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Abstract

We propose in this paper a geometrical equivaldreteveen a shape described by a power
law and a conical geometry. A theoretical and nucaéstudy has allowed us to generalize an
equivalence between the conical geometrical paertets and the spherical or power law
shape geometrical parameggfR. Moreover, in order to superpose indentation ddtatever

the geometry, a new pile-up parametehas been introduced. For one set of mechanical
properties of the tested sample, this new formutakeads to a perfect superposition between
conical, power law shape and spherical indentadata. At the end of this paper, we propose
a comparison between the results proposed intliler@and the present formulation.

1. Introduction

The indentation test was developed several decadesin order to determine certain
mechanical properties. It becomes an importantestibpf interest for many mechanical
engineering industries. An instrumented indentatést consists in measuring simultaneously
indentation loadr and indentation deptinduring the penetration of an indenter into a sampl
The contact hardness (Meyer, 1908) has been introduced by the followiglgtionship:

H= " &)

mZ

C

In Eq. (1) contact radiug. is a fundamental indentation data, it is the logdtween indenter
and tested sample. Different kind of indenter geoiee are commonly used, they can be
grouped in two families:

- the sharp indenters (Vickers, Berkovich, Knoogd anone) which can be correctly modelled
by an equivalent conical geometry, they can besdadixisymmetric cones. For Vickers and
Berkovich indenters, the half-apex angle of theiemjant cone i$=70.3°. In the theoretical
studies formulations are often written wjithz/2-6.

- the spherical indenters (radigs which can be correctly modelled by a paraboliorgetry
for the lowaJ/R ratios.

For conical indentation, it is commonly assumed tine indentation pressure on elastic-
perfectly plastic materials may be correlated sma-dimensional graph ét/Y as a function
of the so called Johnson paramdi&tans/Y, whereE* is the reduced modulus of the contact
(Johnson, 1970, Larsson, 2008, Bartier and He@@it?). For a conical indenter with a fixed
f, HIY is a constant during indentation test while iti@awith theas/R ratio for parabolic or
spherical indenters. For spherical indention, ¢aasidered thatanf = sing =a_. /Rwheref

is the contact angle between the indenter andesied sample at the edge of the contact.
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Using the equality given above, Johnson (1970) doangood correlation between the
indentation pressures obtained for conical andrsgdendentation.

Because surface's sample can present sink-inesupilit is not possible to directly determine

the contact radius. from the indentation depth. A great number of studies have been
conducted in order to quantify sink-in or pile-upgdee. The ratio between the contact depth
h. and the indentation depth is calledc’. ¢' or ¢® are used respectively for conical or

spherical indenter. Using these ratios, the contadius can be calculated with Eq. (2) and
Eq. (3) respectively for conical and spherical imee:

Cl

% tang " @

a? =2Rch 3)

Eq. (3) is often used in the literature; it is lkhea an approximation of the exact function of a
sphere (Eg. (4)) by a parabolic geometry. In thisraximationhZ is considered as negligible
compared t@Rh.

a; = 2Rh —h? 4

This is the reason why the pile-up degree has beentified byc? in the case of spherical
indentation. Many authors have developed modeigigmtifyc®> depending on the mechanical
properties of the tested sample. At the beginnihiy, parameter has been considered as a
constant during a spherical indentation test. With this assumption that Matthews (1980),
Hill et al. (1989), Biwa and Storakers (1995), Tagatl. (1998), Alcalaet al. (2000) showed
thatc? is linked to the strain hardening exponent ofitttented material. It has been shown
that the assumption of constartis only valid for rigid plastic materials and lovalues of
contact radius (Bartier and Hernot, 2012). In theecof elastic-plastic material$, depends
not only on the strain hardening exponantput also on the relative amount of elastic and
plastic deformation as characterized by the noredsional material parametefY and the
non-dimensional depth of penetratitviR (Taljat and Pharr, 2004, Lee et al. 2005, Hermot e
al., 2006, Kim et al, 2006, Bartier et al., 2010).

