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Abstract

The electrochemical properties of Ti20Mo alloys prepared using different fabrication 

procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were 

investigated using linear potentiodynamic polarization and EIS measurements. The 

surface condition was established using AFM, with the observation of a more porous 

surface finish in the case of powder sintering. A major effect of surface conditioning on 

the corrosion resistance of Ti20Mo alloys was observed, where the compact finish 

exhibits a superior corrosion resistance in chloride-containing saline solutions. Less 

insulating surfaces towards electron exchange resulted for the more porous finish as 

revealed by scanning electrochemical microscopy (SECM).

Keywords: A. Alloy; A. Titanium; B. AFM; B. EIS; B. Polarization; C. Passivity.
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1. Introduction

Metallic biomaterials present a high potential for biomedical applications, due to 

their excellent mechanical strength that is outstanding in comparison with polymers or 

ceramics. Standard metallic biomaterials include stainless steels, cobalt-based and 

titanium-based alloys. Ti-based alloys are generally preferred to stainless steels and 

cobalt-based alloys because of their properties: high corrosion resistance, 

biocompatibility and adequate mechanical properties [1]. Their remarkable corrosion 

resistance is due to the passive oxide layer formed on the surface of titanium in air or in 

most aqueous solutions. The electrochemical properties of the oxide layer constitute a 

key factor for biocompatibility of titanium and its alloys. Commercially pure titanium 

(Cp-Ti) and Ti6Al4V alloy are currently the most widely used metallic materials in 

biomedical applications. However, the release of V and Al ions to the human body causes 

long-term adverse reaction with body tissues [2]. Thus, new Ti-based alloys containing 

non-toxic elements (Nb, Ta, Zr, Mo, Sn) are of special interest for the biomedical field. 

Among them, Mo participates in the regulation of the pH balance in the body [3]. 

–stabilizers improves the corrosion resistance [4-

10], in addition to adequate mechanical compatibility and good cytocompatibility [11-16] 

despite one controversial report [17]. Unfortunately, titanium and molybdenum are 

difficult to alloy through a conventional melting-casting process due to the big difference 

in melting point and specific gravity between the two metals. New fabrication procedures 

were thus developed, particularly powder sintering [10,18-20] and cold crucible levitation 

melting [21] are efficient methods for the synthesis of Ti-Mo alloys in a wide range of 

compositions. Though similar composition ranges are achieved with the two kinds of 
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procedures, their fabrication procedures are significantly different and produce materials 

with variations in the microstructure as revealed by the major difference in porosity that 

is observed. Due to its more porous structure, sintered alloys exhibit a decrease in the 

elastic modulus of solid materials [10,22], which is often claimed to be benefitial for 

biomaterial application because porous structures promote tissue in-growth [23,24]. More 

porous surfaces can also be produced by means of surface processing techniques, in an 

attempt to enhance biocompatibility [16].

The purpose of this study was to investigate the effect of alloy fabrication 

procedures on the corrosion resistance of Ti20Mo alloys, by considering samples 

fabricated using cold crucible levitation melting (CCLM) and powder sintering, 

respectively. Two different surface conditions with major changes in surface roughness 

were thus produced. Since chloride ions are known to promote instabilities and eventual 

local breakdown of the protecting passive layers formed on Ti-based biomaterials [25-

29], a saline solution was chosen as the test environment. Conventional electrochemical 

and scanning electrochemical techniques were employed to evaluate the stability and 

reactivity of the protective oxide layers formed on the surface of the alloys. 

2. Materials and methods

2.1. Materials

Experiments were carried out on two Ti20Mo alloys (20 wt.% of Mo) with 

different surface finish (compact and porous). The compact Ti20Mo alloy was 

synthesized by the cold crucible levitation melting (CCLM) technique following the 
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procedure described before [21]. It involved the use of an induction furnace (Fives Celes, 

Lautenbach, France) operating under a pure Ar atmosphere, which was introduced after 

several cycles of high vacuum pumping, was employed. After solidification, the alloy 

was heat treated at 950 ° -phase domain) in order to 

homogenize the microstructure due to the thermal gradient occurring during 

solidification, and then water quenched. The ingots were cold rolled to 90% in thickness 

and machined to obtain the test samples. After this mechanical treatment, the samples 

were solution treated at 850 °C for 30 minutes and water quenched. The aim of this 

treatment was to restore a fully recrystallized metastable  microstructure from the cold-

rolled state. The test samples in the form of rods were cut into disks of 0.28 cm
2
 circular 

area. They were ground with SiC abrasive paper up to 2000 grit, followed by a final 

with ethyl alcohol, ultrasonically cleaned in deionized water, and finally dried under air 

stream.

