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Abstract
High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for

anomalous K-series X-rays from a Cu target supplied with electric current. With the highest sensitivity the VIP (VIola-

tion of Pauli Exclusion Principle) experiment set an upper limit at the level of 10−29 for the probability that an external

electron captured by a Cu atom can make the transition from the 2p state to a 1s state already occupied by two electrons.

In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs

that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we

did at Laboratori Nazionali di Frascati (LNF).
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1. Introduction

Formulated by Wolfgang Pauli in 1925 [1], the Pauli Exclusion Principle (PEP) is one of the building

blocks of quantum mechanics. It is the foundation for our understanding of nuclear physics, particle physics,
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condensed-matter physics, and astrophysics where many-fermion systems are concerned. By far the princi-

ple does not have an intuitive explanation for its physical cause, and there is possibility that high precision

experiment may discover small violation that could reveal more fundamental principles. However the ex-

perimental test is difficult because there has been no well-established parameter that can account for PEP

violation quantitatively in a theory, and that can also be derived from experiments for direct comparison.

In the reviews given by Greenberg and Mohapatra [2, 3], they surveyed over the searches for a phe-

nomenology framework for possible small violation of the PEP, and then pointed out that no satisfactory

solution could be found to be consistent within a local field theory. However, they argued that following the

parameterization proposed by Ignatiev and Kuzmin (IK) [4], in an extended model of a single fermion-like

oscillator which allows double occupancy with a small amplitude of β, one can discuss about the phe-

nomenology of a small violation of the PEP with a parameter quantitatively derivable from experiments.

The first precision measurement done by Ramberg and Snow [5] follows a method Greenberg and Mo-

hapatra [6] proposed after they extended the IK model. The method first used by Goldhaber and Scharff-

Goldhaer [7] back in 1948, was original intended to check if the beta ray from beta decay is identical to

ordinary electrons. Their ingenius idea was that, if not identical to electrons, the beta rays absorbed by a

block of metal (in this case lead) will neglect all the electrons occupying the atomic states and deexcite via

the cascade process. The 2p-1s transition that violates the PEP will have different energy from the normal

2p - 1s transition due to the shielding effect of an additional electron in the ground state [11]. Based on

the non-existence of the anomalous X-rays, they first concluded the equivalence of beta ray to electron, and

more interestingly they later pointed out the experiment can be interpreted as a test for PEP. A quantitative

evaluation based on the result of the experiment was done by Greenberg [3], who deduced explicitly that the

possibility that the PEP can be violated is less than 0.03.

The idea of introducing external “fresh” electrons to the target system as applied by this pioneering

experiment and the Ramberg-Snow experiment is crucial in the method of testing the PEP for electrons.

Without the “fresh” electrons, two experiments in the 1970s [8, 9] looked for prohibited X-rays or γ rays

from stable atomic or nucleus systems, and argued the null results served as tests for the PEP violation.

However this type of measurement does not validate to be a test because it has assumed that the transitions

between different permutation group could occur, Such assumption violates in the first place the superselec-

tion rule separating states in different presentations of the symmetric group [10]. On the other hand, external

electrons that had no interaction with the target system not only make source of electrons in large population

possible, they are also the prerequisite that small violation of the PEP can be discussed in the framework of

quantum mechanics as Greenberg proposed [3]. Becasue the newly captured electron and the copper atom

have the possiblility of forming a “mixed” symmetry state that is highly excited, from which anomalous

X-rays can be observed. Without introducing external electrons, anomalous X-rays can not be observed

since the possible “mixed” symmetry state will always be at its ground state. To represent the probability

of a small violation of the PEP in the absence of a field theory, Ramberg and Snow used the β parameter

introduced first in the IK model. For a random pair of electrons, 1 − 1
2
β2 is the possibility of the pair in the

normal antisymmetric state, and 1
2
β2 the probability in the anomalous symmetric state. In the IK model, β

is explicitly defined with the zero, one, and two particle states of |0〉, |1〉, and |2〉, together with the creation

operator a† and the annihilation operator a as :

a†|0〉 = |1〉, a†|1〉 = β |2〉, a†|2〉 = 0. a |0〉 = 0, a |1〉 = |0〉, a |2〉 = β |1〉;
Following the IK model, Greenberg and collaborators constructed the “quon” algebra [16] with q parameter:

aka†l − q a†l ak = δkl,

which can be understood as the average of the Bose and Fermi commutation relations:

1 + q
2

[ak, a
†
l ]− +

1 − q
2

[ak, a
†
l ]+ = δkl,

and the β parameter can be written in terms of the q parameter as:

1

2
β2 =

1

2
(1 + q).
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Although still having open questions to solve, the “quon” theory is by far the best attempt to violate by a

small amount the Fermi and the Bose statistics. However for a direct comparison of the experimental results,

the VIP experiment used and will use the same notation of β2 by Ramberg and Snow.

In next section, we describe the details of the experimental method used by VIP experiment, and show

the improvements in the sensitivity achieved in past experiments. Afterwards we introduce our follow-up

experiment of VIP2 and its progress in the ongoing preparation.

