1. I. Luchtenborg, M. White, K. K. Wilkens, L. Kolonel, L. N. et al., Smoking and Colorectal Cancer: Different Effects by Type of Cigarettes?, Cancer Epidemiology Biomarkers & Prevention, vol.16, issue.7, pp.1341-1347, 1986.
DOI : 10.1158/1055-9965.EPI-06-0519

E. Giovannucci, An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer, Cancer Epidemiol. Biomarkers Prev, vol.10, pp.725-731, 2001.

P. Vineis, M. Alavanja, P. Buffler, E. Fontham, S. Franceschi et al., Tobacco and Cancer: Recent Epidemiological Evidence, JNCI Journal of the National Cancer Institute, vol.96, issue.2, pp.99-106, 2004.
DOI : 10.1093/jnci/djh014

D. Hoffmann, I. Hoffmann, and K. Bayoumy, The Less Harmful Cigarette:?? A Controversial Issue. A Tribute to Ernst L. Wynder, Chemical Research in Toxicology, vol.14, issue.7, pp.767-790, 2001.
DOI : 10.1021/tx000260u

D. Yoshida, T. Matsumoto, R. Yoshimura, and T. Matsuzaki, Mutagenicity of amino-??-carbolines in pyrolysis products of soybean globulin, Biochemical and Biophysical Research Communications, vol.83, issue.3, pp.915-920, 1978.
DOI : 10.1016/0006-291X(78)91482-1

D. Yoshida and T. Matsumoto, Amino-??-carbolines as mutagenic agents in cigarette smoke condensate, Cancer Letters, vol.10, issue.2, pp.141-149, 1980.
DOI : 10.1016/0304-3835(80)90037-3

L. Zhang, D. L. Ashley, and C. H. Watson, Quantitative Analysis of Six Heterocyclic Aromatic Amines in Mainstream Cigarette Smoke Condensate Using Isotope Dilution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Nicotine & Tobacco Research, vol.13, issue.2, pp.120-126, 2011.
DOI : 10.1093/ntr/ntq219

E. Kriek, Fifty years of research onN-acetyl-2-aminofluorene, one of the most versatile compounds in experimental cancer research, Journal of Cancer Research and Clinical Oncology, vol.83, issue.7, pp.481-489, 1992.
DOI : 10.1007/BF01225261

R. J. Turesky, J. M. Yuan, R. Wang, S. Peterson, Y. et al., Tobacco smoking and urinary levels of 2-amino-9H-pyrido, Cancer Epidemiol. Biomarkers Prev, vol.2, issue.16, pp.1554-1560, 2007.

T. Sugimura, K. Wakabayashi, H. Nakagama, and M. Nagao, Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish, Cancer Science, vol.143, issue.4, pp.290-299, 2004.
DOI : 10.1016/S0140-6736(98)06099-1

H. Okonogi, T. Ushijima, H. Shimizu, T. Sugimura, and M. Nagao, Induction of aberrant crypt foci in C57BL/6N mice by 2-amino-9H-pyrido[2,3-b]indole (AalphaC) and 2- amino-3,8-dimethylimidazo, Cancer Lett, vol.4, issue.111, pp.5-105, 1997.

X. B. Zhang, J. S. Felton, J. Tucker, C. Urlando, and J. A. Heddle, ]pyridine and amino(??)carboline, Carcinogenesis, vol.17, issue.10, pp.2259-2265, 1996.
DOI : 10.1093/carcin/17.10.2259

T. Niwa, Y. Yamazoe, and R. Kato, Metabolic activation of 2-amino-9H-pyrido[2,3-b]indole by rat-liver microsomes, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.95, issue.2-3, pp.159-170, 1982.
DOI : 10.1016/0027-5107(82)90254-8

H. Raza, R. S. King, R. B. Squires, F. P. Guengerich, D. W. Miller et al., Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2, Drug Metab.Dispos, vol.24, pp.395-400, 1996.

