M. Niinomi, Low Modulus Titanium Alloys for Inhibiting Bone Atrophy, Biomater. Sci. Eng, pp.249-268, 2011.
DOI : 10.5772/24549

M. Niinomi and M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, International Journal of Biomaterials, vol.260, issue.1-2, 2011.
DOI : 10.2320/matertrans.48.301

Y. Li, C. Yang, H. Zhao, S. Qu, X. Li et al., New Developments of Ti-Based Alloys for Biomedical Applications, Materials, vol.7, issue.3, pp.1709-1800, 2014.
DOI : 10.3390/ma7031709

X. Zhao, M. Niinomi, M. Nakai, and J. Hieda, Beta type Ti???Mo alloys with changeable Young???s modulus for spinal fixation applications, Acta Biomaterialia, vol.8, issue.5, pp.1990-1997, 2012.
DOI : 10.1016/j.actbio.2012.02.004

F. F. Cardoso, P. L. Ferrandini, E. S. Lopes, A. Cremasco, and R. Caram, Ti???Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior, Journal of the Mechanical Behavior of Biomedical Materials, vol.32, pp.32-63, 2014.
DOI : 10.1016/j.jmbbm.2013.11.021

H. Y. Kim, H. Satoru, J. Kim, H. Hosoda, and S. Miyazaki, Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys, MATERIALS TRANSACTIONS, vol.45, issue.7, pp.45-2443, 2004.
DOI : 10.2320/matertrans.45.2443

Y. B. Wang and Y. F. Zheng, Corrosion behaviour and biocompatibility evaluation of low modulus Ti???16Nb shape memory alloy as potential biomaterial, Materials Letters, vol.63, issue.15, pp.1293-1295, 2009.
DOI : 10.1016/j.matlet.2009.02.062

. Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys, Biomed. Mater, vol.5, p.44102, 2010.

A. Ramarolahy, P. Castany, F. Prima, P. Laheurte, I. Peron et al., Microstructure and mechanical behavior of superelastic Ti???24Nb???0.5O and Ti???24Nb???0.5N biomedical alloys, Journal of the Mechanical Behavior of Biomedical Materials, vol.9, pp.83-90, 2012.
DOI : 10.1016/j.jmbbm.2012.01.017

URL : https://hal.archives-ouvertes.fr/hal-00926952

L. J. Xu, Y. Y. Chen, Z. G. Liu, and F. T. Kong, The microstructure and properties of Ti???Mo???Nb alloys for biomedical application, Journal of Alloys and Compounds, vol.453, issue.1-2, pp.453-320, 2008.
DOI : 10.1016/j.jallcom.2006.11.144

E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob et al., Synthesis and characterization of a new superelastic Ti-25Ta-25Nb biomedical alloy, J
URL : https://hal.archives-ouvertes.fr/hal-00762576

P. Laheurte, F. Prima, A. Eberhardt, T. Gloriant, M. Wary et al., Mechanical properties of low modulus ???? titanium alloys designed from the electronic approach, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.8
DOI : 10.1016/j.jmbbm.2010.07.001

URL : https://hal.archives-ouvertes.fr/hal-00762181

S. B. Gabriel, J. Dillec, C. A. Nunes, and G. De-almeida-soare, THe effect of niobium content on the hardness and elastic modulus of heat-treated ti-10mo-xnb alloys, Materials Research, vol.13, issue.3, pp.13-333, 2010.
DOI : 10.1590/S1516-14392010000300009

H. Y. Al-zain, H. Kim, T. H. Hosoda, S. Namc, and . Miyazaki, Shape memory properties of Ti???Nb???Mo biomedical alloys, Acta Materialia, vol.58, issue.12, pp.4212-4223, 2012.
DOI : 10.1016/j.actamat.2010.04.013

C. Zhang, H. Tian, C. Hao, J. Zhao, Q. Wang et al., First-principles calculations of elastic moduli of Ti???Mo???Nb alloys using a cluster-plus-glue-atom model for stable solid solutions, Journal of Materials Science, vol.57, issue.1, pp.48-3138, 2013.
DOI : 10.1007/s10853-012-7091-x

Y. Okazaki, S. Rao, Y. Ito, and T. Tateishi, Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V, Biomaterials, vol.19, issue.13, pp.1197-1215, 1988.
DOI : 10.1016/S0142-9612(97)00235-4

H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials, vol.22, issue.11, pp.1253-1262, 2001.
DOI : 10.1016/S0142-9612(00)00275-1

E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of ??-stabilizing elements of titanium alloys, Biomaterials, vol.25, issue.26, pp.5705-5713, 2004.
DOI : 10.1016/j.biomaterials.2004.01.021