The porous Ti20Mo alloy has been synthesized following the powder sintering 

procedure described elsewhere [16]. In brief, metal powders of Ti and Mo were dry 

mixed and compacted in cylinders by cold uniaxial compacting under a pressure of 400 

MPa. Sintering was carried out under a high purity argon atmosphere. Samples were 

sintered at 1350 °C for 48 h in a medium frequency induction vertical furnace and 

naturally cooled. 

2.2. Electrochemical tests
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The alloy samples were placed in a glass corrosion flow cell kit (C145/170, 

Radiometer, France), which was filled with naturally-aerated saline solution [30]. The 

tests were conducted in three saline solutions with 1, 2 and 3 wt.% NaCl. The pH of the 

three saline solutions was 6.9. A saturated calomel electrode was used as the reference 

electrode, and a platinum coil as the counter electrode. The potentials in this paper are 

reported versus the saturated calomel electrode (SCE). Measurements were performed at 

room temperature (22 ± 3 °C).

Conventional electrochemical measurements were performed using a potentiostat 

Model PARSTAT 4000 (AMETEK, Berwyn, PA, USA). The instrument was controlled 

by a personal computer using VersaStudio software. The electrochemical impedance was 

measured before performing the potentiodynamic polarization test. Electrochemical 

impedance spectroscopy (EIS) and potentiodynamic polarization and methods were 

employed to characterize the corrosion behaviour of the Ti20Mo alloy surface 

preparations. The alternating current (AC) impedance spectra were obtained with a scan 

frequency ranging from 100 kHz to 1 mHz with an amplitude of 10 mV. The 

electrochemical impedance spectra were obtained at different times (1 hour and 1 day) 

after the electrode was immersed in the saline solution. The EIS experimental data were 

analyzed in terms of equivalent circuits (EC) using ZSimpWin 3.22 software (AMETEK, 

Berwyn, PA, USA). Potentiodynamic measurements were also carried out in all three 

saline solutions at room temperature using the same potentiostat. These measurements 

were conducted by stepping the potential using a scanning rate of 1 mV s  from 

+1.0 VSCE.
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A high-resolution SECM equipment supplied by Sensolytics (Bochum, Germany), 

was employed for spatially-resolved characterization of the electrochemical reactivity of 

the compact and porous Ti20Mo alloys. The instrument was built around a PalmSens 

electrochemical interface (Utrecht, The Netherlands), all controlled with a personal 

computer. The alloy samples were either tested at their open circuit potentials in the test 

solutions, or polarized using the bipotentiostat built in the electrochemical interface. The 

specimens were mounted horizontally facing upwards at the bottom of a cell made of 

polytetrafluoroethene, which was equipped with an Ag/AgCl/KCl (3M) reference 

electrode and a platinum counter electrode, all set up in. For the sake of comparison, 

potentials were expressed in relation to the standard calomel electrode by taking in 

account the potential difference between the two reference electrodes. The 

electrochemical cell was located inside a Faraday cage. Tip microelectrodes were made 

-methanol was added to 

the 1 and 2 wt.% NaCl solutions to act as electrochemical mediator at the tip. To enable 

the oxidation of the ferrocene-methanol the tip was kept at a constant potential of +0.52 

VSCE [31]. The micromanipulator stand of the SECM instrument was used to hold the 

microelectrode in place. The establishment of the operating tip distance over the sample 

was performed by slowly approaching the surface of the titanium alloy sample under 

study with the tip and simultaneously recording the measured current at the 

microelectrode vs. z displacement (i.e., z–approach curve). In our experiments the 

microelectrode was stopped when the measured current changed about 30% of the 

steady-state value in the bulk of the electrolyte. Subsequently, the tip was withdrawn 10 

m from the sample surface, and images were obtained by scanning the tip parallel to the 
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sample surface (i.e., constant height operation). SECM images were obtained covering an

.

