D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., vol.130, issue.103, pp.228-240, 2010.
DOI : 10.1002/marc.200900641

V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim et al., Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications, Chemical Reviews, vol.112, issue.11, pp.6156-6214, 2012.
DOI : 10.1021/cr3000412

D. R. Dreyer, H. P. Jia, A. D. Todd, J. Geng, and C. W. Bielawski, Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides, Organic & Biomolecular Chemistry, vol.8, issue.21, pp.7292-7295, 2011.
DOI : 10.1039/c1ob06102j

D. R. Dreyer, K. A. Jarvis, J. P. Ferreira, and C. W. Bielawski, Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites, Polymer Chemistry, vol.19, issue.3, pp.757-766, 2012.
DOI : 10.1039/c2py00545j

]. S. Choudhary, H. P. Mungse, and O. P. Khatri, Hydrothermal Deoxygenation of Graphene Oxide: Chemical and Structural Evolution, Chemistry - An Asian Journal, vol.105, issue.9, pp.2070-2078, 2013.
DOI : 10.1002/asia.201300553

H. P. Mungse, N. Bhakuni, D. Tripathi, O. P. Sharma, B. Sain et al., Fractional distribution of graphene oxide and its potential as an efficient and reusable solid catalyst for esterification reactions, Journal of Physical Organic Chemistry, vol.243, issue.12, pp.944-951, 2014.
DOI : 10.1002/poc.3375

]. Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon, vol.48, issue.4, pp.1124-1130, 2010.
DOI : 10.1016/j.carbon.2009.11.034

G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mulhaupt, Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki???Miyaura Coupling Reaction, Journal of the American Chemical Society, vol.131, issue.23, pp.8262-8270, 2009.
DOI : 10.1021/ja901105a

J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen et al., Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis, Nanoscale, vol.1, issue.16, pp.2733-2738, 2010.
DOI : 10.1039/c0nr00473a

H. P. Mungse, S. Verma, N. Kumar, B. Sain, and O. P. Khatri, Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols, Journal of Materials Chemistry, vol.86, issue.12, pp.5427-5433, 2012.
DOI : 10.1039/c2jm15644j

]. C. Yuan, W. Chen, and L. Yan, Amino-grafted graphene as a stable and metal-free solid basic catalyst, Journal of Materials Chemistry, vol.7, issue.15, pp.7456-7460, 2012.
DOI : 10.1039/c2jm30442b

P. V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, The Journal of Physical Chemistry Letters, vol.1, issue.2, pp.520-527, 2010.
DOI : 10.1021/jz900265j

F. Grasset, F. Dorson, S. Cordier, Y. Molard, C. Perrin et al., Water-in-Oil Microemulsion Preparation and Characterization of Cs2[Mo6X14]@SiO2 Phosphor Nanoparticles Based on Transition Metal Clusters (X???=???Cl, Br, and I), Advanced Materials, vol.118, issue.1, pp.143-148, 2008.
DOI : 10.1002/adma.200701686

URL : https://hal.archives-ouvertes.fr/hal-00414417

G. A. Olah, Towards Oil Independence Through Renewable Methanol Chemistry, Angewandte Chemie International Edition, vol.4, issue.1, pp.104-107, 2013.
DOI : 10.1002/anie.201204995

M. Aresta, Carbon Dioxide Reduction and Uses as a Chemical Feedstock, pp.1-41, 2006.
DOI : 10.1002/9783527609352.ch1

V. P. Indrakanti, J. D. Kubicki, and H. H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy & Environmental Science, vol.98, issue.11, pp.745-758, 2009.
DOI : 10.1039/b822176f

M. M. Halmann and M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation Science and Technology, 1999.

S. N. Habisreutinger, L. S. Mende, and J. K. Stolarczyk, and Other Semiconductors, Angewandte Chemie International Edition, vol.8, issue.414, pp.7372-7408, 2013.
DOI : 10.1002/anie.201207199

A. J. Cowan and J. R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels, Chem. Soc. Rev., vol.155, issue.6, pp.2281-2293, 2013.
DOI : 10.1073/pnas.1118339109

A. J. Morris, G. J. Meyer, and E. Fujita, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels, Accounts of Chemical Research, vol.42, issue.12, pp.1983-1994, 2009.
DOI : 10.1021/ar9001679

A. Inagakia and M. Akita, Visible-light promoted bimetallic catalysis, Coordination Chemistry Reviews, vol.254, issue.11-12, pp.1220-1239, 2010.
DOI : 10.1016/j.ccr.2009.11.003

H. Takeda and O. Ishitani, Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies, Coordination Chemistry Reviews, vol.254, issue.3-4, pp.346-354, 2010.
DOI : 10.1016/j.ccr.2009.09.030

X. T. Zhou, H. B. Ji, and X. J. Huang, Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25, Molecules, vol.17, issue.12, pp.1149-1158, 2012.
DOI : 10.3390/molecules17021149

]. K. Kirakci, S. Cordier, and C. Perrin, Synthesis and Characterization of Cs2Mo6X14 (X = Br or I) Hexamolybdenum Cluster Halides: Efficient Mo6 Cluster Precursors for Solution Chemistry Syntheses, Zeitschrift f???r anorganische und allgemeine Chemie, vol.20, issue.2-3, pp.411-416, 2005.
DOI : 10.1002/zaac.200400281

]. O. Akhavan, Graphene Nanomesh by ZnO Nanorod Photocatalysts, ACS Nano, vol.4, issue.7, pp.4174-4180, 2010.
DOI : 10.1021/nn1007429

S. Ababou-girard, S. Cordier, B. Fabre, Y. Molard, and C. Perrin, Assembly of Hexamolybdenum Metallic Clusters on Silicon Surfaces, ChemPhysChem, vol.106, issue.14, pp.2086-2090, 2007.
DOI : 10.1002/cphc.200700499

URL : https://hal.archives-ouvertes.fr/hal-00189136

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nature Chemistry, vol.131, issue.12, pp.1015-1024, 2010.
DOI : 10.1038/nchem.907

]. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nature Photonics, vol.10, issue.9, pp.611-622, 2010.
DOI : 10.1038/nphoton.2010.186

URL : http://arxiv.org/abs/1006.4854

P. Kumar, A. Kumar, B. Sreedhar, B. Sain, S. S. Ray et al., Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visible-Active Catalyst for the Photoreduction of Carbon Dioxide, Chemistry - A European Journal, vol.50, issue.20, pp.6154-6161, 2014.
DOI : 10.1002/chem.201304189

P. Kumar, A. Bansiwal, A. Bansiwal, N. Labhsetwar, and S. L. Jain, using a graphene oxide supported heteroleptic ruthenium complex, Green Chem., vol.248, issue.3, pp.1605-1609, 2015.
DOI : 10.1039/C4GC01400F

]. P. Kumar, B. Sain, and S. L. Jain, Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation, Journal of Materials Chemistry A, vol.15, issue.29, pp.11246-11253, 2014.
DOI : 10.1039/c4ta01494d

G. Hee-moon, Y. Park, W. Kim, and W. Choi, Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate, Carbon, vol.49, issue.11, pp.3454-3462, 2011.
DOI : 10.1016/j.carbon.2011.04.042

Y. T. Liang, B. K. Vijayan, K. A. Gray, and M. C. Hersam, for Improved Solar Fuel Production, Nano Letters, vol.11, issue.7, pp.2865-2870, 2011.
DOI : 10.1021/nl2012906

G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang et al., TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, vol.49, issue.8, pp.2693-2701, 2011.
DOI : 10.1016/j.carbon.2011.02.059