W. F. Ho, C. P. Ju, and L. J. Chern, Structure and properties of cast binary Ti???Mo alloys, Biomaterials, vol.20, issue.22, pp.2115-2122, 1999.
DOI : 10.1016/S0142-9612(99)00114-3

L. Trentani, F. Pelillo, F. C. Pavesi, L. Ceciliani, G. Cetta et al., Evaluation of the TiMo12Zr6Fe2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts, Biomaterials, vol.23, issue.14, pp.2863-2869, 2002.
DOI : 10.1016/S0142-9612(01)00413-6

D. M. Gordin, T. Gloriant, G. Texier, I. Thibon, D. Ansel et al., Development of a ??-type Ti???12Mo???5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects, Journal of Materials Science: Materials in Medicine, vol.15, issue.8, pp.15-885, 2004.
DOI : 10.1023/B:JMSM.0000036276.32211.31

S. Nag, R. Banerjee, and H. L. Fraser, Microstructural evolution and strengthening mechanisms in Ti???Nb???Zr???Ta, Ti???Mo???Zr???Fe and Ti???15Mo biocompatible alloys, Materials Science and Engineering: C, vol.25, issue.3
DOI : 10.1016/j.msec.2004.12.013

A. P. Chavez, J. C. Claro, M. A. Moraes, C. R. Buzalaf, and . Gradini, Preparation and characterization of Ti-15Mo alloy used as biomaterial, Mat. Res, pp.14-107, 2011.

I. Jirka, M. Vandrovcova, O. Frank, Z. Tolde, J. Plsek et al., On the role of Nb-related sites of an oxidized ??-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells, Materials Science and Engineering: C, vol.33, issue.3, pp.33-1636, 2013.
DOI : 10.1016/j.msec.2012.12.073

. Liao, Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro, PLoSONE, 2013.

M. H. Wu, Assessment of a superelastic beta TiMo alloy for Biomedical applications, Medical Device Materials: Proceedings of the Materials & Processes for Medical Devices Conference, pp.343-348, 2004.

P. J. Curfs, F. Jacques, and . Prima, Investigation of early stage deformation mechanisms in a metastable ? titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity eects, Acta Mater, pp.61-6406, 2013.

L. C. Baxter, V. Frauchiger, M. Textor, I. Gwynn, and R. G. Richards, Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces, European Cells and Materials, vol.4, pp.1-17, 2002.
DOI : 10.22203/eCM.v004a01

M. Könönen, M. Hormia, J. Kwilahti, J. Hautaniemi, and I. Thesleff, Effect of surface processing on the attachment, orientation and proliferation of human gingival fibroblasts on titanium, J. Biomed. Mater. Res, pp.26-1325, 1992.

J. M. Anderson, Biological Responses to Materials, Annual Review of Materials Research, vol.31, issue.1, pp.81-110, 2001.
DOI : 10.1146/annurev.matsci.31.1.81

L. He and A. G. Marneros, Macrophages Are Essential for the Early Wound Healing Response and the Formation of a Fibrovascular Scar, The American Journal of Pathology, vol.182, issue.6, pp.2407-2417, 2013.
DOI : 10.1016/j.ajpath.2013.02.032

M. B. Ariganello, D. T. Simionescu, R. S. Labowa, and J. M. Lee, Macrophage differentiation and polarization on a decellularized pericardial biomaterial, Biomaterials, vol.32, issue.2, pp.439-449, 2011.
DOI : 10.1016/j.biomaterials.2010.09.004

K. A. Owen, F. J. Pixley, K. S. Thomas, M. Vicente-manzanares, B. J. Ray et al., Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase, The Journal of Cell Biology, vol.109, issue.6, pp.179-1275, 2007.
DOI : 10.1042/BST0320416

A. C. Wu, L. J. Raggatt, K. A. Alexander, and A. R. Pettit, Unraveling macrophage contributions to bone repair, BoneKEy Rep. 2 (2013) Article number: 373
DOI : 10.1038/bonekey.2013.107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098570

P. M. Newton, J. A. Watson, R. Wolowacz, and E. J. Wood, Macrophages Restrain Contraction of an In Vitro Wound Healing Model, Inflammation, vol.28, issue.4, pp.207-214, 2004.
DOI : 10.1023/B:IFLA.0000049045.41784.59

S. H. Chandhanayinyong, D. S. Kweon, H. Oh, F. Y. Tawfeek, and . Lee, Aggravation of inflammatory response by costimulation with titanium particles and mechanical perturbations in osteoblast-and macrophage-like cells, Am. J. Physiol. Cell Physiol, vol.304, pp.431-439, 2013.

A. Papatoiu-biniuc and . Barbinta, Biocompatibility evaluation for some new Ti-Nb-Zr-Ta alloys, Annals of RSCB, vol.18, pp.192-197, 2013.