Q. Dou, E. Golden et al., The impact of the endoplasmic reticulum protein-folding environment on cancer development Advances in the understanding of mechanisms and therapeutic use of bortezomib Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, Nat Rev Cancer. Discov Med. Cancer Res, vol.141268, issue.2, pp.581-97471, 2008.

C. Sidrauski, A. Mcgeachy, N. Ingolia, P. Walter, M. Halliday et al., The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity Proteasome inhibitors disrupt the unfolded protein response in myeloma cells, Elife. Cell Death Dis. Proc Natl Acad Sci U S A, vol.46100, issue.85, pp.9946-51, 2003.

C. Hetz, E. Chevet, and H. Harding, Targeting the unfolded protein response in disease, Nature Reviews Drug Discovery, vol.11, issue.9
DOI : 10.1038/nrd3976

D. Carrasco, K. Sukhdeo, M. Protopopova, R. Sinha, M. Enos et al., The Differentiation and Stress Response Factor XBP-1 Drives Multiple Myeloma Pathogenesis, Cancer Cell, vol.11, issue.4, pp.349-60, 2007.
DOI : 10.1016/j.ccr.2007.02.015

L. Ding, J. Yan, J. Zhu, H. Zhong, Q. Lu et al., Ligand-independent activation of estrogen receptor alpha by XBP-1 Targeted protein destabilization reveals an estrogen-mediated ER stress response, Nucleic Acids Res. Nat Chem Biol, vol.3110, issue.89, pp.5266-74957, 2003.

R. Hu, A. Warri, L. Jin, A. Zwart, R. Riggins et al., NFkappaB Signaling is required for XBP1 (U and S) Mediated Effects on Antiestrogen Responsiveness and Cell Fate Decisions in Breast Cancer, Mol Cell Biol

C. Tang, S. Ranatunga, C. Kriss, C. Cubitt, J. Tao et al., Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival Addicted to secrete novel concepts and targets in cancer therapy High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib The biology of cancer: metabolic reprogramming fuels cell growth and proliferation al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress, J Clin Invest. Trends Mol Med. Haematologica. Cell Metab. Blais JD Mol Cell Biol, vol.1242099726, issue.97, pp.2585-98242, 2006.

P. Walter and R. D. , The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation, Science, vol.334, issue.6059, pp.1081-1087, 2011.
DOI : 10.1126/science.1209038

H. Harding, Y. Zhang, and R. D. , Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature, vol.397, pp.271-275, 1999.

T. Rzymski, M. Milani, D. Singleton, and A. Harris, Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia, Cell Cycle, vol.8, issue.23, pp.3838-3885, 2009.
DOI : 10.4161/cc.8.23.10086

Y. Deng, Z. Wang, C. Tao, N. Gao, W. Holland et al., The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism, Journal of Clinical Investigation, vol.123, issue.1, pp.455-68, 2013.
DOI : 10.1172/JCI62819DS1

Z. Wang, Y. Deng, N. Gao, Z. Pedrozo, D. Li et al., Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway, Cell, vol.156, issue.6, pp.1179-92, 2014.
DOI : 10.1016/j.cell.2014.01.014

Y. Zhou, J. Lee, C. Reno, C. Sun, S. Park et al., Regulation of glucose homeostasis through a XBP-1???FoxO1 interaction, Nature Medicine, vol.285, issue.3, pp.356-65, 2011.
DOI : 10.1038/nm.2293

M. Safra, R. Fickentscher, M. Levi-ferber, Y. Danino, A. Haviv-chesner et al., The FOXO Transcription Factor DAF-16 Bypasses ire-1 Requirement to Promote Endoplasmic Reticulum Homeostasis, Cell Metabolism, vol.20, issue.5, pp.870-81, 2014.
DOI : 10.1016/j.cmet.2014.09.006

R. Vidal, A. Figueroa, F. Court, P. Thielen, C. Molina et al., Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy, Human Molecular Genetics, vol.21, issue.10, pp.2245-62, 2012.
DOI : 10.1093/hmg/dds040

M. Bi, C. Naczki, M. Koritzinsky, D. Fels, J. Blais et al., ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth, The EMBO Journal, vol.162, issue.19, pp.3470-81, 2005.
DOI : 10.1038/sj.emboj.7600777