R. S. King, C. H. Teitel, and F. F. Kadlubar, In vitro bioactivation of N-hydroxy-2-amino-alpha-carboline, Characterization of A?C-serum albumin adducts 18, pp.1347-1354, 2000.
DOI : 10.1093/carcin/21.7.1347

R. J. Turesky, J. Bendaly, I. Yasa, M. A. Doll, and D. W. Hein, ]indole, Chemical Research in Toxicology, vol.22, issue.4, pp.726-733, 2009.
DOI : 10.1021/tx800473w

URL : https://hal.archives-ouvertes.fr/hal-00696860

B. J. Majer, F. Kassie, Y. Sasaki, W. Pfau, H. Glatt et al., Investigation of the genotoxic effects of 2-amino-9H-pyrido[2,3-b]indole in different organs of rodents and in human derived cells, Journal of Chromatography B, vol.802, issue.1, pp.167-173, 2004.
DOI : 10.1016/j.jchromb.2003.10.042

G. Nauwelaers, M. Bellamri, V. Fessard, R. J. Turesky, and S. Langouët, ]indole and 4-Aminobiphenyl Are Formed at Environmental Exposure Levels and Persist in Human Hepatocytes, Chemical Research in Toxicology, vol.26, issue.9, pp.1367-1377, 2013.
DOI : 10.1021/tx4002226

URL : https://hal.archives-ouvertes.fr/inserm-00869907

J. A. Miller, Carcinogenesis by chemicals: an overview--G. H. A. Clowes memorial lecture, Cancer Res, vol.30, pp.559-576, 1970.

M. Tornqvist, C. Fred, J. Haglund, H. Helleberg, B. Paulsson et al., Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications, Journal of Chromatography B, vol.778, issue.1-2, pp.279-308, 2002.
DOI : 10.1016/S1570-0232(02)00172-1

S. M. Rappaport, H. Li, H. Grigoryan, W. E. Funk, W. et al., Adductomics: Characterizing exposures to reactive electrophiles, Toxicology Letters, vol.213, issue.1, pp.83-90, 2012.
DOI : 10.1016/j.toxlet.2011.04.002

D. C. Liebler, Proteomic Approaches to Characterize Protein Modifications: New Tools to Study the Effects of Environmental Exposures, Environmental Health Perspectives, vol.110, issue.s1, pp.3-9, 2002.
DOI : 10.1289/ehp.02110s113

F. M. Rubino, M. Pitton, F. D. Di, and A. Colombi, ??? physiopathology of reactive chemicals: Thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds, Mass Spectrometry Reviews, vol.441, issue.6, pp.725-784, 2009.
DOI : 10.1038/nchembio.91

G. Aldini, L. Regazzoni, M. Orioli, I. Rimoldi, R. M. Facino et al., A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: a new tool for studying vascular carbonylation, Journal of Mass Spectrometry, vol.10, issue.11, pp.1470-1481, 2008.
DOI : 10.1002/jms.1419

P. L. Skipper and S. R. Tannenbaum, Protein adducts in the molecular dosimetry of chemical carcinogens, Carcinogenesis, vol.11, issue.4, pp.507-518, 1990.
DOI : 10.1093/carcin/11.4.507

M. C. Yu, P. L. Skipper, S. R. Tannenbaum, K. K. Chan, R. et al., Arylamine exposures and bladder cancer risk, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.506, issue.507, pp.506-507, 2002.
DOI : 10.1016/S0027-5107(02)00148-3

L. Peng and R. J. Turesky, Optimizing proteolytic digestion conditions for the analysis of serum albumin adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a potential human carcinogen formed in cooked meat, Journal of Proteomics, vol.103, pp.267-278, 2014.
DOI : 10.1016/j.jprot.2014.03.023

L. Peng and R. J. Turesky, Capturing Labile Sulfenamide and Sulfinamide Serum Albumin Adducts of Carcinogenic Arylamines by Chemical Oxidation, Analytical Chemistry, vol.85, issue.2, pp.1065-1072, 2013.
DOI : 10.1021/ac3028273

J. G. Westra, A rapid and simple synthesis of reactive metabolites of carcinogenic aromatic amines in high yield, Carcinogenesis, vol.2, issue.4, pp.355-357, 1981.
DOI : 10.1093/carcin/2.4.355

L. Peng and R. J. Turesky, Mass spectrometric characterization of 2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine N-oxidized metabolites bound at Cys 34 of human serum albumin, Chem. Res. Toxicol, vol.24, 2004.

