N. Spectroscopic-data-ofm and N. , 55 (s, ArCH3 , 3H), 2.44 (s, ArCH3, 3H), 2.30 (s, CH3COO, 3H), 2.22 (s, CH3COO, H NMR (500 MHz NCH2CHCHCH, 1H), 5.02-4.95 (m, CH?CHZHE, 1H), 4.94-4.89 (m, CH?CHEHZ, 1H), 4.47-4.21 (m, OCOCH2, 2H), 4.09-4.12 (t, J = 7.6 Hz), 1.40-1.26 (m, NCH2C7H14, 12H); 13 C NMR (125 MHz, CDCl3, 25 °C): ? 170 HRMS (ESI+): m/z calcd for C36H48N4O10 (M + Na + ) 719.3268, pp.67-72, 1050.

N. Maier, P. Franco, and W. Lindner, Separation of enantiomers: needs, challenges, perspectives, Journal of Chromatography A, vol.906, issue.1-2, pp.3-33, 2001.
DOI : 10.1016/S0021-9673(00)00532-X

E. Francotte, Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers, Journal of Chromatography A, vol.906, issue.1-2, pp.379-397, 2001.
DOI : 10.1016/S0021-9673(00)00951-1

C. Roussel, A. Rio, J. Pierrot-sanders, P. Piras, and N. Vanthuyne, Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers, Journal of Chromatography A, vol.1037, issue.1-2, pp.311-328, 2004.
DOI : 10.1016/j.chroma.2004.01.065

Y. Okamoto and T. Ikai, Chiral HPLC for efficient resolution of enantiomers, Chemical Society Reviews, vol.110, issue.12, pp.2593-2608, 2008.
DOI : 10.1039/b808881k

A. Cavazzini, L. Pasti, A. Massi, N. Marchetti, and F. Dondi, Recent applications in chiral high performance liquid chromatography: A review, Analytica Chimica Acta, vol.706, issue.2, pp.205-222, 2011.
DOI : 10.1016/j.aca.2011.08.038

Y. Okamoto and E. Yashima, Polysaccharide Derivatives for Chromatographic Separation of Enantiomers, Angewandte Chemie International Edition, vol.37, issue.8, pp.1020-1043, 1998.
DOI : 10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5

E. Yashima, Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation, Journal of Chromatography A, vol.906, issue.1-2, pp.105-125, 2001.
DOI : 10.1016/S0021-9673(00)00501-X

T. Nakano, Optically active synthetic polymers as chiral stationary phases in HPLC, Journal of Chromatography A, vol.906, issue.1-2, pp.205-225, 2001.
DOI : 10.1016/S0021-9673(00)00944-4

C. Yamamoto and Y. Okamoto, Optically Active Polymers for Chiral Separation, Bulletin of the Chemical Society of Japan, vol.77, issue.2, pp.227-257, 2004.
DOI : 10.1246/bcsj.77.227

T. Ikai and Y. Okamoto, Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography, Chemical Reviews, vol.109, issue.11, pp.6077-6101, 2009.
DOI : 10.1021/cr8005558

P. Ding, B. Chang, G. Qing, and T. Su, New approach for chiral separation: from polysaccharide-based materials to chirality-responsive polymers, Science China Chemistry, vol.25, issue.11, pp.1492-1506, 2014.
DOI : 10.1007/s11426-014-5206-8

V. Davankov, Enantioselective ligand exchange in modern separation techniques, Journal of Chromatography A, vol.1000, issue.1-2, pp.891-915, 2003.
DOI : 10.1016/S0021-9673(03)00304-2

M. Hyun, Development and application of crown etherbased HPLC chiral stationary phases, Bull Korean Chem Soc, vol.26, pp.1153-1163, 2005.

M. Lammerhofer and W. Lindner, Liquid Chromatographic Enantiomer Separation and Chiral Recognition by Cinchona Alkaloid-Derived Enantioselective Separation Materials, Adv Chromatogr, vol.46, pp.1-107, 2008.
DOI : 10.1201/9781420060263.ch1

D. Acquarica, I. Gasparrini, F. Misiti, D. Pierini, M. Villani et al., HPLC chiral stationary phases containing macrocyclic antibiotics: practical aspects and recognition mechanism, Adv Chromatogr, vol.46, pp.109-173, 2008.