K. Rouschop, T. Van-den-beucken, L. Dubois, H. Niessen, J. Bussink et al., The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5, Journal of Clinical Investigation, vol.120, issue.1, pp.127-168, 2010.
DOI : 10.1172/JCI40027DS1

M. Ogata, S. Hino, A. Saito, K. Morikawa, S. Kondo et al., Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress, Molecular and Cellular Biology, vol.26, issue.24, pp.9220-9251, 2006.
DOI : 10.1128/MCB.01453-06

K. Robinson, A. Clements, A. Williams, C. Berger, and G. Frankel, Bax Inhibitor 1 in apoptosis and disease, Oncogene, vol.63, issue.21, pp.2391-400, 2011.
DOI : 10.1016/S1097-2765(00)80034-9

D. Rojas-rivera and C. Hetz, TMBIM protein family: ancestral regulators of cell death, Oncogene, vol.43, issue.3, pp.269-80, 2015.
DOI : 10.1038/sj.cgt.7700706

C. Hetz, P. Thielen, S. Matus, M. Nassif, F. Court et al., XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy, Genes & Development, vol.23, issue.19, pp.2294-306, 2009.
DOI : 10.1101/gad.1830709

T. Yamamori, S. Meike, M. Nagane, H. Yasui, and O. Inanami, ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51, FEBS Letters, vol.56, issue.20, pp.3348-53, 2013.
DOI : 10.1016/j.febslet.2013.08.030

L. Epple, R. Dodd, A. Merz, A. Dechkovskaia, M. Herring et al., Induction of the Unfolded Protein Response Drives Enhanced Metabolism and Chemoresistance in Glioma Cells, PLoS ONE, vol.279, issue.8, p.73267, 2013.
DOI : 10.1371/journal.pone.0073267.s006

J. Hsu, P. Chiang, and J. Guh, Tunicamycin induces resistance to camptothecin and etoposide in human hepatocellular carcinoma cells: role of cell-cycle arrest and GRP78, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.17, issue.Suppl, pp.373-82, 2009.
DOI : 10.1007/s00210-009-0453-5

F. Al-rawashdeh, P. Scriven, I. Cameron, P. Vergani, and L. Wyld, Unfolded protein response activation contributes to chemoresistance in hepatocellular carcinoma, European Journal of Gastroenterology & Hepatology, vol.22, issue.9, pp.1099-105, 2010.
DOI : 10.1097/MEG.0b013e3283378405

R. Feng, W. Zhai, H. Yang, J. H. Zhang, and Q. , Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK, Biochemical and Biophysical Research Communications, vol.406, issue.2, pp.299-304, 2011.
DOI : 10.1016/j.bbrc.2011.02.036

E. Strome, X. Wu, M. Kimmel, and S. Plon, Heterozygous Screen in Saccharomyces cerevisiae Identifies Dosage-Sensitive Genes That Affect Chromosome Stability, Genetics, vol.178, issue.3, pp.1193-207, 2008.
DOI : 10.1534/genetics.107.084103

K. Henry, H. Blank, S. Hoose, and M. Polymenis, The Unfolded Protein Response Is Not Necessary for the G1/S Transition, but It Is Required for Chromosome Maintenance in Saccharomyces cerevisiae, PLoS ONE, vol.227, issue.9, p.12732, 2010.
DOI : 10.1371/journal.pone.0012732.s006

L. He, S. Kim, O. Kwon, S. Jeong, M. Kim et al., ATM blocks tunicamycin-induced endoplasmic reticulum stress, FEBS Letters, vol.27, issue.5, pp.903-911, 2009.
DOI : 10.1016/j.febslet.2009.02.002

N. Dioufa, I. Chatzistamou, E. Farmaki, A. Papavassiliou, and H. Kiaris, p53 antagonizes the unfolded protein response and inhibits ground glass hepatocyte development during endoplasmic reticulum stress, Experimental Biology and Medicine, vol.1813, issue.10, pp.1173-80, 2009.
DOI : 10.1126/science.1092472

E. Duplan, E. Giaime, J. Viotti, J. Sevalle, O. Corti et al., ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1, Journal of Cell Science, vol.126, issue.9, pp.2124-2157, 2013.
DOI : 10.1242/jcs.127340

C. Mlynarczyk and R. Fahraeus, Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21CDKN1A, Nature Communications, vol.77, p.5067, 2014.
DOI : 10.1016/j.cell.2004.12.040