2.3. Alloy characterization methods

Topography and surface roughness were determined by atomic force microscopy 

(AFM) using a NanoSurf easyScan 2 (Nanosurf AG, Liestal, Switzerland). The 

instrument was equipped with silicon cantilevers and easyScope video camera. The 

images were recorded at a scanning rate of 0.2 s line . Two parameters were employed 

to characterize the surface roughness, namely the roughness average (Ra); and the root 

mean square roughness (Rq) [32].

Wettability of the different surface preparations of Ti20Mo was established by 

contact angle measurements. They were performed using an EasyDrop instrument (Krüss 

GmbH, Hamburg, Germany) controlled by a personal computer using Drop Shape 

Analysis specific software.

The surface morphology of the Ti20Mo samples retrieved from the 

electrochemical cell after recording the potentiodynamic polarization tests, up to +1.0 V 

(SCE) in 3 wt.% NaCl solution, was assessed using scanning electron microscopy (SEM) 

using a Quanta 3D instrument (FEI, Hillsboro, OR, USA).

3. Results and discussion

3.1. Surface characteristics
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Depending on the fabrication procedure employed to produce the Ti20Mo alloys, 

two significantly different surface finishes were obtained in this study, as characterized 

by major differences in surface roughness. Surface roughness was determined from the 

analysis of atomic force microscopy observations of the samples as given in Figure 1. A 

rugged surface was observed for the sintered sample, and it even displays the main 

direction of treatment despite the final recrystallization procedure (Fig. 1A). Conversely, 

a smoother surface resulted from the cold crucible melting process (Fig. 1B). Parameters 

regarding the surface roughness of the two samples as determined from AFM images are 

listed in Table 1, a quantification of the observed big differences in surface finish 

between the Ti20Mo alloys synthesized by each fabrication method. 

The wettability of compact and porous Ti20Mo alloys was investigated by 

dropping distilled water on their surface and subsequently recording the corresponding 

contact angles at the liquid/solid interfaces. Figure 2 depicts the results of the 

measurements performed after the samples were maintained in 3 wt.% NaCl solution for 

24 h. Both compact and porous surfaces of Ti20Mo alloys exhibited water contact angles

o
 defined as hydrophobic surfaces [33]. A higher contact angle corresponds to 

lower absorption, which means that the passive layer formed in aerated 3 wt.% NaCl 

solution on the compact Ti20Mo alloy have a high anti-corrosion properties than passive 

layer of porous Ti20Mo alloy. However, it is known that the wettability can significantly 

influence the cell adhesion; a small contact angle propels the ingrowth of bone on the 

implant surface forming biological fixation [23,24].

3.2. EIS characterization
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Impedance spectra recorded for compact and porous Ti20Mo alloys in 1, 2 and 3 

wt.% NaCl solutions at different immersion times are displayed in Figures 3 and 4 in the 

form of Nyquist and Bode diagrams. For compact Ti20Mo alloy, Nyquist diagrams show 

that the data are distributed along a single depressed, capacitive-like semicircle which is 

related to the complete passive barrier layer formed on the surface of the material. 

Conversely, EIS data for porous Ti20Mo alloy in the Nyquist format shows the presence 

of two depressed, capacitive-like semicircles: one at high frequency values that is related 

to interface formed between the electrolyte and the porous outer layer of the surface 

films, and a second semicircle present at intermediate and lower frequencies related to the 

inner passive barrier layer. That is, the oxide film responsible for the protection of the 

alloy in the environment has a duplex structure with different corrosion resistance 

characteristics. The inner part is the main contributor to protection because the outer layer 

is not effectively blocking the ingress of aggressive species of the electrolytes through its 

pores [34].

The presence of one time constant can be described by means of an equivalent 

circuit (EC) with only one parallel RQ combination as shown in Figure 5A. The EC 

consists of the parallel combination terms (RbLQbL) in series with the resistance of the 

solution (Rsol) occurring between the compact Ti20Mo sample and the reference 

electrode. The parameters RbL and QbL describe the properties of the passive layer formed 

on compact Ti20Mo alloy, respectively the barrier passive layer resistance (RbL) and 

capacitance of the barrier layer (QbL). Constant phase elements (CPE, Q) were used in the 

EC instead of capacitors (C), allowing for the effects of deviations to ideality related to 

electrode roughness and heterogeneities of the surface films to be considered. The 
2
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value, around 0.5×10 , indicates very good agreement between the experimental and 

simulated data. The values of the parameters (RbL, QbL) obtained with the fitting 

procedure are reported in Table 2. 