G. Nauwelaers, E. E. Bessette, D. Gu, Y. Tang, J. Rageul et al., DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes, Chemical Research in Toxicology, vol.24, issue.6, pp.913-925, 2011.
DOI : 10.1021/tx200091y

URL : https://hal.archives-ouvertes.fr/hal-00609223

R. J. Turesky, P. L. Skipper, and S. R. Tannenbaum, in the rat. Identification of an adduct suitable for dosimetry, Carcinogenesis, vol.8, issue.10, pp.1537-1542, 1987.
DOI : 10.1093/carcin/8.10.1537

R. J. Turesky and J. Markovic, DNA Adduct Formation of the Food Carcinogen 2-Amino-3-methylimidazo[4,5-f]quinoline at the C-8 and N2 Atoms of Guanine, Chemical Research in Toxicology, vol.7, issue.6, pp.752-761, 1994.
DOI : 10.1021/tx00042a007

S. Langouët, B. Coles, F. Morel, L. Becquemont, P. Beaune et al., Inhibition of CYP1A2 and CYP3A4 by oltipraz results in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture, Cancer Res, vol.55, pp.5574-5579, 1995.

D. L. Tabb, C. G. Fernando, and M. C. Chambers, MyriMatch:?? Highly Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric Analysis, Journal of Proteome Research, vol.6, issue.2, pp.654-661, 2007.
DOI : 10.1021/pr0604054

A. K. Goodenough, H. A. Schut, and R. J. Turesky, ]pyridine by 2-D Linear Quadrupole Ion Trap Mass Spectrometry, Chemical Research in Toxicology, vol.20, issue.2, pp.263-276, 2007.
DOI : 10.1021/tx0601713

Y. Tang, F. Kassie, X. Qian, B. Ansha, and R. J. Turesky, DNA Adduct Formation of 2-Amino-9H-pyrido[2,3-b]indole and 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline in Mouse Liver and Extrahepatic Tissues During a Subchronic Feeding Study, Toxicological Sciences, vol.133, issue.2, pp.248-258, 2013.
DOI : 10.1093/toxsci/kft077

M. C. Damsten, J. N. Commandeur, A. Fidder, A. G. Hulst, D. Touw et al., Liquid Chromatography/Tandem Mass Spectrometry Detection of Covalent Binding of Acetaminophen to Human Serum Albumin, Drug Metabolism and Disposition, vol.35, issue.8, pp.1408-1417, 2007.
DOI : 10.1124/dmd.106.014233

P. Kang, D. Dalvie, E. Smith, S. Zhou, and A. Deese, Identification of a Novel Glutathione Conjugate of Flutamide in Incubations with Human Liver Microsomes, Drug Metabolism and Disposition, vol.35, issue.7, pp.1081-1088, 2007.
DOI : 10.1124/dmd.107.014860

K. Saito and R. Kato, Glutathione conjugation of arylnitroso compound: Detection and monitoring labile intermediates in situ inside a fast atom bombardment mass spectrometer, Biochemical and Biophysical Research Communications, vol.124, issue.1, pp.1-5, 1984.
DOI : 10.1016/0006-291X(84)90907-0

P. G. Eyer and P. , Reaction of nitrosoarenes with SH groups. in The chemistry of amine, nitroso, nitro and related groups, pp.999-1040, 1996.

T. L. Lemke, Review of Organic Functional Groups in Introduction to Medicinal Organic Chemistry Fith Ed, pp.85-87, 2012.

M. Novak and S. Kazerani, -(Pivaloyloxy)-2-amino-??-carboline in Aqueous Solution, Journal of the American Chemical Society, vol.122, issue.15, pp.3606-3616, 2000.
DOI : 10.1021/ja993433e

H. Steen and M. Mann, Similarity between condensed phase and gas phase chemistry: Fragmentation of peptides containing oxidized cysteine residues and its implications for proteomics, Journal of the American Society for Mass Spectrometry, vol.111, issue.2, pp.228-232, 2001.
DOI : 10.1016/S1044-0305(00)00219-1

M. Novak and T. M. Nguyen, -acetyl-2-amino-??-carboline, The Journal of Organic Chemistry, vol.68, issue.26, pp.9875-9881, 2003.
DOI : 10.1021/jo034505u

URL : https://hal.archives-ouvertes.fr/lirmm-00108831

M. Murata and S. Kawanishi, Mechanisms of oxidative DNA damage induced by carcinogenic arylamines, Frontiers in Bioscience, vol.16, issue.1, pp.1132-1143, 2011.
DOI : 10.2741/3739

