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Abstract 

 

 

Polycrystalline samples of (Nd1-xCex)0.7Sr0.3MnO3 (x = 0, 0.10 and 0.20) were prepared by a 

high-temperature solid-state reaction technique. The X-ray diffraction study has shown that 

all the samples exhibit a single phase with orthorhombic structure (Space group Pnma). From 

the resistivity data, it is found that all the samples show metal to semiconductor transition and 

the transition temperature decreases with the Ce doping. The complex impedance has been 

investigated in the temperature range 80–320 K and in the frequency range 40 Hz–1 MHz. 

AC conductance analyses indicate that the conduction mechanism is strongly dependent on 

temperature and frequency. The impedance plane plot shows semicircle arcs at different 

temperatures and an electrical equivalent circuit has been proposed to explain the impedance 

results. The activation energies obtained from the conductance is slightly higher than that 

from time relaxation analyses. 
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1. Introduction 

The investigation of manganites with general formula Ln1-xAxMnO3 (Ln=La, Nd, Pr, etc., 

A=Sr, Ca, Ba, etc.) has attracted extensive attention in the last decades due to its special 

physical properties and potential application. These manganite materials exhibit remarkable 

physical properties including colossal magnetoresistance (CMR), charge ordering [1, 2] and 

metal–insulator transition and also have potential applications for magnetic recording and 

magnetic sensors [3,4].  Most of the manganites presenting the CMR effect have a 

paramagnetic–ferromagnetic (PM–FM) transition at the Curie temperature. Their electrical 

resistivity shows a semiconductor behavior above TC and a metallic behavior below TC. The 

understanding of CMR phenomenon, metallic behavior and the strong FM interactions is 

generally based on the double exchange (DE) model [5]. In this model, there is an exchange 

of electrons from neighbouring Mn3+ to Mn4+ ions through oxygen when their core spins are 

parallel and hopping is not favoured when they are antiparallel. However, it was suggested 

that the DE model is not enough to explain the CMR phenomenon. Some authors suggested 

that other factors such as Jahn Teller effect [6] and phase separation [7, 8] are responsible for 

the behavior observed in manganite.  

Several studies have been performed on the effect of substitution in the A-site by divalent 

elements (Sr, Ba…) [9, 10]. In fact, doping at the rare-earth site indirectly affects the 

conduction mechanism with its repercussion on bandwidth and bond angle between adjacent 

manganese ions [11]. The electrical conduction in these materials has contributions from 

grains (bulk), grain boundaries, and electrode specimen interface [12, 13]. In order to 

understand the conduction behavior, it is necessary to separate the various contributions to the 

total observed resistance. Complex impedance spectroscopy (CIS) is an important and 

powerful tool to study defects, microstructure, surface chemistry and electrical properties of 

materials. For a polycrystalline sample, this technique enables us to separate the contributions 

of bulk, grain boundary and electrode in the impedance very easily [14, 15]. 

Generally, Nd0.7Sr0.3MnO3 perovskite undergoes a metal-semiconductor transition at the 

temperature TMS of 229–239 K, [17, 18]. That is usually accompanied by a FM-PM transition 

at the Curie temperature TC. It was shown by many authors that physical properties of        

Nd1-xSrxMnO3 can be considerably affected by the substitution of the Ln-site by various other 

elements such as Eu [19], La [20], Pr, Dy [21], Gd [22]. Recently, by doping Y ions into 

Nd0.7Sr0.3MnO3, Khiem et al. [23] have found a decrease of TC and a transition from a 

metallic phase to an insulating phase when the Y content increased. Padmavathi et al. [24] 
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have found that the transition temperature TMI decreases with increasing <rA> as Nd is 

progressively substituted by Ce in  Nd0.33Sr0.33MnO3. 

The aim of this work is to study the structural and electrical properties (material impedance, 

electrical relaxation process, conductance behavior, etc.) of (Nd1-xCex)0.7Sr0.3MnO3 (0  x  

0.20) system using complex impedance spectroscopy (CIS) technique. The effects of 

temperature and frequency have been investigated and a pronounced contribution of the grain 

boundary in this compound is demonstrated. 