For the compact Ti20Mo alloy, the impedance modulus was observed to increase 

during the exposure of the samples to all three saline solutions. Barrier oxide layer can 

block the access of electrochemically active species to the electrode surface, restricting 

ion diffusion to the surface, and thus reducing the overall corrosion rate [35] which can 

explain the increase in resistance with the elapse of immersion time. A decrease of 

resistance of barrier layer with increase in concentration of chloride ions in the solution 

was also observed. 

The EC proposed to model the EIS data obtained from porous Ti20Mo alloy is 

shown in Figure 5B. In this model RbL is the barrier layer resistance and QbL is the 

capacitance of the inner layer exhibiting barrier characteristics. RpL is the additional 

resistance of the porous layer (solution inside the pores) and QpL is the capacitance of the 

pore wall. For porous Ti20Mo alloy, the resistance of barrier layer (RbL) values are 

significantly higher than the porous layer (RpL
2
, 

demonstrating that the resistance of oxide layer is due to the barrier oxide layer. Also, the 

resistance of passive layer increase during the exposure in saline solutions. This indicates 

an improved corrosion resistance in these electrolytes. It is worth noting that the values 

for RbL of the compact Ti20Mo alloy samples were about one order of magnitude higher 

compared to those for the porous Ti20Mo samples.

3.3. Potentiodynamic polarization  characterization
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Potentiodynamic polarization measurements were performed after 1 day 

immersion of the samples in the test solutions while left at their corresponding open 

circuit potentials. The potentiodynamic polarization curves of the compact and porous 

Ti20Mo alloys in saline solutions are shown in Figure 6. The curves do not exhibit a 

typical active-passive characteristic, then translating directly from the active region into a 

passive region. Additionally, in the case of compact Ti20Mo alloy given in Figure 6A, no 

breakdown of the passive layer occurs in the range of potential test (up to +1.0 VSCE). 

This indicates that the oxide layer formed on the surface of compact Ti20Mo alloys is 

integral and protective. It is well known that the corrosion resistance of a given material 

depends on several factors such as composition, environment and microstructure [36]. 

Indeed, the porous structure has an important role on the corrosion behavior. It has been 

reported that the porous materials are more susceptible to corrosion attack than the 

compact ones [37-39]. The low porosity samples (with isolated pores) are resistant to 

localized corrosion attack. However, the environment is an important factor influencing 

this type of corrosion. Thus, the porous Ti20Mo alloy in 2 and 3 wt.% NaCl solution 

displays distinct passivation behavior, and passive layer is broken.   

In general, all the polarization curves for both samples can be divided into three 

potential domains. The cathodic domain includes potentials where the current is 

determined by the oxygen reduction reaction. The second domain includes the transition 

from cathodic to anodic current at the corrosion potential (Ecor). And the third domain 

corresponds to the passive plateau were the current density is, approximately, constant. 

Finally, a fourth region was characterized only for the porous Ti20Mo alloy, that is 
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evidenced by the abrupt increase in current due to breakdown of the passive layer that 

occurred at the more positive potential values under investigation.

Tafel analysis of both the anodic and cathodic branches of the polarization curves 

delivered values for Ecor , corrosion current densities (jcor), and Tafel slopes ( a, c). In 

addition, the passive current density (jpass) was determined at +0.2 VSCE, as well as the 

breakdown potential (Ebd) in those alloys and environments were rupture of the protecting 

passive layer occurred within the potential range covered by the polarization curves. The 

corresponding corrosion parameters obtained from the polarization curves of both tested 

Ti20Mo alloys are listed in Table 3. For both compact and porous Ti20Mo alloys, 

increasing the NaCl concentration in solution slowly increased the corrosion current 

densities. It is know that corrosion resistance of titanium and its alloys is associated with 

the formation of the resistant titanium oxide layer on their surface. The corrosion current 

density of the porous Ti20Mo alloy samples were about 25-30 times higher compared to 

the compact samples. Therefore, the porous Ti20Mo alloy was quantitatively more 

susceptible to corrosion than the compact Ti20Mo alloy due to their larger true surface 

area exposed to the electrolyte. 

