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Abstract 
 
We propose in this paper a geometrical equivalence between a shape described by a power 
law and a conical geometry. A theoretical and numerical study has allowed us to generalize an 
equivalence between the conical geometrical parameter tanβ and the spherical or power law 
shape geometrical parameter ac/R. Moreover, in order to superpose indentation data whatever 
the geometry, a new pile-up parameter ∆ has been introduced. For one set of mechanical 
properties of the tested sample, this new formulation leads to a perfect superposition between 
conical, power law shape and spherical indentation data. At the end of this paper, we propose 
a comparison between the results proposed in literature and the present formulation.  
 
1. Introduction 
 
The indentation test was developed several decades ago in order to determine certain 
mechanical properties. It becomes an important subject of interest for many mechanical 
engineering industries. An instrumented indentation test consists in measuring simultaneously 
indentation load F and indentation depth h during the penetration of an indenter into a sample. 
The contact hardness H (Meyer, 1908) has been introduced by the following relationship: 
 

2
ca

F
H

π
=            (1) 

 
In Eq. (1) contact radius ac is a fundamental indentation data, it is the link between indenter 
and tested sample. Different kind of indenter geometries are commonly used, they can be 
grouped in two families: 
 
- the sharp indenters (Vickers, Berkovich, Knoop and cone) which can be correctly modelled 
by an equivalent conical geometry, they can be called axisymmetric cones. For Vickers and 
Berkovich indenters, the half-apex angle of the equivalent cone is θ=70.3°. In the theoretical 
studies formulations are often written with β=π/2-θ.   
 
- the spherical indenters (radius R) which can be correctly modelled by a parabolic geometry 
for the low ac/R ratios.  
 
For conical indentation, it is commonly assumed that the indentation pressure on elastic-
perfectly plastic materials may be correlated on a non-dimensional graph of H/Y as a function 
of the so called Johnson parameter E*tanβ/Y,  where E* is the reduced modulus of the contact 
(Johnson, 1970, Larsson, 2008, Bartier and Hernot, 2012). For a conical indenter with a fixed 
β, H/Y is a constant during indentation test while it varies with the ac/R ratio for parabolic or 
spherical indenters. For spherical indention, it is considered that tan sin /ca Rβ β≈ = where β 

is the contact angle between the indenter and the tested sample at the edge of the contact. 
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Using the equality given above, Johnson (1970) found a good correlation between the 
indentation pressures obtained for conical and spherical indentation. 
 
Because surface's sample can present sink-in or pile-up, it is not possible to directly determine 
the contact radius ac from the indentation depth h. A great number of studies have been 
conducted in order to quantify sink-in or pile-up degree. The ratio between the contact depth 
hc and the indentation depth h is called ck. c1 or c2 are used respectively for conical or 
spherical indenter. Using these ratios, the contact radius can be calculated with Eq. (2) and 
Eq. (3) respectively for conical and spherical indenter: 
 

1

tanc

c
a h

β
=            (2) 

 
2 22ca Rc h=            (3) 

 
Eq. (3) is often used in the literature; it is based on an approximation of the exact function of a 
sphere (Eq. (4)) by a parabolic geometry. In this approximation, hc² is considered as negligible 
compared to 2Rhc.  
 

22 2 ccc hRha −=           (4) 

This is the reason why the pile-up degree has been quantified by c2 in the case of spherical 
indentation. Many authors have developed models to quantify c2 depending on the mechanical 
properties of the tested sample. At the beginning, this parameter has been considered as a 
constant during a spherical indentation test. It is with this assumption that Matthews (1980), 
Hill et al. (1989), Biwa and Storakers (1995), Taljat et al. (1998), Alcala et al. (2000) showed  
that c2 is linked to the strain hardening exponent of the indented material. It has been shown 
that the assumption of constant c2 is only valid for rigid plastic materials and low values of 
contact radius (Bartier and Hernot, 2012). In the case of elastic-plastic materials, c2 depends 
not only on the strain hardening exponent, n, but also on the relative amount of elastic and 
plastic deformation as characterized by the non-dimensional material parameter E/Y and the 
non-dimensional depth of penetration, h/R,(Taljat and Pharr, 2004, Lee et al. 2005, Hernot et 
al., 2006, Kim et al, 2006, Bartier et al., 2010).  
For an elastic-plastic material, it is thus now well known that the pile-up degree changes 
during a spherical indentation test while it remains constant during a conical indentation test. 
Concerning the conical indentation, the pile-up degree does not change during the indentation 
test because of the self-similarity of the geometry.  
Table. 1. shows the comparison between c1 and c2 calculated from two different formulations 
(Bower et al., 1993 and Felder, 2006) for a rigid perfectly plastic sample. This table illustrates 
that even if the mechanical properties of the sample are the same, the pile-up parameters have 
not the same values for conical or spherical geometries.  
 