S. Thomas, E. Malzer, A. Ordonez, L. Dalton, E. Van-'t-wout et al., p53 and Translation Attenuation Regulate Distinct Cell Cycle Checkpoints during Endoplasmic Reticulum (ER) Stress, Journal of Biological Chemistry, vol.288, issue.11, pp.7606-7623, 2013.
DOI : 10.1074/jbc.M112.424655

J. Li, B. Lee, and A. Lee, Endoplasmic Reticulum Stress-induced Apoptosis, Journal of Biological Chemistry, vol.281, issue.11, pp.7260-70, 2006.
DOI : 10.1074/jbc.M509868200

E. Bobrovnikova-marjon, C. Grigoriadou, D. Pytel, F. Zhang, J. Ye et al., PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage, Oncogene, vol.58, issue.27, pp.3881-95, 2010.
DOI : 10.1016/j.molcel.2005.07.019

T. Verfaillie, N. Rubio, A. Garg, G. Bultynck, R. Rizzuto et al., PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress, Cell Death and Differentiation, vol.14, issue.11, pp.1880-91, 2012.
DOI : 10.1016/j.bbamcr.2010.11.023

A. Nagelkerke, J. Bussink, A. Van-der-kogel, F. Sweep, and P. Span, The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response, Radiotherapy and Oncology, vol.108, issue.3, pp.415-436, 2013.
DOI : 10.1016/j.radonc.2013.06.037

L. Zitvogel, L. Galluzzi, M. Smyth, and G. Kroemer, Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance, Immunity, vol.39, issue.1, pp.74-88, 2013.
DOI : 10.1016/j.immuni.2013.06.014

E. Marza, S. Taouji, K. Barroso, A. Raymond, L. Guignard et al., Genomewide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stressinduced gene transcription, EMBO Rep, 2015.

G. Periz, J. Lu, T. Zhang, M. Kankel, A. Jablonski et al., Regulation of Protein Quality Control by UBE4B and LSD1 through p53-Mediated Transcription, PLOS Biology, vol.38, issue.4, p.1002114, 2015.
DOI : 10.1371/journal.pbio.1002114.s013

R. Chhabra, R. Dubey, and N. Saini, Gene expression profiling indicate role of ER stress in miR-23a~27a~24-2 cluster induced apoptosis in HEK293T cells, RNA Biology, vol.8, issue.4, pp.648-64, 2011.
DOI : 10.4161/rna.8.4.15583

F. Yang, L. Zhang, F. Wang, Y. Wang, X. Huo et al., Modulation of the Unfolded Protein Response Is the Core of MicroRNA-122-Involved Sensitivity to Chemotherapy in Hepatocellular Carcinoma, Neoplasia, vol.13, issue.7, pp.590-600, 2011.
DOI : 10.1593/neo.11422

X. Wang, B. Guo, Q. Li, J. Peng, Z. Yang et al., miR-214 targets ATF4 to inhibit bone formation, Nature Medicine, vol.109, issue.1, pp.93-100, 2013.
DOI : 10.1359/jbmr.061118

Q. Duan, X. Wang, W. Gong, L. Ni, C. Chen et al., ER Stress Negatively Modulates the Expression of the miR-199a/214 Cluster to Regulates Tumor Survival and Progression in Human Hepatocellular Cancer, PLoS ONE, vol.70, issue.2, p.31518, 2012.
DOI : 10.1371/journal.pone.0031518.s008

S. Ryu, K. Mcdonnell, H. Choi, D. Gao, M. Hahn et al., Suppression of miRNA-708 by Polycomb Group Promotes Metastases by Calcium-Induced Cell Migration, Cancer Cell, vol.23, issue.1, pp.63-76, 2013.
DOI : 10.1016/j.ccr.2012.11.019

S. Gupta, D. Read, A. Deepti, K. Cawley, A. Gupta et al., Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis, Cell Death and Disease, vol.120, issue.6, p.333, 2012.
DOI : 10.1038/cddis.2012.74

A. Byrd, I. Aragon, and J. Brewer, MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response, The Journal of Cell Biology, vol.15, issue.6, pp.689-98, 2012.
DOI : 10.1016/S0092-8674(01)00611-0