 

2. Experimental procedures 

Polycrystalline samples of (Nd1-xCex)0.7Sr0.3MnO3 (0  x  0.20) have been prepared by 

conventional solid state reaction method. Stoichiometric ratio of Nd2O3, CeO2, SrCO3 and 

MnO2 (previously dried at 800 K in order to remove any eventual water) were thoroughly 

mixed to get homogeneous powders, which were calcined at 1100 °C for 72 h. The calcined 

mixtures were then pressed into pellets (12 mm diameter and 2 mm thickness under 8 

tons/cm2) and sintered several times in air, with intermediate grindings, at 1400 K for 48 h. 

Finally, these pellets were quenched to room temperature. This step was carried out in order 

to preserve the crystalline structure at the annealing temperature. The structural 

characterization was done through X-ray diffraction measurements (XRD) using a 

‘‘Panalytical X’Pert Pro’’ diffractometer with Cu K  radiation (K =1.5406 Å). Data for the 

Rietveld refinement were collected in the range of 2  from 10 to 100° at room temperature 

with a step size of 0.017° and a counting time of 18 s per step. The structure refinement was 

carried out by the Rietveld analysis of the powder XRD data with the FULLPROF software 

[25]. For the electrical measurements, the opposite sides of the sample were coated with 

conducting silver paint. The transport properties of the polycrystalline sample were examined 

by ac impedance spectroscopy using an Agilent 4294A over a frequency range from 40 Hz to 

1 MHz at various steady temperatures (80–320 K). DC resistivity measurements were 

performed using the conventional four-probe method. 
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3. Results and discussion 

3.1. Microstructure analysis 

Fig. 1 shows typical XRD patterns performed at room temperature for x = 0.0 and 0.20 

compounds. All samples were found to be single phase without any detectable impurity. 

There is no segregation of CeO2 oxide as observed in many works [24, 26]. The structure 

refinement was performed in the orthorhombic setting of Pnma space group, in which the 

(Nd, Ce, Sr) atoms are at 4c (x, 0.25, z) position, Mn at 4b (0.5, 0, 0), O1 at 4c (x, 0.25, z) and 

O2 at 8d (x, y, z). We noticed that calculated diffraction patterns match well with measured 

ones. The difference observed between the intensities of the measured and calculated 

diffraction lines can be attributed to the existence of preferential orientation of the crystallites 

in the samples [27]. Positions for the Bragg reflection are marked by vertical bars. Differences 

between the observed and the calculated intensities are shown at the bottom of the diagram. 

The refinement results are listed in Table 1, which also reports the residuals for the weighted 

pattern RWP, the pattern RP, the structure factor RF and the goodness of fit . 

It is well known that the tolerance factor TG [28] determines the crystal structure of ABO3 

perovskite. Only for TG close to unity is a cubic perovskite structure obtained. For TG 1, a 

tilt and rotation of the oxygen octahedra are obtained compensating for the misfit of the ionic 

radiis of the involved A and B cations. This can be seen from the definition of TG: 

)OrBr(2

OrAr

Gt   (1) 

Where rA, rB and rO are respectively the average ionic radii of the A and B perovskite sites and 

oxygen anion. Usually, for (0.96  tG  1), the connecting pattern of the oxygen octahedra is 

rhombohedral, whereas it can be orthorhombic or monoclinic for lower values of TG. The 

values obtained of TG (see Table 1) suggest that our samples have the orthorhombic phase 

with perovskite structure (0.89  tG  0.96). 

 We can see in Table 1 that the lattice parameters and unit cell volume increase slightly with 

increasing Ce content. This slight increase can be directly related to the increase of average 

ionic radius of A site <rA> which is due to the larger ionic radius of Ce3+  ion ( 3Ce
r =1.196Å and

3Nd
r = 1.15Å [29]). The average crystallites size of the materials have been evaluated using 

peak broadening technique and Scherrer’s formula given by <DS> = k / cos , where <DS> is 

the average particle size, k is the particle shape factor (=0.89),  is the wavelength of CuK  

radiation (=1.5406Å),  is the full width at half maximum of the XRD peak and  is the 

Bragg’s diffraction angle of the peak. The as obtained <DS> are estimated to be mostly of 57, 
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69 and 76 nm for x = 0, x = 0.10 and x = 0.20 samples, respectively. This result shows that it 

has no appreciable difference in particle size for all samples. 