 
Table. 1. Comparison between C1 and C2 (Felder, 2006) 
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To conclude, the problem of elastic solids indented by punches of various profiles was solved 
by Love ((1939), Segedin (1957) and Sneddon (1965). For elastic indentation, the sink-
in/pile-up degree remains constant and correlations between conical, spherical or punch of 
arbitrary profile can be easy deduced from analytical formulations. In the case of indentation 
of elastic-plastic solids, it has been shown that the pile-up degree remains constant during a 
conical indentation while it changes during a spherical indentation. Indeed, for the conical 
indentation, the contact radius is linked to the pile-up depth with a constant geometrical 
parameter tanβ. Concerning the spherical indentation, the pile-up degree increases with the 
ac/R ratio. However, it does not yet exist a formulation to make the link between c2 and c1. 
The aim of this work is to propose a universal normalized formulation in order to superpose 
the results obtained in indentation whatever the geometry when plasticity occurs.  
 
2. Indentation morphology for conical indentation and indentation with an indenter with 
a shape described by a power law  
 
It has been shown, in section 1, that using c2 for spherical indentation come from an 
approximation of a sphere by a parabolic geometry when the ac/R ratio is low. However, c2 is 
valid for a whole indentation test realized with a parabolic indenter. We propose to begin with 
the comparison between an indenter shape described by a power law (Eq. (5) with  k>1) and a 
conical indenter (Eq. (6)). In the case where k=2, R is the radius of the osculating circle at the 
bottom of the indenter. For k>2, R is introduced to keep a length parameter in equation (6).    
  

( ) 12 −= k

k

R

r
y            (5) 

 
ry .tanβ=            (6) 

 
In Eqs (5) and (6) r and y are respectively the horizontal and vertical coordinate. In Eq. (5) k 
is the exponent of the power geometry and R is introduced in order to make an analogy with 
Eq. (3). We can notice that considering k=1 leads to the description of an axisymmetric cone 
with an angle β=45°.  
 
Fig. 1 shows the fundamental indentation data that will be used in order to develop the 
theoretical formulations: the contact radius ac, the displaced volume V under the contact area, 
the applied load F, the contact depth hc and the indentation depth h.  
 



4/15 

 
Fig. 1. Indentation data for the two indenters geometries  

  
In the following sections, theoretical formulations will be illustrated with the results obtained 
by finite element simulations of indentation performed with a parabolic indenter (k=2),  an 
indenter with a shape described by a power law of k=3 and a conical indenter on a sample 
with the same mechanical properties. Indenter is considered as rigid and the contact problem 
is considered as frictionless. This sample is considered as elastic - plastic with isotropic 
hardening described by a power law associated to the J2 flow stress theory. The behaviour 
law considered is εσ E=  for σ<Y and nnn

y E εσσ −= 1  for σ>Y. Materials properties are Young 

modulus E=210GPa, Poisson ratio ν=0.3, yield stress Y=210MPa and work hardening 
exponent n=0.25." 
 
3. Correlation between the indentation pressures H/Y 
 
The normalized hardness H/Y obtained for conical geometries and axisymmetric geometries 
with a power law profile are compared. For this comparison, the so called Johnson parameter 
(Johnson, 1970) is reduced to tanβ for conical indentation and ac/R for spherical indentation. 

Using the same assumption for power-law shaped indenters we obtain ( ) 1
/ 2

k

ck a R
−

which is 

the tangent at the edge of the contact between indenter and material. Fig. 2 shows that the 

curves H/Y=f( ( ) 1
/ 2

k

ck a R
−

) for indenters with a power law profile and H/Y=f(tanβ) for 

conical indenters are not superposed. This result demonstrates that the indentation pressures 
by axi-symetrical indenters of arbitrary profiles into elastic-plastic materials do not correlate 

when using the so called Johnson parameters E*tanβ/Y  and ( )( )1* / 2
k

cE k a R Y
−

).   

h hc h hc 
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Fig. 2: Normalized hardness function of ( ) 1