N. Chitnis, D. Pytel, E. Bobrovnikova-marjon, D. Pant, H. Zheng et al., miR-211 Is a Prosurvival MicroRNA that Regulates chop Expression in a PERK-Dependent Manner, Molecular Cell, vol.48, issue.3, pp.353-64, 2012.
DOI : 10.1016/j.molcel.2012.08.025

K. Sakaki, S. Yoshina, X. Shen, J. Han, M. Desantis et al., RNA surveillance is required for endoplasmic reticulum homeostasis, Proceedings of the National Academy of Sciences, vol.109, issue.21, pp.8079-84, 2012.
DOI : 10.1073/pnas.1110589109

N. Dejeans, O. Pluquet, S. Lhomond, F. Grise, M. Bouchecareilh et al., Autocrine control of glioma cells adhesion and migration through IRE1??-mediated cleavage of SPARC mRNA, Journal of Cell Science, vol.125, issue.18, pp.4278-87, 2012.
DOI : 10.1242/jcs.099291

M. Maurel, N. Dejeans, S. Taouji, E. Chevet, and C. Grosset, MicroRNA-1291-mediated silencing of IRE1?? enhances Glypican-3 expression, RNA, vol.19, issue.6, pp.778-88, 2013.
DOI : 10.1261/rna.036483.112

H. Urra, E. Dufey, F. Lisbona, D. Rojas-rivera, and C. Hetz, When ER stress reaches a dead end, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.12, pp.3507-3524, 2013.
DOI : 10.1016/j.bbamcr.2013.07.024

J. Sandow, L. Dorstyn, O. Reilly, L. Tailler, M. Kumar et al., ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis, Cell Death and Differentiation, vol.183, issue.3, pp.475-80, 2013.
DOI : 10.1038/cdd.2013.168

H. Li and B. Yang, Stress Response of Glioblastoma Cells Mediated by miR-17-5p Targeting PTEN and the Passenger Strand miR-17-3p Targeting MDM2, Oncotarget, vol.3, issue.12, pp.1653-68, 2013.
DOI : 10.18632/oncotarget.810

S. Shan, L. Fang, T. Shatseva, Z. Rutnam, X. Yang et al., Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways, Journal of Cell Science, vol.126, issue.6, pp.1517-1547, 2013.
DOI : 10.1242/jcs.122895

X. Yang, W. Du, H. Li, F. Liu, A. Khorshidi et al., Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion, Nucleic Acids Research, vol.41, issue.21, pp.9688-704, 2013.
DOI : 10.1093/nar/gkt680

Z. Lichner, C. Saleh, V. Subramaniam, A. Seivwright, G. Prud-'homme et al., miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/ tumor initiating cell properties, Oncotarget, vol.6, issue.8, 2014.
DOI : 10.18632/oncotarget.1901

D. Park, S. Lee, J. Park, S. Cho, and H. Kim, Overexpression of miR-17 in gastric cancer is correlated with proliferation-associated oncogene amplification, Pathology International, vol.133, issue.7, pp.309-323, 2014.
DOI : 10.1111/pin.12178

J. Zhang, Z. Xiao, D. Lai, J. Sun, C. He et al., miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer, British Journal of Cancer, vol.13, issue.2, pp.352-361, 2012.
DOI : 10.1016/j.cca.2010.02.074

Y. Guo, H. Liu, H. Zhang, C. Shang, and Y. Song, miR-96 regulates FOXO1???mediated cell apoptosis in bladder cancer, Oncology Letters, vol.4, pp.561-566, 2013.
DOI : 10.3892/ol.2012.775

A. Fendler, M. Jung, C. Stephan, A. Erbersdobler, K. Jung et al., The Antiapoptotic Function of miR-96 in Prostate Cancer by Inhibition of FOXO1, PLoS ONE, vol.50, issue.11, p.80807, 2013.
DOI : 10.1371/journal.pone.0080807.s010

I. Guttilla and B. White, Coordinate Regulation of FOXO1 by miR-27a, miR-96, and miR-182 in Breast Cancer Cells, Journal of Biological Chemistry, vol.284, issue.35, pp.23204-23220, 2009.
DOI : 10.1074/jbc.M109.031427

X. Huang, W. Lv, J. Zhang, and D. Lu, miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer, Int J Mol Med, vol.34, pp.1599-605, 2014.