 

3.2. Electrical conduction 

The variation of resistivity  with temperature T of the (Nd1-xCex)0.7Sr0.3MnO3 samples ( 0  x 

 0.20) was shown in Fig 2. The (T) curves reveal that all the samples undergo a metal-

semiconductor transition with increasing temperature at TMS = 230, 192 and 186 K for            

x = 0.00, 0.10 and 0.20, respectively (TMS determined from the maximum of (d  /dT). It can 

also be noted that the transition temperature TMS is dependent on Ce concentration. As cerium 

concentration is increased, the value of maximum resistivity increases and the TMS decreases. 

Similar behavior has been observed by D. Varshney and al. for La0.7-xCexCa0.3MnO3 [30]. 

In the low temperature (T < TMS) metallic behavior, the electrical conduction is generally 

understood according to the DE theory. In this model, the Mn3+–O–Mn4+ coupling produces 

conduction from the half-filled to the empty eg orbital.  As known, the decrease of the 

resistivity when increasing temperature indicates the presence of semiconductor behavior 

where the conduction is thermally activated.  

The resistivity can be also well fitted, at high temperature (T > TMS), by the SPH model 

)
TBk

E
exp( ATT

hopp     (2) 

where T is the absolute temperature, kB is the Boltzmann temperature, A is the pre-

exponential factor and Ehopp is the activition energy of conduction. The activation energies 

(Ehopp) thus obtained is summarized in Table 2. In many cases, the conduction process is 

related to the electron delocalization phenomenon that is present in this type of material 

(electron hopping of the eg electron from Mn3+ to Mn4+ via the O2- orbital), which involves a 

tendency to form small polarons in the material. 

Fig. 3 shows the variation of AC conductance (GAC) with frequency f at different 

temperatures for the (Nd1-xCex)0.7Sr0.3MnO3 compounds (x=0 and x=0.20). These curves are 

frequency independent in the low frequency region (as shown by the plateau at low 

frequencies), followed by a sharp increase at high frequencies. In the plateau region, the 

conductance (GDC) decreases with temperature (T <TMS) indicating that the metallic behavior 

dominates. But the conductance increases with increasing temperature for T >TMS indicating 

the presence of semiconductor behavior.

The variation of GAC with high frequencies occurs with changes in slope which suggests a 

superposition of different transport mechanisms in this frequency range. This behavior 
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indicates that different types of hopping and carrier species are involved in transport. 

Additionally, the AC transport is usually described by the Jonscher power law [31-33]: 

G( ) =GDC+A n     (3) 

 where GDC is the DC conductance,  is the angular frequency, A is a pre-exponential factor 

dependent on temperature and n is the frequency exponent which depends on frequency and 

temperature. When the frequency is increased, the mean displacement of the charge carriers is 

reduced and thus the AC conductance of the sample follows the law GAC = A n. The 

frequency dependence of conductance suggests the hopping conduction. 

Fig. 4 shows the variation of AC conductance as a function of frequency for all samples at 

280 K. It is clear that the conductance decreases with increasing Ce concentration. This 

behavior is confirmed by the electrical resistivity  measurements (Fig. 2). The values of GDC, 

the constant (A) and the exponent (n) for the three samples (x = 0, x=0.10 and x=0.20) are 

listed in Table 3. It can be seen in this table that GDC and n decrease while the A increases 

when increasing the Ce doping concentration. The variation of the exponent (n) can be 

expected if the polarizability of involved material depends on the energy barrier for a simple 

hopping process between two sites [34]. 

The plot of ln(GDCT) versus 1000/T is shown in Fig. 5. At high temperatures, a linear 

variation was observed, which proves that conductance is dominated by thermally activated 

hopping of small polaron (SPH) and can be described by Mott and Davis law [35]:  

)
Tk

E
Bexp(-TG

B

hopp
DC     (4) 

Where B is the pre-exponential factor, Ehopp is the activation energy of conduction, T is the 

absolute temperature and KB is the Boltzmann constant. The activation energies Ehopp, as 

calculated from the slopes (Fig. 5), are listed in Table 2. It is worth noticing that the energy 

(Ehopp) estimated by both methods yields the same order of magnitude. 
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3.3. Complex impedance analysis 

Impedance spectroscopy is an experimental technique for the characterization of electrical 

properties of electronic materials. It enables us to separate the real and imaginary components 

of the electrical parameters and hence provides a true picture of the materials properties. 