For an elastic-plastic material, it is thus now welown that the pile-up degree changes
during a spherical indentation test while it rensatonstant during a conical indentation test.
Concerning the conical indentation, the pile-uprdegloes not change during the indentation
test because of the self-similarity of the geometry

Table. 1. shows the comparison betwetandc? calculated from two different formulations
(Boweret al, 1993 and Felder, 2006) for a rigid perfectly ptasample. This table illustrates
that even if the mechanical properties of the samapé the same, the pile-up parameters have
not the same values for conical or spherical geneset

p 1 (cone) 2 (sphere)

c c? H*=H/c,
Zero friction 1.263 1.44 3.05
Sticking friction 1.209 1.334 3.21
Model (s =4.35) 1.219 1.37 3.62

Table. 1. Comparison betweénh andC? (Felder, 2006)
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To conclude, the problem of elastic solids indertgghunches of various profiles was solved
by Love ((1939), Segedin (1957) and Sneddon (19B6jJ. elastic indentation, the sink-
in/pile-up degree remains constant and correlatlmetsveen conical, spherical or punch of
arbitrary profile can be easy deduced from anayticrmulations. In the case of indentation
of elastic-plastic solids, it has been shown that pile-up degree remains constant during a
conical indentation while it changes during a smatrindentation. Indeed, for the conical
indentation, the contact radius is linked to thke-pp depth with a constant geometrical
parametettans. Concerning the spherical indentation, the piledegree increases with the
a/R ratio. However, it does not yet exist a formulatito make the link betweerf andc.
The aim of this work is to propose a universal naliped formulation in order to superpose
the results obtained in indentation whatever thegery when plasticity occurs.

2. Indentation mor phology for conical indentation and indentation with an indenter with
a shape described by a power law

It has been shown, in section 1, that usiigfor spherical indentation come from an
approximation of a sphere by a parabolic geometrgmthea /R ratio is low. Howeverg? is
valid for a whole indentation test realized witparabolic indenter. We propose to begin with
the comparison between an indenter shape desdnpagpower law (Eg. (5) wittkk>1) and a
conical indenter (Eqg. (6)). In the case where K25 the radius of the osculating circle at the
bottom of the indenter. For k>2, R is introducedeep a length parameter in equation (6).

A (5)

y =tang.r (6)

In Egs (5) and (6) andy are respectively the horizontal and vertical cowté. In Eq. (5K

is the exponent of the power geometry &d introduced in order to make an analogy with
Eq. (3). We can notice that considering k=1 leadthé description of an axisymmetric cone
with an angleg=45°.

Fig. 1 shows the fundamental indentation data wiltbe used in order to develop the

theoretical formulations: the contact radagsthe displaced volum¥ under the contact area,
the applied loadF, the contact depth, and the indentation depkh
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Power indentation Conical indentation

Deformed
surface

h/ $h

Original surface
Fig. 1. Indentation data for the two indenters getrias

In the following sections, theoretical formulationgl be illustrated with the results obtained
by finite element simulations of indentation penf@d with a parabolic indentek<2), an

indenter with a shape described by a power lawk=& and a conical indenter on a sample
with the same mechanical properties. Indenter msicered as rigid and the contact problem
is considered as frictionless. This sample is a®red as elastic - plastic with isotropic
hardening described by a power law associatedeéd2ilow stress theory. The behaviour

law considered i&r = E¢ for <Y and azat‘“E”g” for o>Y. Materials properties are Young

modulus E=210GPa Poisson ratiov=0.3, yield stressY=210MPa and work hardening
exponenn=0.25"

3. Correlation between theindentation pressuresH/Y

The normalized hardnes$#Y obtained for conical geometries and axisymmeteongetries
with a power law profile are compared. For this panison, the so called Johnson parameter
(Johnson, 1970) is reduced tofidor conical indentation and/& for spherical indentation.

Using the same assumption for power-law shapedieds we obtairk(aCIZR)k_lwhich is
the tangent at the edge of the contact betweemiadand material. Fig. 2 shows that the
curves H/Y=f(k(at/2R)H) for indenters with a power law profile and/Y=f(tans) for

conical indenters are not superposed. This resutamstrates that the indentation pressures
by axi-symetrical indenters of arbitrary profileda elastic-plastic materials do not correlate

when using the so called Johnson paramétiens/Y andE’ (k( a./2 R)k_l)/ Y).
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ka /(2R)"" or tanp

Fig. 2: Normalized hardness function Io(aCIZR)k_lortar}B

We propose to use the assumption of equality afimel displaced/ under the contact area
for the same contact radias in order to correlate the variation d¢i/Y obtained for various
shapes of indenter. This assumption is quite sindldhe one used in order to determine the
equivalent cone of a Berkovich or Vickers indenter.