2. Experimental method

With the same idea of searching for anomalous transition X-rays, Ramberg and Snow improved drasti-

cally the sensitivity by changing the source of electrons from beta decay to constant electric current. Per-

formed at the ground floor of the Muon building at Fermilab, they used a proportional tube counter as the

X-ray detector with a resolution of 1 keV at 8 keV, and a large array of plastic scintillators to veto possible

signals from charged cosmic rays. A thin strip copper as target was connected to a 50 A power supply. By

comparing the X-ray spectra from measurements with and without power supply, the excess of events in the

forbiden transition energy region when current is supplied, will in principle be violation to the PEP.

Fig. 1. Energy spectra for the VIP experiment [12] : (a) with 40 A current, (b) without current, from part of the data set. Normal K

transitions of Cu present are background, and they are due to excitation of target by cosmic rays and environmental radiations.

2.1. VIP experiment and results

Table 1. Limits of the Pauli violation probability for electrons from recent high precision experiments:

Experiment Target Upper limit of β2/2 reference

Ramberg-Snow Copper 1.7 × 10 −26 [5]

S.R. Elliott et al. Lead 1.5 × 10 −27 [14]

VIP(2006) Copper 4.5 × 10 −28 [12]

VIP(2012) Copper 4.7 × 10 −29 [13]

VIP2(goal) Copper × 10 −31 [15]

VIP experiment followed the similar method of Ramberg-Snow experiment, and used the same defini-

tion of the parameter 1
2
β2 to represent the violation to the PEP for a direct comparison of the experiment

results. The improvement in sensitivity was achieved firstly due to the site of the experiment at the under-

ground laboratory in Laboratori Nazionali del Gran Sasso (LNGS), which has the advantage of the excellent
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shielding against cosmic rays [12]. The other reason is the use of Charge Coupled Device (CCD) as the X-

ray detector which had a typical resolution of 320 eV at 8 keV, that increased the precision in the definition

of the region of interest to search for anomalous X-rays.

In Table 1, all the results from experiments using “fresh” electrons are listed, together with the goal of

the planned VIP2 experiment at LNGS.

2.2. VIP2 experiment

2.2.1. Design

Fig. 2. An artist presentation for the cutaway view of the setup. Over 90% of the solid angle for the SDDs acceptance is covered by

32 plastic scintillators as active shielding. The timing capability of the SDDs will allow us to reduce most of the background of the Cu

K-series X-rays induced by cosmic rays impinging on the target.

In the follow-up experiment of VIP2, we aim to improve the sensitivity of VIP experiment by two

orders of magnitude [17]. A detailed list for the features that will contribute to the overall improvement is

summarized in Table 2 [15]. The dominant factor of background reduction will come from the application

of the Silicon Drift Detectors (SDDs) as the X-ray detector and their active shielding using arrays of plastic

scintillator as veto counters. Comparing to the readout time at the order of seconds for CCD, the SDD has a

charge collection time of less than one micro-second. This allows us to use the time correlation between the

X-ray events and the events at the veto counters, to exclude all the X-rays, including the K-series X-rays of

Cu from the target excited by cosmic rays or by the environmental radiation, as the energy spectra in Fig. 1

show.

We plan to use six SDD detectors with a total active area of 6 cm2 mounted close to the pure Cu target

in the shape of a strip 3 cm in length. Surrounding the SDDs and readout electronics, as shown in Fig. 2,

32 pieces of plastic scintillators each with a dimension of 40 mm × 32 mm × 250 mm will be mounted in a

segmented configuration, covering about 90% of the solid angle for the acceptance of SDDs. To readout the

light output of each scintillator, we attach with optic cement solid-state Silicon Photo-Multipliers (SiPMs)

directly to the scintillators. More information for the plastic scintillator and SiPM and its electronic board

can be found in Ref. [15].

Since the precise information about the energy deposit by charged particles or environmental radiations

in the scintillators is not our interest, we plan to take the time over threshold (ToT) information of the SiPM’s
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Table 2. The improvement factors for VIP2 in comparison to the features of VIP [15] :

Changes in VIP2 value VIP2 (VIP) expected gain

acceptance 12 % 12

increase current 100 A (40 A) > 2

reduced length 3 cm (8.8 cm ) 1/3

total linear factor 8

energy resolution 170 eV (320 eV) @ 8 keV 4

reducecd active area 6 cm 2 (114 cm 2 20

better shielding and veto 5-10

higher SDD efficiency 1/2

background reduction 200 - 400

overall improvement > 120

signal instead of the QDC data. Such an application is of technical interest, about which we show later some

promising results from the test measurement of cosmic rays.

2.2.2. Beam test of scintillators as veto counters

Fig. 3. Figures show the BTF test for the scintillators with cuts to allow the X-ray tube to irradiate the pure metal foils close to the SDDs

for energy calibration. To confirm the unique structure does not affect the performance of the scintillators, the efficiency and timing

resolution were tested with electron beam in the LNF beam test factory (BTF) in December 2013. Figure (a) shows the schematic

layout of the beam test configuration. A small scintillator of one cubic cm in size (”Finger”) at the upper stream and a calorimeter at

down stream of the beam are used to define the timing and to choose the single electron events. Two different hit positions of the beam

are denoted by (1) and (2). Figure (b) is a photo taken from the beam direction, down stream of the VIP2 scintillators, showing the

configuration of beam hitting the center position of the scintillators.