/ 2
k

ck a R
−

or tanβ 

 
We propose to use the assumption of equality of volume displaced V under the contact area 
for the same contact radius ac in order to correlate the variation of  H/Y obtained for various 
shapes of indenter. This assumption is quite similar to the one used in order to determine the 
equivalent cone of a Berkovich or Vickers indenter.  
   Using Eqs. (5) and (6) the volume of the indenter under the contact depth is given by Eq. (7) 
for an indenter shape described by a power law and Eq. (8) for a conical indenter: 
 

( )( ) 1

2

2.2

..
−

+

+
= k

k
c

Rk

ak
V

π
          (7) 

 

βπ
tan

3
3

caV =           (8) 

 
Equality of Eqs. (7) and (8) leads to the geometrical equivalence between a shape described 
by a power law and a conical geometry as following: 
 

βtan
22

3
1

=








+

−k

c

R

a

k

k
          (9) 

 
Considering a parabolic indenter (with k=2) in Eq. (9) leads to the following equivalence:  
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βtan
4

3 =
R

ac            (10) 

 
 
Fig. 3 shows that using formulation (9) allows the superposition of the H/Y curves for 
geometries with a power law profile (k=2 and k=3) and conical geometries. It is thus shown 
that a unique indentation test with an indenter with a shape described by a power law leads to 
the same hardness changes than several conical indentations. Eq. (9) gives an equivalent value 
of tanβ for an indenter with a shape described by a power law.  

 
Fig. 3: Normalized hardness function of tanβequivalent 

 
 
4. Correlation between the ck=hc/h surface deformation parameters. 
 
By using the transformation method suggested by Hill et al. (1989), it is shown that the 
indentation problem can be reduced to a form which is independent of the geometry of the 
punch and depends only on the material properties. By noticing that the velocity fields under a 
punch have certain self similar properties,  it is possible to calculate the stress and the velocity 
field under a punch with a profile given by (5) and (6). The indentation analysis is reduced to 
calculating stresses and displacements in a solid, indented to a unit depth by a rigid flat punch 
of a unit radius. In self similarity methods ck was defined as an eigenvalue of the indentation. 
This theory has been analytically developed for linear elastic materials. However, this theory 
has extended to plastic and creeping materials by considering non linear elastic behaviour. 
(Hill et al. 1989, Storacker and Larsson 1994, Shu and Fleck 1998, Larsson 2008) and for 
rigid plastic materials by Biwa and Storacker (1995). From a physical point of vue, c 
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determines the ratio of the true to nominal contact radius under the punch, i.e ac/a. ck 
corresponds to the ratio between the contact depth hc and the indentation depth h. i.e.: 

k ch
c

h
=            (11) 

c and ck control the vertical displacement of the surface at the edge of the contact area. If c or 
ck <1, material is pushed into the surface at the edge of the contact, while if c or ck >1, 
material piles up at the side of the indentation. Comparison between values of c or ck obtained 
for conical and spherical indentation of rigid perfectly plastic materials was performed in the 
literature (Bower, Felder). The examination of the values of c and ck found by Bower and 
Felder, respectively shows that no identical values of ck is obtained for spherical and conical 
indentation of rigid perfectly plastic material.  Fig. 4 confirms that the ratios between the 
contact depth and the indentation depth obtained for various shapes of indenter does not 
superpose on a non-dimensional graph of ck as a function of the so called Johnson parameter 

tanβ or ( ) 1
/ 2

k

ck a R
−

. Fig. 5 also illustrates that the use of Eq. (9) leads to closer results but 

is not sufficient to superpose the indentation results concerning the pile-up degree. We thus 
can conclude that hc/h ratio is not a universal data to quantify the pile-up degree whatever the 
geometry.  
 

 
 
 

 
Fig. 4: hc/h function of ( ) 1

/ 2
k

ck a R
−

or tanβ 
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Fig. 5: hc/h function of tanβequivalent 

 
 
5. Definition of a new pile-up function  
 
5.1 Cone and indenter with a shape described by a power law 
 
We propose to compare the pile-up height hc-h obtained for conical indentation and that 
obtained with an indenter described by power law profile. 
Using Eqs. (5) and (11) lead to the pile-up height hc-h for indenter with a shape described by a 
power law: 
 

( ) 1

1
1

2

k
c

c k k

a
h h

cR
−
 − = − 
 

         (12) 