Using Egs. (5) and (6) the volume of the indeateder the contact depth is given by Eq. (7)
for an indenter shape described by a power lawEand8) for a conical indenter:

k.]T.ack+2

V= s 2R )

V= g a’tanf (8)

Equality of Eqgs. (7) and (8) leads to the geomalreqjuivalence between a shape described
by a power law and a conical geometry as following:

3K (a
k+2{ 2R

j _ =tang (9)

Considering a parabolic indenter (wkh2) in Eq. (9) leads to the following equivalence:
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38
——% =tanpf 10
4 R (10)

Fig. 3 shows that using formulation (9) allows th@perposition of théH/Y curves for
geometries with a power law profile2 andk=3) and conical geometries. It is thus shown
that a unique indentation test with an indentehwitshape described by a power law leads to
the same hardness changes than several conicatatides. Eq. (9) gives an equivalent value
of tang for an indenter with a shape described by a pdaver

10
8 -
6 -
i parabolic indenter
I o conical indenter
4 indenter with k=3
2 .
0 T T T T T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8

tanﬁcquivalcnt = (3k/(k+2))(aL/(2R))(l‘-l) or tanﬂ
Fig. 3: Normalized hardness functiontaffequivalent

4. Correlation between the c“=h¢/h surface defor mation parameters.

By using the transformation method suggested by étilal. (1989), it is shown that the
indentation problem can be reduced to a form wiscimndependent of the geometry of the
punch and depends only on the material propeBigsioticing that the velocity fields under a
punch have certain self similar properties, fassible to calculate the stress and the velocity
field under a punch with a profile given by (5) a®d. The indentation analysis is reduced to
calculating stresses and displacements in a sotlénted to a unit depth by a rigid flat punch
of a unit radius. In self similarity method$was defined as an eigenvalue of the indentation.
This theory has been analytically developed foedinelastic materials. However, this theory
has extended to plastic and creeping materialsomgidering non linear elastic behaviour.
(Hill et al. 1989, Storacker and Larsson 1994, &hd Fleck 1998, Larsson 2008) and for
rigid plastic materials by Biwa and Storacker (1P95rom a physical point of vues
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determines the ratio of the true to nominal contaatius under the punch, i@/a. c
corresponds to the ratio between the contact dehd the indentation depkhi.e.:

h,

c = 11
b (11)
c andc® control the vertical displacement of the surfactha edge of the contact areac lbr

c® <1, material is pushed into the surface at the edgthe contact, while ifc or ¢ >1,
material piles up at the side of the indentatioomParison between values®br c* obtained

for conical and spherical indentation of rigid getfy plastic materials was performed in the
literature (Bower, Felder). The examination of treues ofc andc® found by Bower and
Felder, respectively shows that no identical valofes is obtained for spherical and conical
indentation of rigid perfectly plastic material.igF4 confirms that the ratios between the
contact depth and the indentation depth obtainedvémious shapes of indenter does not
superpose on a non-dimensional grapk“afs a function ofhe so called Johnson parameter

tangor k(at/2R)H. Fig. 5 also illustrates that the use of Eq. (9¥¢eto closer results but

is not sufficient to superpose the indentation ltsstoncerning the pile-up degree. We thus
can conclude thdt/h ratio is not a universal data to quantify the qifedegree whatever the

geometry.

1.2

s o
o =]
Q (=]
o —— parabolic indenter
o o conical indenter
; indenter with k=3
0.6
0.4 -_————M -
0.0 0.2 04 0.6 0.8

k(a /2R or tangs
Fig. 4:hy/h function ofk(at/2R)Hortar18
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5. Definition of a new pile-up function

5.1 Cone and indenter with a shape described by a power law

We propose to compare the pile-up heibkt obtained for conical indentation and that
obtained with an indenter described by power lagfilex.