For the energy calibration of SDDs during the data taking, we plan to use a X-ray tube mounted to one
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window of the setup to radiate thin foils of pure metals placed near the SDDs. To let the radiation reach the

foils, four scintillators between the SDDs and the tube are prepared with special cuts, which can be seen

from Fig. 3 (b).

To test the performance of the scintillators together with the readout system, we did a test measurement

using 500 MeV/c electron beam at the Beam Test Facility (BTF) at LNF in December 2013. The experiment

layout and a photo taken from the downstream of the beam are shown in Fig. 3. We took data for three

different hit positions of the beam along the long direction of the scintillators. The results show that, the

dependence of light yield on the hit position of the charged particle does not affect the efficiency, which is

constantly above 97%. We confirmed the time resolution of the scintillator is about 2 to 3 ns as shown in 5

(a). This resolution is small enough for our application to use timing of scintillators to mark the start timing

for the SDD events with a spread in time of hundreds of nanoseconds.

2.2.3. Test setup in LNF
Before mounting the whole setup to LNGS for the long-term measurement, we are testing its perfor-

mance and stability of the vacuum and the cryogenics system with a setup in the laboratory at LNF-INFN.

The six SDDs in two arrays are mounted in the setup, and ten of the total 32 scintillators to be used as veto

counters are mounted in two layers above the SDDs. Fig. 4 is a photo of the test setup before we closed the

lid cover, to which the top-layer scintillators are mounted.

Fig. 4. A photo of the test setup before it is closed for cooling test. Ten scintillators in two layers with their readout system are mounted

on the lid.

To reach the working condition required by the SDDs, we use a helium compressor to cool the setup with

a set temperature of about 80 Kelvin. Then the SDDs are further cooled to about - 140 ◦C by an aluminum

pipe line in which Ar gas is circulated. The pressure of the setup is kept at the level of 10−5 mbar with a

turbo pump.

With this test setup we measured cosmic rays to check the trigger scheme as well as the timing perfor-

mance of the SDDs. A cosmic ray event and its timing are defined by the coincidence of hit events at both

two layers of scintillators. The timing of the X-ray events at the SDDs that are correlated to the cosmic ray

events are shown in Fig. 5 (b). At the temperature of -130 ◦C to - 150 ◦C, the time spectrum from the

summation of five SDDs shows a FWHM of about 400 ns, and the shape of the distribution in timing has the

feature shown by the same SDDs used in SIDDHARTA experiment [18]. Comparing to the time resolution

for the SDDs, the uncertainty in the start timing indicated by the time resolution of on SiPM shown in Fig.

5 (a), is negligibly small.
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Fig. 5. Preliminary results from the beam test in BTF and measurements of cosmic ray with test setup. (a) shows the time spectrum of

one SiPM on the scintillator from the BTF test, resolution is about 3 ns FWHM; (b) shows the time spectrum of five working SDDs

at the temperature of -130 ◦C to - 150 ◦C, with a FWHM of about 400 ns; (c) is a typical QDC spectrum from one SiPM. The red

histogram here shows the selection with time over threshold cut, which excluded the pedestal events clearly; (d) for the same SiPM in

(c), this figure shows the correlation between the QDC and the time over threshold.

Finally, we confirmed from this test the feasibility of using the ToT information for the SiPM readout

instead of QDC data. In the test setup, we took both QDC data and the ToT information from TDC. From

the QDC data, we see that selecting the events with none-zero ToT value, the cosmic ray hit events can

be separated from the pedestal as shown in Fig. 5 (c). Moreover, the time over threshold of the SiPM

preamplifier signal shows clear correlation to the QDC of the signal in Fig. 5 (d). The QDC distribution

over 2000 channels corresponds to 1000 channels of ToT, indicating the possible application of ToT instead

of QDC. This will give us more freedom in the analysis for the Gran Sasso measurement data in which only

TDC information will be recorded.

As a summary for our test measurements in BTF and in the laboratory, we conclude that the efficiency

of the scintillators and the time rosolution of the SDDs are confirmed to be capable to achieve the estimat-

edestimated background reduction level in the proposal of VIP2 experiment.

3. Summary and outlook

Recent high-precision experiments make it possible to discuss the phenomenological implications of

small violations of PEP. The VIP experiment at the Gran Sasso underground laboratory performed X-ray
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spectroscopy to search for Pauli-principle forbiden transitions of electrons from a Cu strip, when it is sup-

plied with external electrons by means of electric current. For this type of experiment, we achieved the

highest sensitivity in setting the limit for possible small violation of PEP which can occur for electrons.

In our follow-up experiment of VIP2 which is also planned in Gran Sasso, we aim to improve the

sensitivity by two orders of magnitude in setting the limit for the violation of PEP. The performances of the

setup and detectors are under test at LNF at the point of early 2014, and the results confirm the feasibility of

the expected improvement factor of background reduction.
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