V. Massey, The Chemical and Biological Versatility of Riboflavin, Biochemical Society Transactions, vol.28, issue.4, pp.283-296, 2000.
DOI : 10.1042/bst0280283

G. Gonzalo and M. Fraaije, Recent Developments in Flavin-based Catalysis, ChemCatChem, vol.32, issue.2, pp.403-415, 2013.
DOI : 10.1002/cctc.201200466

H. Iida, S. Iwahana, T. Mizoguchi, and E. Yashima, Main-Chain Optically Active Riboflavin Polymer for Asymmetric Catalysis and Its Vapochromic Behavior, Journal of the American Chemical Society, vol.134, issue.36, pp.15103-15113, 2012.
DOI : 10.1021/ja306159t

H. Iida, M. Miki, S. Iwahana, and E. Yashima, Riboflavin-Based Fluorogenic Sensor for Chemo- and Enantioselective Detection of Amine Vapors, Chemistry - A European Journal, vol.128, issue.15, pp.4257-4262, 2014.
DOI : 10.1002/chem.201400234

Y. Kim, A. Tishbee, and E. Gil-av, Chiral recognition by small biological molecules. Resolution of helicenes on silica gel coated with riboflavin, Journal of the American Chemical Society, vol.102, issue.18, pp.5915-5917, 1980.
DOI : 10.1021/ja00538a040

S. Ju, D. Abanulo, C. Badalucco, J. Gascón, F. Papadimitrakopoulos et al., Handedness enantioselection of carbon nanotubes using helical assemblies of flavin mononucleotide5- Dimethylphenyl)carbamates of cellulose and amylose regioselectively bonded to silica gel as chiral stationary phases for high-performance liquid chromatography, J Am Chem Soc J Chromatogr A, vol.1343677, issue.22, pp.13196-1319911, 1994.

N. Enomoto, S. Furukawa, Y. Ogasawara, H. Akano, Y. Kawamura et al., Preparation of silica gelbonded amylose through enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivative in HPLC

K. Tamura, T. Miyabe, H. Iida, and E. Yashima, Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing l-alanine pendants immobilized on silica gel by HPLC, Polym. Chem., vol.26, issue.1, pp.91-98, 2011.
DOI : 10.1039/C0PY00164C

T. Miyabe, H. Iida, A. Ohnishi, and E. Yashima, Enantioseparation on poly(phenyl isocyanide)s with macromolecular helicity memory as chiral stationary phases for HPLC, Chem. Sci., vol.875, issue.3, pp.863-867, 2012.
DOI : 10.1039/C1SC00708D

F. Müller, [147] Synthesis of 2-substituted riboflavin analogs, Methods Enzymol, vol.18, pp.453-458, 1971.
DOI : 10.1016/S0076-6879(71)18104-9

E. Veigl and W. Lindner, Epimeric N-substituted l-proline derivatives as chiral selectors for ligand-exchange chromatography, Journal of Chromatography A, vol.660, issue.1-2, pp.255-268, 1994.
DOI : 10.1016/0021-9673(94)85120-4

H. Takahashi, M. Isobe, T. Goto, Y. Okamoto, M. Kawashima et al., Chemical synthesis of lampteroflavin as light emitter in the luminous mushroom, Lampteromyces japonicus Chromatographic resolution. XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel, Tetrahedron J Chromatogr A, vol.47363, issue.29, pp.6215-6222173, 1986.

E. Anger, M. Srebro, N. Vanthuyne, L. Toupet, S. Rigaut et al., Ruthenium-Vinylhelicenes: Remote Metal-Based Enhancement and Redox Switching of the Chiroptical Properties of a Helicene Core, Journal of the American Chemical Society, vol.134, issue.38, pp.15628-15631, 2012.
DOI : 10.1021/ja304424t

URL : https://hal.archives-ouvertes.fr/hal-00848193

C. Shen, E. Anger, M. Srebro, N. Vanthuyne, K. Deol et al., Straightforward access to mono-and biscycloplatinated helicenes displaying circularly polarized phosphorescence by using crystallization resolution methods
DOI : 10.1039/c3sc53442a

URL : https://hal.archives-ouvertes.fr/hal-01063270

H. Koller, K. Rimböck, and A. Mannschreck, High-pressure liquid chromatography on triacetylcellulose, Journal of Chromatography A, vol.282, pp.89-94, 1983.
DOI : 10.1016/S0021-9673(00)91594-2

Y. Nakai, T. Mori, and Y. Inoue, ]helicenes, The Journal of Physical Chemistry A, vol.116, issue.27, pp.7372-7385, 2012.
DOI : 10.1021/jp304576g

T. Nakano and Y. Okamoto, Synthetic Helical Polymers:?? Conformation and Function, Chemical Reviews, vol.101, issue.12, pp.4013-4038, 2001.
DOI : 10.1021/cr0000978

E. Yashima, K. Maeda, H. Iida, Y. Furusho, and K. Nagai, Helical Polymers: Synthesis, Structures, and Functions, Chemical Reviews, vol.109, issue.11, pp.6102-6211, 2009.
DOI : 10.1021/cr900162q