G. Colombo, M. Clerici, D. Giustarini, R. Rossi, A. Milzani et al., Redox Albuminomics: Oxidized Albumin in Human Diseases, Antioxidants & Redox Signaling, vol.17, issue.11, pp.1515-1527, 2012.
DOI : 10.1089/ars.2012.4702

J. W. Finch, R. K. Crouch, D. R. Knapp, and K. L. Schey, Mass Spectrometric Identification of Modifications to Human Serum Albumin Treated with Hydrogen Peroxide, Archives of Biochemistry and Biophysics, vol.305, issue.2, pp.595-599, 1993.
DOI : 10.1006/abbi.1993.1466

M. Bruschi, A. Petretto, G. Candiano, L. Musante, E. Movilli et al., Determination of the oxido-redox status of plasma albumin in hemodialysis patients, Journal of Chromatography B, vol.864, issue.1-2, pp.29-37, 2008.
DOI : 10.1016/j.jchromb.2008.01.035

A. Guillouzo, Liver cell models in in vitro toxicology, Environmental Health Perspectives, vol.106, issue.Suppl 2, pp.511-532, 1998.
DOI : 10.1289/ehp.98106511

R. J. Turesky, L. Marchand, and L. , Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines, Chemical Research in Toxicology, vol.24, issue.8, pp.1169-1214, 2011.
DOI : 10.1021/tx200135s

J. S. Felton, M. Jagerstad, M. G. Knize, K. Skog, and K. Wakabayashi, Contents in foods, beverages and tobacco, Food Borne Carcinogens Heterocyclic Amines (Nagao, M., and Sugimura, pp.31-71, 2000.

L. Peng, S. Dasari, D. L. Tabb, and R. J. Turesky, ]pyridine by Data-Dependent Tandem Mass Spectrometry, Chemical Research in Toxicology, vol.25, issue.10, pp.2179-2193, 2012.
DOI : 10.1021/tx300253j

H. John, F. Breyer, J. O. Thumfart, H. Hochstetter, and H. Thiermann, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents, Analytical and Bioanalytical Chemistry, vol.73, issue.158, pp.2677-2691, 2010.
DOI : 10.1007/s00216-010-4076-y

D. Noort, A. G. Hulst, Z. A. Van, R. E. Van, and M. J. Van-der-schans, Covalent binding of organophosphorothioates to albumin: a new perspective for OP-pesticide biomonitoring?, Archives of Toxicology, vol.81, issue.11, pp.1031-1036, 2009.
DOI : 10.1007/s00204-009-0456-5

B. Li, L. M. Schopfer, S. H. Hinrichs, P. Masson, and O. Lockridge, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411, Analytical Biochemistry, vol.361, issue.2, pp.263-272, 2007.
DOI : 10.1016/j.ab.2006.11.018

R. J. Turesky, S. C. Rossi, D. H. Welti, J. J. Lay, and F. F. Kadlubar, Characterization of DNA adducts formed in vitro by reaction of N-hydroxy-2-amino-3-methylimidazo[4,5-f]quinoline and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline at the C-8 and N2 atoms of guanine, Chemical Research in Toxicology, vol.5, issue.4, pp.479-490, 1992.
DOI : 10.1021/tx00028a005

E. G. Snyderwine, P. P. Roller, R. H. Adamson, S. Sato, and S. S. Thorgeirsson, Reaction of the N-hydroxylamine and N-acetoxy derivatives of 2-amino-3-methylimidazo[4,5- f]quinoline with DNA. Synthesis and identification of N-(deoxyguanosin-8-yl)-IQ, 1988.

H. Frederiksen, H. Frandsen, and W. Pfau, Syntheses of DNA adducts of two heterocyclic amines, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA??C) and 2-amino-9H-pyrido[2,3-b]indole (A??C) and identification of DNA adducts in organs from rats dosed with MeA??C, Carcinogenesis, vol.25, issue.8, pp.1525-1533, 2004.
DOI : 10.1093/carcin/bgh156

E. E. Bessette, S. D. Spivack, A. K. Goodenough, T. Wang, S. Pinto et al., Identification of Carcinogen DNA Adducts in Human Saliva by Linear Quadrupole Ion Trap/Multistage Tandem Mass Spectrometry, Chemical Research in Toxicology, vol.23, issue.7, pp.1234-1244, 2010.
DOI : 10.1021/tx100098f