 
Eqs. (6) and (11) lead to the pile-up height hc-h for a conical indenter: 
 

1

1
tan . 1c ch h a

c
β  − = − 

 
          (13) 

 
When the equality of pile-up height whatever the geometry is respected, we can write: 
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( ) 1 1

1 1
1 tan . 1

2

k
c

c ck k

a
h h a

c cR
β−

   − = − = −   
   

      (14) 

 
Using the geometrical equivalence given by Eq. (9), this equality becomes: 
 

1

2 1 1
1 1

3 k

k

k c c

+    ∆ = − = −   
   

        (15) 

In this equation, a new function ∆ for the pile-up height is introduced. Equality of ∆ for 
various indentation tests indicates that hc-h is equal when the equality of the volume V 
displaced under the contact area for the same contact radius ac is respected. Considering a 
parabolic indenter (k=2), Eq. (15) leads to the following equivalence:  
 

2 1

2 1 1
1 1

3 c c
   ∆ = − = −   
   

         (16) 

 
We propose to compare the new pile-up function ∆ given by Eq. (15) obtained for parabolic 
and conical geometries calculated for the same tested sample (E/Y=1000 and n=0.25). For a 
conical indenter with a fixed β, ∆ is a constant during indentation test while it increases with 
the ac/R ratio for an indenter described by a power law geometry. Fig. 6 shows that using 
formulation (16) allows the superposition of the ∆-tanβequivalent curves obtained with conical 
geometries and geometries with a power law profile while the results are not superposed when 
using the hc/h ratio (Fig. 5).  
It is thus shown that a unique indentation test performed with an axisymmetric geometry with 
a power law profile describes the same H/Y and ∆ changes than several conical indenters (Fig. 
3 and 6). Eq. (9) gives an equivalent value of tanβ and Eq. (15) gives a universal pile-up 
function for an indenter with a shape described by a power law.  
This new universal pile-up function leads to a transition between sink-in and pile-up at ∆=0 
whatever the mechanical properties if we have a material exhibiting a transition between sink-
in and pile-up during indentation. 
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Fig. 6: New pile-up function ∆ versus  tanβequivalent 

 
5.2 Spherical and  parabolic  indenters 
 
The study of parabolic indentation was useful in order to distinguish the influence of the 
material and the geometrical properties on the relationship between the contact radius and the 
penetration depth. However, the study of spherical indentation is necessary because the ball 
indenter is a precision instrument which is easy to make, yet robust, inexpensive and thus 
often used for experimental tests. The problem for elastic solids in spherical indentation was 
solved by Segedin (1957) and then it was discussed by Sneddon (1965). Moreover, using a 
similarity approach for non linear elastic (isotropic or anisotropic) materials, Borodich (1993) 
has developed a theory involving indenter shapes of degree k. He also superposed results 
obtained with different spherical indenters with several radii. Despite the fact that the 
similarity approach proposed by Borodich is valid for elastic materials, the proposed 
formulations lead to a formula similar to the empirical law of Meyer. This method can be 
extended to other indenters shapes changing factor k. We can also quote Borodich and Keer 
(2004) and Borodich et al. (2003).  
 
If we call cs the spherical hc/h ratio which is different to c2 calculated for a parabolic indenter. 
The contact radius for spherical indenter with a radius R is given by:  
 

( )( )0.52
2 s s

ca Rhc c h= −          (17) 
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For a spherical geometry, the relationship between horizontal and vertical coordinate r and y 
is: 
 

22 rRRy −−=           (18) 
 
The volume V under the contact area and the pile-up height hc-h are then given by the 
following relationships:  
 

( ) 






 −−+= 323222

3

1

3

1
.

2

1
2 RaRaRV ccπ        (19) 

 

( )2 2 1
1c c s

h h R R a
c

 − = − − − 
 

        (20) 

 
Using Eqs. (8) and (19), it is possible to determine the geometrical equivalence between 
spherical and conical geometry, tanequivalentβ , and the new pile-up function, ∆ , as following: 

 
3 22 3

tan 3 2 1 2 tanequivalent
c c c

R R R

a a a
β β

    
 = + − − =   
     

      (21) 

 
2

13 22 3

1
1 1

1 1

3 2 1 2

c c

s

c c c

R R

a a

c c
R R R

a a a

 
− − 

    ∆ = − = −   
           + − −          

     (22) 