Using Egs. (5) and (11) lead to the pile-up helgkt for indentemwith a shape described by a
power law:

he & [
o= 2

Egs. (6) and (11) lead to the pile-up heilghah for a conical indenter:

Cl

hc—h:tan,B.at(l—ij (13)

When the equality of pile-up height whatever thergetry is respected, we can write:
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h-h=—2 (1—%)=tanﬂq(1—%j (14)

C

Using the geometrical equivalence given by Eq. (8%, equality becomes:

_k+2(, 1) (1
A== (1 c") [1 clj (15)

In this equation, a new functian for the pile-up height is introduced. Equality offor
various indentation tests indicates thmgth is equal when the equality of the volurive
displaced under the contact area for the same corddiusa. is respectedConsidering a
parabolic indenterkE2), Eq. (15) leads to the following equivalence:

=2(1-L)=(1-2
=21 2)-(s-2) -

We propose to compare the new pile-up functiogiven by Eq. (15) obtained for parabolic
and conical geometries calculated for the samedesample £/Y=1000andn=0.25). For a
conical indenter with a fixefl, 4 is a constant during indentation test while it @ases with
the a/R ratio for an indenter described by a power lawngetny. Fig. 6 shows that using
formulation (16) allows the superposition of téanSG:quvalet CUrves obtaineavith conical
geometries and geometries with a power law prefide the results are not superposed when
using thehy/h ratio (Fig. 5).

It is thus shown that a unique indentation testgoered with an axisymmetric geometry with
a power law profile describes the sam®¥ and4 changes than several conical indenters (Fig.
3 and 6). Eqg. (9) gives an equivalent valuetasfs and Eq. (15) gives a universal pile-up
function for an indenter with a shape describea ppwer law.

This new universal pile-up function leads to a $faon between sink-in and pile-up 4+0
whatever the mechanical properties if we have @nahiexhibiting a transition between sink-
in and pile-up during indentation.
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Fig. 6: New pile-up functiod versustanfequivalent

5.2 Spherical and parabolic indenters

The study of parabolic indentation was useful ideorto distinguish the influence of the
material and the geometrical properties on theiogiship between the contact radius and the
penetration depth. However, the study of spheiitdéntation is necessary because the ball
indenter is a precision instrument which is easyntake, yet robust, inexpensive and thus
often used for experimental tests. The problemefastic solids in spherical indentation was
solved by Segedin (1957) and then it was discubyefineddon (1965). Moreover, using a
similarity approach for non linear elastic (isoti@pr anisotropic) materials, Borodich (1993)
has developed a theory involving indenter shapedegfreek. He also superposed results
obtained with different spherical indenters withvesal radii. Despite the fact that the
similarity approach proposed by Borodich is valior felastic materials, the proposed
formulations lead to a formula similar to the enual law of Meyer. This method can be
extended to other indenters shapes changing facidfe can also quote Borodich and Keer
(2004) and Borodiclet al. (2003).

If we call ¢® the sphericahy/h ratio which is different t@® calculated for a parabolic indenter.
The contact radius for spherical indenter with@iuaR is given by:

a, = (2Rhcf -(¢ r)z)o's (17)
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For a spherical geometry, the relationship betwwemizontal and vertical coordinateandy
is:

y=R-R?-r2 (18)

The volumeV under the contact area and the pile-up helght are then given by the
following relationships:

1 2 1f 5 292 1 o
V=2m=-Ra"+=|R" - -—R 19
7{2 a5 (R -a?f -3 ) (19)

hc—h:(R—J@)(l—isj (20)

c

Using Egs. (8) and (19), it is possible to detemanihe geometrical equivalence between
spherical and conical geometry, {8, and the new pile-up functiod, as following:

ivalent?
R rRY [ (RY
LB 4 e o
a 2 a
R [[RY
R_ ( N
et
2 3
erile) ) Aa)
a 2 ] a
Using Taylor series to develop Eqg. (21) leads efdtlowing approximation ofanSequivatent
3&0161033&65361077ac9 ac11
tar‘:Bequivalent:__'l-_ — |t =t =] t==l=| T9| = (23)
4 R 8{R 64\ R 128 R 512\ R R