The dependence of passive current density of TiMo alloy on the concentration of 

NaCl in the solution is presented in Table 3. An increase in passive current density with 

increase in concentration of chloride ions in the solution was observed. Next, the average 

current densities measured in the passive regime are smaller for the compact Ti20Mo 

alloy compared to porous Ti20Mo alloy.  

The surface topography of the compact and porous Ti20Mo alloys samples 

polarized up to +1.0 VSCE in 3 wt.% NaCl solution were examined by scanning electron 
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microscopy (SEM) and are displayed in Figure 7. They revealed that uniform oxidation 

occurred on the compact Ti20Mo alloy during the corrosion test in the chloride-

containing solution, and did not show visible signs of deterioration (Figure 7A). 

Conversely, in the case of porous Ti20Mo alloy, a major distribution of corrosion pits 

randomly distributed on the surface was observed, evidences of local breakdown of the 

protective oxide layer that was unable to resist the aggressive action of chloride ions 

(Figure 7B). Indeed, the porous TiMo alloy could only show some degree of resistance 

against breakdown of the oxide layer during polarization up to +1.0 VSCE when exposed 

to the 1 wt.% NaCl solution. 

3.4. Scanning microelectrochemical microscoopy  characterization

Electrochemical reactivity towards electron exchange of the materials was 

characterized by SECM operated in the feedback mode. This was done by scanning the 

measuring tip parallel to the surface at ca. 10 µm distance in 1 and 2 wt.% NaCl 

solutions, in order to analyze the influence of the chloride anions. Figure 8 depicts the 

maps obtained with the compact Ti20Mo specimen while left unbiased or subjected to 

various constant potential polarization as to evidence the effect of the electrical condition 

of the material on the surface reactivity. Analogously, Figure 9 displays the 

corresponding surface reactivity images recorded for the porous material. 

Clear differences can be encountered for the compact metal after increasing the 

salt concentration. Notice that the same colour scale has been selected for displaying each 

couple of scans taken using the same surface electrical conditions, in order to facilitate 

the comparison. For the images recorded at both their corresponding spontaneous OCP
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conditions and under SCE polarization, positive feedback effects are better 

observed when immersed in the 2 wt.% NaCl solution. That is, normalized tip currents 

greater than unity were measured in the right column of Figures 8A-B, an indication of 

the availability of certain regions of the sample to undergo electron exchange, thus 

producing ferrocene-methanol regeneration at those locations. This feature does not 

easily occur when a similar specimen was exposed to 1 wt.% NaCl, evidencing a 

minimum salt content is required to promote deterioration of the insulating characteristics 

of the protective oxide layer formed on the surface of the material, as to eventually allow 

the electron transfer to occur. For this reason, mostly negative feedback effects are 

recorded, resulting from the blockage of the diffusion of the electroactive species towards 

the tip when it approaches the sample, as observed in the left column of Figures 8A-B. 

Figure 8C shows significantly smaller tip currents than those observed in the 

previous scans. Since this substrate potential is, from a thermodynamic point of view, 

enough to partially oxidize the redox mediator, the current decrease is an indication of the 

establishment of a competition process between the tip and the substrate to become the 

reacting sites for the oxidation of ferrocene-methanol. When the lowest salt content 

considered here is used (see left column of Figure 8C), the competitive behaviour appears 

to evolve with time during the period of time required to complete the scan acquisition. 

This scan was initiated from the lowest position of the Y axis, and doing sequential linear 

scan in the X axis, thus finishing at the highest Y coordinates. As readily observable in the 

figure, the initial linear scans of the map correspond with those lines displaying the 

highest tip current values. This current decreases progressively with the elapse of time 

and the acquisition of the scan along the Y axis. This time effect is much faster than the 
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scan acquisition itself, that is, spatial differences cannot be resolved due to a highly 

dynamic process taking place on the substrate. This observation indicates that the sample 

is becoming more conductive with time while polarized at this potential, leading to a 

more pronounced competitive behaviour. Partial degradation of the passive layer should 

thus be occurring at these initial stages. Conversely, this competition is more pronounced 

in the 2 wt.% NaCl solution without evidencing a time dependence this time, since the 

whole scanned area given in the right column of Figure 8C presents, from the very 

beginning, a heterogeneously spatially-resolved distribution of normalized currents below 

0.3, much smaller than those encountered before.