In general, the complex impedance )Z(  under sinusoidal regime can be expressed as: 

jZ''Z'Z )(     (5) 

where ]Re[' ZZ  and ]Im['' ZZ  represent the real and imaginary parts of the impedance )Z( , 

respectively. 

 Fig.6 shows Nyquist plots (imaginary part of complex impedance ''Z  vs real part of complex 

impedance 'Z ) for (Nd1-xCex)0.7Sr0.3MnO3 (x= 0.20) at several temperatures. The impedance     

spectrum is characterized by the appearance of some compressed semicircle arcs, which can 

be well traced with the increase of frequency. The presence of a single semicircular arc 

indicates that the electrical processes in the material arise basically due to the contribution 

from bulk material [36-38]. The diameter of these semicircles changes with temperature. The 

center of semicircle making an angle  with 'Z -axis (The angle is between the Z’ axis and the 

line which related the centre of circle with intersection of the semicircular arcs on the real 

axis) and is temperature-dependent reveals the non-Debye type relaxation process in the 

material [39,40]. These spectra were fitted using Zview software and the best fit is obtained 

when employing an equivalent circuit formed by a serial association of a grain resistance Rg 

(bulk resistance) with a resistance Rgb (grain-boundary resistance) associated in parallel with 

constant phase element impedance (ZCPE). 

The CPE impedance (ZCPE) is given by the following relation:       

  (6) 

 

Where A0 indicates the value of capacitance of the CPE element (expressed in Farad units), 

and  is the factor exponent (0 <  < 1).The factor  represents the capacitive nature of the 

element [41]: if =1, the element is an ideal capacitor and if =0, it behaves as a frequency 

independent ohmic resistor.  A0 and  can be temperature dependent.  

The values of the bulk (Rg) and the grain boundary (Rgb) resistances can be obtained from the 

intercept of the semicircle and real part of impedance ( 'Z ) axis. Accordingly, the intercept of 

the 'Z  axis in the right (corresponding to the low frequency) is the sum of Rg and Rgb, while 

the intercept with the 'Z  axis in the left (corresponding to the high frequency) stands for Rg. 

CPE
jA

Z

0

1
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We can reveal from Fig.6 using Eq. 6 the real and imaginary components of the impedance 

related to the equivalent circuit: 

2))
2

sin(0Agb(R2))
2

cos(0AgbR(1

))
2

cos(0AgbR(1gbR
RgZ'   (7) 

2))
2

sin(0Agb(R2))
2

cos(0AgbR(1

))
2

sin(0AR
'Z'

2
gb

   (8) 

The parameters (Rg, Rgb, A0 and ) were obtained for each temperature after fitting the data 

by Eqs.(7)  and (8). Fig. 7 shows the variation of the resistance of grains and grain boundaries 

(inset) of the sample x=0.20 with temperature. The decrease in the values of Rb and Rgb 

(diameters of the semicircular arcs in figure 2) with temperature, above TMS, indicates the 

presence of thermally activated conduction mechanism in this system which is typical for the 

semi conductors. Generally two types of thermal activation are responsible for the reduction 

in resistive properties with temperature [42, 43].  In the case of band conduction, carrier 

density increases with rise in temperature, while in the case of hopping, carrier concentration 

is determined by the doping level and it is the carrier mobility which is thermally activated.  

By contrast, the values of grain resistance Rg and the values of grain boundary resistance (Rgb) 

below TMS increase with increasing temperature (metallic behavior). This result is in good 

agreement with the electrical resistivity.  

Fig. 8 shows the variation of real part of impedance ( ]Re[' ZZ ) with frequency at different 

temperatures for x=0.20. The impedance value is typically higher in the low-frequency 

region, and then it decreases gradually with increasing frequency. The decrease in 'Z  with the 

increasing frequency may be attributed to the presence of space charge polarization in the 

material. In fact, this phenomenon has been further verified by observing the coalesced 

behavior of real part of high frequency impedance for all measured temperatures. Similar 

behavior at lower frequencies was also observed by Sen et al.[44]. We can notice that 'Z  

increases with increasing temperature below TMS (inset of Fig. 8). However, above TMS, it 

decreases with the increasing of temperature. 