D. Kim, F. F. Kadlubar, C. H. Teitel, and F. P. Guengerich, Formation and Reduction of Aryl and Heterocyclic Nitroso Compounds and Significance in the Flux of Hydroxylamines, Chemical Research in Toxicology, vol.17, issue.4, pp.529-536, 2004.
DOI : 10.1021/tx034267y

S. S. Hecht, Tobacco carcinogens, their biomarkers and tobacco-induced cancer, Nature Reviews Cancer, vol.3, issue.10, pp.733-744, 2003.
DOI : 10.1038/nrc1190

A. G. Siraki, T. S. Chan, G. Galati, S. Teng, O. Brien et al., -OXIDATION OF AROMATIC AMINES BY INTRACELLULAR OXIDASES, Drug Metabolism Reviews, vol.49, issue.3, pp.549-564, 2002.
DOI : 10.1093/carcin/16.4.891

H. G. Neumann, Aromatic Amines in Experimental Cancer Research: Tissue-Specific Effects, an Old Problem and New Solutions, Critical Reviews in Toxicology, vol.441, issue.29, pp.211-236, 2007.
DOI : 10.1007/BF00296976

Y. Tsuneoka, T. P. Dalton, M. L. Miller, C. D. Clay, H. G. Shertzer et al., 4-Aminobiphenyl-Induced Liver and Urinary Bladder DNA Adduct Formation in Cyp1a2(-/-) and Cyp1a2(+/+) Mice, Cyp1a2(+/+) mice. J. Natl. Cancer Inst, pp.1227-1237, 2003.
DOI : 10.1093/jnci/djg025

D. Noort, A. Fidder, and A. G. Hulst, Modification of human serum albumin by acrylamide at cysteine-34: a basis for a rapid biomonitoring procedure, Archives of Toxicology, vol.77, issue.9, pp.543-545, 2003.
DOI : 10.1007/s00204-003-0484-5

D. Noort, A. Fidder, A. G. Hulst, A. R. Woolfitt, D. Ash et al., Retrospective Detection of Exposure to Sulfur Mustard: Improvements on an Assay for Liquid Chromatography-Tandem Mass Spectrometry Analysis of Albumin/Sulfur Mustard Adducts, Journal of Analytical Toxicology, vol.28, issue.5, pp.333-338, 2004.
DOI : 10.1093/jat/28.5.333

Z. Wang and J. S. Ramsdell, Analysis of Interactions of Brevetoxin-B and Human Serum Albumin by Liquid Chromatography/Mass Spectrometry, Chemical Research in Toxicology, vol.24, issue.1, pp.54-64, 2011.
DOI : 10.1021/tx1002854

R. Reistad, H. Frandsen, S. Grivas, A. , and J. , ]pyridine(PhIP) protein adducts, Carcinogenesis, vol.15, issue.11, pp.2547-2552, 1994.
DOI : 10.1093/carcin/15.11.2547

URL : http://carcin.oxfordjournals.org/cgi/content/short/15/11/2547

G. Colombo, G. Aldini, M. Orioli, D. Giustarini, R. Gornati et al., Water-Soluble ??,??-Unsaturated Aldehydes of Cigarette Smoke Induce Carbonylation of Human Serum Albumin, Antioxidants & Redox Signaling, vol.12, issue.3, pp.349-364, 2010.
DOI : 10.1089/ars.2009.2806

T. L. Hackett, M. Scarci, L. Zheng, W. Tan, T. Treasure et al., Oxidative modification of albumin in the parenchymal lung tissue of current smokers with chronic obstructive pulmonary disease, Respiratory Research, vol.32, issue.3, p.180, 2010.
DOI : 10.1097/01.CCM.0000114574.18641.5D

G. Colombo, R. Rossi, N. Gagliano, N. Portinaro, M. Clerici et al., Red blood cells protect albumin from cigarette smoke-induced oxidation Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts, PLoS One J. Proteomics, vol.7, issue.92, pp.28-50, 2012.

H. Grigoryan, H. Li, A. T. Iavarone, E. R. Williams, R. et al., Cys34 Adducts of Reactive Oxygen Species in Human Serum Albumin, Chemical Research in Toxicology, vol.25, issue.8, pp.1633-1642, 2012.
DOI : 10.1021/tx300096a

R. J. Turesky, Masonic Cancer Center and Department of Medicinal Chemistry, pp.626-0141