 
Using Taylor series to develop Eq. (21) leads to the following approximation of tanβequivalent:  
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In a first order approximation, we find the same formulation than the one developed for 
parabolic indenter (k=2) in Eq. (10): 
 

3
tan

4
c

equivalent

a

R
β =           (24) 

 
In the literature, the contact radius for spherical indentation is often determined with the 
approximation with a parabolic geometry given by Eq. (3). (Hernot et al (2006) and Bartier 
and Hernot (2012)) showed that this approximation does not lead to a good prediction of the 
contact radius of the sphere when ac/R>0.2 because c2 underestimates the contact radius. 
When the profile of the spherical indenter cannot be approximated by a paraboloid of 
revolution, i.e. when ac/R>0.2, it is necessary to use cs=hc/h for spherical indenter in order to 
quantify the pile-up degree (eq. (17)). 
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Fig. 7 shows that cs=hc/h for spherical indenter and c2=hc/h for parabolic indenter are very 
close until values of ac/R approximately equal to 0.3. From this value, the difference becomes 

significant because of the difference between the shapes of the parabolic and spherical 
indenters. Using the geometrical equivalence between spherical and parabolic geometries 
defined by Eqs. (10) and (21), the new pile-up function ∆ given by Eq. (22) for spherical 
geometry and that given by Eq. (16) for parabolic geometry are very close until large values 
of contact radius (Fig. 8). These result confirms that the pile-up height, hc-h, is the same for 
various geometries of indenter when the equality of the volume V displaced under the contact 
area for the same contact radius ac is respected. 
 

 
 

Fig. 7: Comparison between cs=hc/h for spherical indenter and c2=hc/h for parabolic indenter. 
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Fig. 8: New pile-up function ∆ versus equivalent tanβ for spherical and parabolic indenters.  

 
5.3. Comparison with literature  
 
In order to validate the proposed formulations, we propose to make a comparison with the 
literature values given by Bower et al. (1993) and Felder (2006). The literature values of c1 
and c2 for a rigid perfectly plastic sample are given in Table 1. Bower et al. (1993) proposed 
different values of the hc/h ratio for conical and spherical indentations with or without 
friction. Felder (2006) proposed a unique average value of  hc/h ratio for conical and spherical 
indentations. Watching the first line of Table 1., Bower et al.  calculated c1=1.263 for a 
frictionless conical indentation (θ=70.3°) and c2=1.44 for a frictionless spherical indentation 
which represents a difference of 14% between the two hc/h ratios.  
 
Table 2. shows the values of the new pile-up parameter ∆ calculated from the values of c1 and 
c2 presented in Table 1. For the Bower et al. frictionless results (first line in Table 2.), using 
Eq. (15) leads to ∆=0.208 for the conical indenter and ∆=0.203 for a parabolic indenter which 
represents a difference of 2.4%. Using Eq. (22) leads to ∆=0.208 (ac/R=0.5) for spherical 
indenter which demonstrates a perfect superposition between the new conical and spherical 
pile-up parameter ∆.  
 

 
Table 2. New pile-up parameter ∆ calculated from literature values 
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Concerning the three different lines in Table 2. we can see that we have very close values of ∆ 
whatever the geometry. The differences which occur in the three different columns are due to 
the friction conditions. We can also see that the Felder values are more close to the sticking 
friction values obtained by Bower et al. than the frictionless values.  
 
6. Conclusion  
 
Geometrical assumptions have allowed us to propose a new universal formulation to 
superpose indentation results whatever the geometry.  
 
First of all, a geometrical equivalence between a shape described by a power law and a 
conical geometry has been introduced. A comparison between spherical indenter and  a shape 
described by a power law has allowed us to generalize the equivalence between the conical 
geometrical parameter tanβ and the spherical or power law shape geometrical parameter ac/R.  
 
Moreover, a new pile-up parameter ∆ has been introduced. It allows quantifying the pile-up 
degree with a same value for conical indenter, indenter with a shape described by a power law 
or spherical indenter while the former parameters were dependant on the indenter geometry.  
 
Using this new formulation leads to a perfect superposition between conical, shape described 
by a power law and spherical indentation data. It is thus shown that a unique spherical 
indentation test will give the same results than several conical indentation tests (with different 
apex angles). The results proposed in this paper lead to good results for quite low Y/E values 
and high work hardening exponents for which the indentation regime can be considered as 
elastic-plastic. Further investigations will concern other materials for which the indentation 
regime will be elastic or fully-plastic.   
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