In a first order approximation, we find the samenfalation than the one developed for
parabolic indenterkE?2) in Eq. (10):

tanlgequivak-:‘nt

A=

(24)

o |

3
tanﬁequivalent = Z

In the literature, the contact radius for sphericalentation is often determined with the
approximation with a parabolic geometry given by E). (Hernot et al (2006) and Bartier
and Hernot (2012)) showed that this approximatioasdnot lead to a good prediction of the
contact radius of the sphere whagiR>0.2 becausec® underestimates the contact radius.
When the profile of the spherical indenter cannet dpproximated by a paraboloid of
revolution, i.e. whem/R>0.2, it is necessary to usg=h.h for spherical indenter in order to

qguantify the pile-up degree (eq. (17)).
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Fig. 7 shows that®=h/h for spherical indenter ancf=h./h for parabolic indenter are very
close until values odi/R approximately equal to 0.3. From this value, tlitecence becomes
significant because of the difference between thapes of the parabolic and spherical
indenters. Using the geometrical equivalence batwsggherical and parabolic geometries
defined by Egs. (10) and (21), the new pile-up fiamc4 given by Eq. (22) for spherical
geometry and that given by Eq. (16) for parabo&omgetry are very close until large values
of contact radius (Fig. 8). These result confirimat tthe pile-up height).-h, is the same for
various geometries of indentethen the equality of the volumédisplaced under the contact
area for the same contact radagss respected.

12
1.1 1

A

0.9 —— parabolic indenter
spherical indenter

ile-up

p

sink

0.8

hJh

07 pile-up
sink-in

0.6

0.5 -

0.4 L L |
0.0 0.2 0.4 0.6 0.8 1.0

a/R

c

Fig. 7: Comparison betweefrh./h for spherical indenter arad=h//h for parabolic indenter.
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Fig. 8: New pile-up functionl versus equivalertaing for spherical and parabolic indenters.
5.3. Comparison with literature

In order to validate the proposed formulations, prepose to make a comparison with the
literature values given by Bowet al. (1993) and Felder (2006). The literature values®of
andc? for a rigid perfectly plastic sample are giverTiable 1. Boweet al. (1993) proposed
different values of thens/h ratio for conical and spherical indentations wih without
friction. Felder (2006) proposed a unique averagaesof ho/h ratio for conical and spherical
indentations. Watching the first line of Table Bower et al. calculatedc'=1.263 for a
frictionless conical indentatiord£70.3° andc’=1.44 for a frictionless spherical indentation
which represents a difference 3% between the twbd/h ratios.

Table 2. shows the values of the new pile-up parardecalculated from the values of and

¢? presented in Table 1. For the Bovetral. frictionless results (first line in Table 2.), ngi
Eq. (15) leads td=0.208 for the conical indenter ant=0.203 for a parabolic indenter which
represents a difference @f4% Using Eq. (22) leads td=0.208 (a/R=0.5) for spherical
indenter which demonstrates a perfect superposhigiween the new conical and spherical
pile-up parametet.

Conical indenter k=7 Parabolic indenter k=2 Sperical indenter
Zero friction (Bower et al., 1993) 0.208 0.203 0.208
Sticking friction (Bower et al., 1993) 0.173 0.167 0.170
Felder model (2006) 0.180 0.180 0.184

Table 2. New pile-up parametgrcalculated from literature values
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Concerning the three different lines in Table 2.0aa see that we have very close values of
whatever the geometry. The differences which oactine three different columns are due to
the friction conditions. We can also see that teklér values are more close to the sticking
friction values obtained by Bowet al.than the frictionless values.

6. Conclusion

Geometrical assumptions have allowed us to proposeew universal formulation to
superpose indentation results whatever the geometry

First of all, a geometrical equivalence betweenhaps described by a power law and a
conical geometry has been introduced. A compaisiween spherical indenter and a shape
described by a power law has allowed us to gezerdhie equivalence between the conical
geometrical parametéans and the spherical or power law shape geometraxametead/R.

Moreover, a new pile-up paramet¢thas been introduced. It allows quantifying the{pip
degree with a same value for conical indenter,nbtetewith a shape described by a power law
or spherical indenter while the former parametezsevdependant on the indenter geometry.

Using this new formulation leads to a perfect sppsition between conical, shape described
by a power law and spherical indentation datasIthus shown that a unique spherical
indentation test will give the same results tharesd conical indentation tests (with different

apex angles). The results proposed in this papertie good results for quite low Y/E values

and high work hardening exponents for which theemdtion regime can be considered as
elastic-plastic. Further investigations will contether materials for which the indentation

regime will be elastic or fully-plastic.
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