Fig. 9 shows the variation of the imaginary part of impedance ( ]Im['' ZZ ) with frequency for 

some representative temperatures. The spectra are characterized by the appearance of peaks, 

such behavior indicates the presence of relaxation process in the system. Similar behavior has 

been reported for other manganites and different perovskite systems [45-47] and it has been 

attributed to localized hopping of polarons between lattice sites with a characteristic timescale 
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[48]. From these peaks we deduce the value of relaxation frequency (fr) above TMS, and then 

we calculate the relaxation time  using the relation of  = 1/ (2 fr).  It is observed that the 

value of relaxation time is found to be decreasing with the increase of temperature which 

represents semiconducting behavior of the sample. This semiconducting nature of the grains 

in ceramics is believed to be due to the loss of oxygen during high temperature sintering 

process [49, 50]. As a result, the activation energy can be obtained by using the Arrhenius 

formula )
Tk

E
exp( relax

00 , 0 is the pre-exponential factor, relax is the activation energy and B 

is the Boltzmann constant. The plot of the relaxation time ( ), as a function of inverse 

temperature (1000/T), is given in Fig. 10. The activation energy (Erelax) of the relaxation 

process and relaxation times at infinite temperature ( 0) were  determined from the slope and 

intercept, respectively, of the linear least square fits shown as solid lines in Fig. 10 and the 

values are listed in Table 2. It is observed, from this table, that the activation energy for 

conduction is greater than relaxation energy .The activation energy for conduction (Ea) is the 

sum of both the creation of charge carriers and hopping free energy of charge carriers over 

long distances while the activation energy for relaxation is equal to the migration free energy 

of charge carriers and their hopping between the adjacent lattice sites. The difference between 

the conduction and relaxation activation energies may be attributed to the creation of free 

energy, which shows that the carrier concentration is temperature dependent [51,52]. 

 

 

Conclusion 

In summary, we have investigated in this work, the structure and electrical transport 

properties of (Nd1-xCex)0.7Sr0.3MnO3 (0  x  0.20) perovskites, using impedance 

spectroscopy technique over a wide range of temperature and frequency. The X-ray 

diffraction analysis revealed that all samples exhibit single perovskite with orthorhombic 

Pnma structure. The electrical investigation shows a metallic semiconductor transition with a 

metal-like conductivity below and semiconductor-like conductivity above a critical 

temperature TMS. Electrical conductivity analysis has indicated that conductance can be 

described by Jonscher universal power law. From the DC conductance study, electronic 

conduction is found to be dominated by thermally activated hopping of small polarons (SPH), 

such activation energy was also deduced from the electrical resistivity measured using a 

conventional four- probe method. Complex impedance analysis indicates that the electrical 

properties of the material are strongly dependent on temperature and frequency. The 
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impedance spectrum is characterized by the appearance of semicircle arcs, well modeled in 

terms of the electrical equivalent circuit. The analysis of the temperature variation of the 

imaginary-part of the impedance has indicated that the observed relaxation process is 

thermally activated. From these obtained results, we have deduced the evidence of a hopping 

mechanism in the conductivity behavior. The activation energies obtained from the 

conductance is slightly higher than that from time relaxation analyses. 
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Tables captions: 

Table 1: Refined structural parameters of (Nd1-xCex)0.7Sr0.3MnO3 (0  x  0.20) at room 

temperature. Space group Pnma. V is the cell volume; Biso is the overall isotropic thermal 

parameter; TM-O the bond lengths between Mn and O and Mn-O-Mn are the bond angles, 

Rwp, Rp and RF are the agreement factors for the weighted profiles, the profiles and the 

structure factors; ² is the goodness of fit. The numbers in parentheses are estimated standard 

deviations to the last significant digit. 

 

Table 2: Activation energy estimated from resistivity, conductance and relaxation plots for 

(Nd1-xCex)0.7Sr0.3MnO3 (x= 0, 0.10, 0.20) compounds. 0 is relaxation time at an infinite 

temperature. 

 

Table 3: Values of the DC conductance, the constant (A) and the exponent (n), for                    

(Nd1-xCex)0,7Sr0,3MnO3 (x= 0, 0.10, 0.20) compounds, determined at the temperature T=280K. 
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Figures captions 

 

Figure 1. X-ray diffraction pattern and the corresponding Rietveld refinement of the         

(Nd1-xCex)0.7Sr0.3MnO3 (x=0 and 0.20) samples.  

