M. Alimahmoodi and C. N. Mulligan, Anaerobic Bioconversion of Carbon Dioxide to Biogas in an Upflow Anaerobic Sludge Blanket Reactor, Journal of the Air & Waste Management Association, vol.58, issue.1, 2008.
DOI : 10.3155/1047-3289.58.1.95

Y. Baj-on-fern-andez, A. Soares, K. Koch, P. Vale, and E. Cartmell, A review of re-use and valorisation of by-product CO 2 gas streams from anaerobic digestion sites

Y. Baj-on-fern-andez, A. Soares, P. Vale, and E. Cartmell, Enhancing the anaerobic digestion process through carbon dioxide enrichment: mechanisms of utilisation

Y. Baj-on-fern-andez, A. Soares, R. Villa, P. Vale, and E. Cartmell, Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste, Bioresource Technology, vol.159, pp.1-7, 2014.
DOI : 10.1016/j.biortech.2014.02.010

C. J. Banks, M. Chesshire, S. Heaven, and R. Arnold, Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance, Bioresource Technology, vol.102, issue.2, pp.612-620, 2011.
DOI : 10.1016/j.biortech.2010.08.005

J. C. Baudez, F. Markis, N. Eshtiaghi, and P. Slatter, The rheological behaviour of anaerobic digested sludge, Water Research, vol.45, issue.17, pp.5675-5680, 2011.
DOI : 10.1016/j.watres.2011.08.035

URL : https://hal.archives-ouvertes.fr/hal-00958284

G. Byrns, A. Wheatley, and V. Smedley, Carbon dioxide releases from wastewater treatment: potential use in the UK, Proc. Inst. Civ. Eng. 166, pp.111-121, 2013.
DOI : 10.1680/ensu.11.00037

R. Cord-ruwisch, T. I. Mercz, C. Hoh, and G. E. Strong, Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters, Biotechnology and Bioengineering, vol.28, issue.6, pp.626-634, 1997.
DOI : 10.1002/(SICI)1097-0290(19971220)56:6<626::AID-BIT5>3.0.CO;2-P

N. Eshtiaghi, S. D. Yap, F. Markis, J. Baudez, and P. Slatter, Clear model fluids to emulate the rheological properties of thickened digested sludge, Water Research, vol.46, issue.9, pp.3014-3022, 2012.
DOI : 10.1016/j.watres.2012.03.003

O. Francioso, M. T. Rodriguez-estrada, D. Montecchio, C. Salomoni, A. Caputo et al., Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production, Journal of Hazardous Materials, vol.175, issue.1-3, pp.740-746, 2010.
DOI : 10.1016/j.jhazmat.2009.10.071

D. W. Green and R. H. Perry, Perry's Chemical Engineers' Handbook, 2008.

A. Gupta, J. R. Flora, M. Gupta, G. D. Sayles, and M. T. Suidan, Methanogenesis and sulfate reduction in chemostats???I. Kinetic studies and experiments, Water Research, vol.28, issue.4, pp.781-793, 1994.
DOI : 10.1016/0043-1354(94)90085-X

A. J. Guwy, F. R. Hawkes, D. L. Hawkes, and A. G. Rozzi, Hydrogen production in a high rate fluidised bed anaerobic digester, Water Research, vol.31, issue.6, 1997.
DOI : 10.1016/S0043-1354(96)00235-7

S. R. Harper and F. G. Pohland, Recent developments in hydrogen management during anaerobic biological wastewater treatment, Biotechnology and Bioengineering, vol.13, issue.4, pp.585-602, 1986.
DOI : 10.1002/bit.260280416

N. Kantarci, F. Borak, and K. O. Ulgen, Bubble column reactors, Process Biochem, vol.40, 2005.

D. W. Kidby and D. B. Nedwell, An investigation into the suitability of biogas hydrogen concentration as a performance monitor for anaerobic sewage sludge digesters, Water Research, vol.25, issue.8, 1991.
DOI : 10.1016/0043-1354(91)90150-O

R. A. Labatut, L. T. Angenent, and N. R. Scott, Conventional mesophilic vs. thermophilic anaerobic digestion: A??trade-off between performance and stability?, Water Research, vol.53, pp.249-258, 2014.
DOI : 10.1016/j.watres.2014.01.035

M. Misoph and H. L. Drake, Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1., Journal of Bacteriology, vol.178, issue.11, pp.3140-3145, 1996.
DOI : 10.1128/jb.178.11.3140-3145.1996

F. E. Mosey and X. A. Fernandes, PATTERNS OF HYDROGEN IN BIOGAS FROM THE ANAEROBIC DIGESTION OF MILK-SUGARS, Water Sci. Technol, vol.21, pp.187-196, 1989.
DOI : 10.1016/B978-1-4832-8439-2.50022-5

B. Ozbek and S. Gayik, The studies on the oxygen mass transfer coefficient in a bioreactor, Process Biochemistry, vol.36, issue.8-9, pp.729-741, 2001.
DOI : 10.1016/S0032-9592(00)00272-7

S. W. Ragsdale and E. Pierce, Acetogenesis and the Wood-Ljungdahl pathway of CO 2 fixation, Biochim. Biophys. Acta, 1784.

L. E. Ripley, W. C. Boyle, and J. C. Converse, Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes, J. Water Pollut. Control Fed, vol.58, pp.406-411, 1986.

J. Rodríguez, G. Ruiz, F. Molina, E. Roca, and J. M. Lema, A hydrogen-based variable-gain controller for anaerobic digestion processes, Water Science & Technology, vol.54, issue.2, 2006.
DOI : 10.2166/wst.2006.486

C. Salomoni, A. Caputo, M. Bonoli, O. Francioso, M. T. Rodriguez-estrada et al., Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes, Bioresource Technology, vol.102, issue.11, pp.6443-6448, 2011.
DOI : 10.1016/j.biortech.2011.03.079

K. Sato and S. Ochi, Control of CO 2 gas concentration to increase methane gas production in anaerobic sewage sludge digestion, Seventh International Symposium on Anaerobic Digestion. Cape Town, pp.610-618, 1994.

A. Serna-maza, S. Heaven, and C. J. Banks, Ammonia removal in food waste anaerobic digestion using a side-stream stripping process, Bioresource Technology, vol.152, pp.307-315, 2014.
DOI : 10.1016/j.biortech.2013.10.093

A. Soares, P. Kampas, S. Maillard, E. Wood, J. Brigg et al., Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal, Journal of Hazardous Materials, vol.175, issue.1-3, pp.733-739, 2010.
DOI : 10.1016/j.jhazmat.2009.10.070

M. Walker, K. Iyer, S. Heaven, and C. J. Banks, Ammonia removal in anaerobic digestion by biogas stripping: An evaluation of process alternatives using a first order rate model based on experimental findings, Chemical Engineering Journal, vol.178, pp.138-145, 2011.
DOI : 10.1016/j.cej.2011.10.027