More conductive characteristics were found when analysing the porous Ti20Mo 

alloy. Indeed, Figures 9A-B show maximum tip currents higher than those registered in 

Figures 8A-B, respectively, resulting from stronger positive feedback effect. 

Additionally, in general terms it can be deduced, from Figure 9C, that competitive 

behaviour and subsequent current decay is more pronounced in the porous samples rather 

than the compact specimens when positively polarized. Again the increment in chloride 

concentration produces these effects to be enhanced, though in this case the presence of 

singularities can be clearly found when samples are immersed in 2 wt.% NaCl and 

anodically biased at potential values over SCE. Such singularities can be seen at 

the right side of Figures 9B-C, plotted in this case at their own best contrasted colour 

scale. When the sample is biased at SCE, the tip current increment detected at 

those sites reaches values as high as three times those encountered in bulk solution. This 

phenomenon can only be ascribed to a positive feedback effect, which preferentially 

takes place at those more active sites. The needed electron transfer for this observation is 
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locally favoured, probably due to local weakening of the passive layer at the pores, in 

addition to the larger volume available for the diffusion of the electroactive species 

towards the tip. From the scans, it is clear that 1 wt.% NaCl medium is not aggressive 

enough to promote the required local degradation for this highly localized phenomenon to 

occur, though the heterogeneity of the surface is evidenced with the scan given in the left 

column of Figure 9B. The above mentioned sites are preferential areas for pitting 

corrosion, though according to the cyclic polarization curve given in Figure 6B, this 

anodic overpotential is too low to promote stable pit breakdown of the surface even in 3 

wt.% NaCl. Therefore, only some pores become activated at such low polarization, and 

though they become pit nucleation sites, their growth is not sufficiently fast to be 

observed in the polarization curves that averages the current flowing over the complete 

exposed surface.

Finally, the singularity observed when the porous sample was polarized at +0.22 

VSCE in 2 wt.% NaCl (cf. right column of Figure 9C) rather close to the pitting potential 

but still lower, cannot be discussed in terms of positive feedback effect. No regeneration 

of the redox mediator is expected at this substrate potential, not even in a localized 

manner, and only slight competitive behaviour may happen through partial consumption 

of ferrocene-methanol. Since current alterations account, not only to the electron transfer 

phenomena, but also to the topography of the substrate, the occurrence of partial negative 

feedback must be the reason for this current distribution. That is, the proximity of the 

substrate partially blocks the diffusion of the redox mediator towards the UME and 

subsequently the tip current, yet this cannot occur at those region where a sufficiently 

large porous is present, and current may reach values close to those determined in bulk 
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solution. These porous could not be easily observed in Figure 9A, with sample left at the 

OCP conditions, since most of the scanned area is heterogeneously promoting the 

regeneration of the ferrocene-methanol. Though, the adequate selection of the sample 

potential enables their imaging and discussion of their properties, as demonstrated in this 

contribution. On the other hand, the heterogeneity of the sample is still evident when 

sample is immersed in 1 wt.% NaCl solution (cf. left side on Figure 9C), yet not as high 

currents are encountered over the porous. This may be simply related to the porous size 

randomly distributed and encountered, though an eventual onset of corrosion process at 2 

wt.% NaCl and subsequent reaction at the tip of any species generated at the sample 

cannot be discarded at this stage.

4. Conclusions

The effect of alloy fabrication technique and surface finish on the corrosion 

resistance of Ti20Mo alloy was studied in saline solutions of various chloride 

concentrations. The following observations were made:

(1) The presence of chloride ions in solutions had a negative influence on the 

corrosion behaviour of both compact (CCLM) and porous (sintered) Ti20Mo 

alloys. With the decrease the concentration of chloride ions the corrosion 

potential moves towards positive direction and the corrosion and passive 

current densities reduces, indicating an improvement in corrosion resistance. 

The EIS results indicate that two-layer surface film is produced on the porous 

alloy. 
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(2) The compact Ti20Mo alloy is effectively pitting corrosion resistant and 

showed lower susceptibility to chloride corrosion. Porosity had a negative 

influence on the corrosion behavior of Ti20Mo alloy. Thus, some concern 

must be taken not to select a certain surface preparation method for a given 

biomaterial exclusively based on better biological behaviour (such as smaller 

contact angles or greater porosity for enhanced biofixation). Changes in their 

electrochemical behaviour may also occur, eventually operating in the 

opposite direction as it has been shown for Ti20Mo alloys, thus compromising 

their chemical stability.

(3) Localized breakdown mainly occurs at the pores formed on the rugged surface 

of the porous specimen, and the passive layer is broken at them even at 

potential values well below the average pit potential. Scanning 

electrochemical microscopy observations thus facilitate a more clear 

understanding of the effect of pores in the degradation characteristics of the 

passive oxide layers formed on the materials when chloride ions are present in 

the environment.
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Table legends

Table 1

Surface roughness and contact angle values of the Ti20Mo alloys obtained by different 

processing techniques.

Table 2

Values of fitted parameters of the equivalent circuit as function of immersion time of 

both compact and porous Ti20Mo alloys in saline solutions. AC polarization was applied 

around their corresponding open circuit potential values in the aerated saline solutions.

Table 3

Electrochemical parameters (average value and (standard deviation)) determined from the 

polarization curves measured for both compact and porous Ti20Mo samples after 1 day 

immersion in the aerated saline solutions.
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Figure legends

Figure 1

AFM surface topography of (A) compact, and (B) porous Ti20Mo alloys. The images 

represent an 8.5 µm x 8.5 µm area.

Figure 2

Shape of liquid drop on (A) compact, and (B) porous Ti20Mo alloys after 1 day exposure 

to aerated 3 wt.% NaCl solution.

Figure 3

Measured impedance spectra for compact Ti20Mo alloy recorded at its open circuit 

potential during exposure to aerated saline solution, at different immersion times: (A,B) 1 

hour, and (C,D) 1 day. Spectra are presented as (A,C) Nyquist, and (B,D) Bode diagrams.

Figure 4

Measured impedance spectra for porous Ti20Mo alloy recorded at its open circuit 

potential during exposure to aerated saline solution, at different immersion times: (A,B) 1 

hour, and (C,D) 1 day. Spectra are presented as (A,C) Nyquist, and (B,D) Bode diagrams.

Figure 5

Equivalent circuits (EC) used to fit the impedance data.

Figure 6

Linear potentiodynamic polarization curves for: (A) compact Ti20Mo and (B) porous 

Ti20Mo samples after 1day immersion in aerated saline solution. Scan rate: 1 mV s .

Figure 7

SEM photographs of the: (A) compact Ti20Mo and, (B) porous Ti20Mo alloy samples 

retrieved from 3 wt.% NaCl solution after recording the potentiodynamic polarization 

curves.
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Figure 8

SECM images obtained over a compact Ti20Mo sample while immersed in (A,C,E) 1 

wt.%  and (B,D,F) 2 wt.% NaCl solution containing 0.5 mM ferrocene-methanol. Sample 

maintained at (A,B) the spontaneous OCP, (C,D) SCE. i / ilim is 

the dimensionless tip current. Tip potential: +0.52 VSCE. Scan rate: 25 µm s . The 

images represent a 250 µm x 250 µm area.

Figure 9

SECM images obtained over a porous Ti20Mo sample while immersed in (A,C,E) 1 wt.%  

and (B,D,F) 2 wt.% NaCl solution containing 0.5 mM ferrocene-methanol. Sample 

maintained at (A,B) the spontaneous OCP, (C,D) SCE. i / ilim is 

the dimensionless tip current. Tip potential: +0.52 VSCE. Scan rate: 25 µm s . The 

images represent a 250 µm x 250 µm area.
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Highlights

Alloy fabrication method affects both surface finish and corrosion 

resistance.

More porous surface finish and higher wettability produced by powder 

sintering. 

Passive layer formed on sintered alloy breaks down in saline solution.

Increase in surface porosity facilitated electron transfer through the 

oxide film.

More corrosion resistant alloy produced by cold crucible levitation 

melting. 
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