 

Figure 2 . The temperature dependence of resistivity  for (Nd1-xCex)0.7Sr0.3MnO3 compounds 

(x = 0, 0.10 and 0.20 content). Solid lines are linear fits to data using SPH model. 

 

Figure 3. Variation of the AC conductance (GAC) as a function of frequency at different 

temperatures 80–320 K for (Nd1-xCex)0.7Sr0.3MnO3 samples. ((a) x = 0, (b) x = 0.20). 

 

Figure 4. Variation of the AC conductance (GAC) versus frequency f of                        

(Nd1-xCex)0.7Sr0.3MnO3 (x = 0, 0.10, 0.20) compounds at the temperature T = 280 K. 

 

Figure 5. Variation of the ln(GDCT) as a function of (1000/T) for (Nd1-xCex)0.7Sr0.3MnO3 

(x = 0, 0.10, 0.20) samples.  

 

Figure 6. Complex impedance plots at given temperatures for (Nd1-xCex)0.7Sr0.3MnO3 

(x=0.20) compound. 

 

Figure 7. Variation of Rg and Rgb with temperature for the (Nd1-xCex)0.7Sr0.3MnO3  sample  

[x = 0.20]. 

 

Figure 8 . Variation of real part of the impedance (Z’) of the (Nd1-xCex)0.7Sr0.3MnO3 sample 

(x = 0.20) as a function of frequency for different temperatures. 

 

Figure 9. Variation of imaginary part of the impedance (Z’’) of the (Nd1-xCex)0.7Sr0.3MnO3 

samples [x = 0.20] as a function of frequency for different temperatures. 

 

Figure 10. Variation of the ln( ) as a function of (1000/T)  for the Ce-doped compounds. 

Solid lines are linear fits to data. 
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composition x= 0 x= 0.10 x= 0.20 

Space group                                              Pnma 

a ( ) 

b( ) 

c( ) 

V ( 3) 

5.4593(1) 

7.7243(2) 

5.4553(1) 

230.05(2) 

5.4644(2) 

7.7293(3) 

5,4598(1) 

230.60(1) 

5.4674(3) 

7.7183(2) 

5.4690(2) 

230.79(3) 

(Nd/Ce/Sr) 

At.Positions 

x 0.0276(6) 0.0294(4) 0.0247(3) 

z 0.0036(5) 0.0038(1) -0.008(7) 

(Nd/Ce/Sr) Biso(
2) 1.20(2) 1.12(3) 0.89(4) 

(Mn) Biso(
2) 0.51(5) 0.82(4) 0.39(1) 

O (1) 
At.Positions 

x 0.5012(4) 0.5055(1) 0.4879(2) 

z 0.0248(2) 0.0295(8) 0.0755(5) 

O (1) Biso(
2) 0.82(6) 0.83(2) 0.52(2) 

O (2) 
At.Positions 

x 0.5012(4) 0.5055(7) 0.4900(6) 

y 0.4879(2) 0.0295(6) 0.0686(3) 

z 0.24(6) 0.12(2) -0.29(1) 

O (2) Biso(
2) 1.47(3) 1.68(3) 1.30(2) 

dMn-O1  (Å)  1.936(1) 1.940(2) 1.982(9) 

Mn-O1-Mn  (°)  172.059(3) 169.80(2) 158.545(1) 

dMn-O2  (Å)  1.8237(2) 1.720(1) 1.67(4) 

Mn-O2-Mn  (°)  154.475(4) 156.4 (3) 167.313(3) 

dMn-O  (Å)  1.8615 1.830 1.826 

Mn-O-Mn  (°)  163.280 163.10 162.929 
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Table 1: 

 

tG  0.9014 0.9022 0.9030 

 rA   1.2071 1.2089 1.2108 

Rp (%)  4.77 5.65 5.56 

Rwp (%)  6.37 7.86 7.94 

RF (%)  4.83 5.06 6.67 

2 (%)  2.71 3.97 3.73 
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Table 2  

 

composition

Resistivity 

analysis 

Conductance 

analysis 

Relaxation analysis 

Ehopp (meV)  

 

Ehopp (meV)  

 

Erelax (meV)  Relaxation 

time (s) 0 

x=0 81 80 61 7.22 E 7

x=0.10 90 88 65 6.75 E 7

x=0.20 93 94 75 1.85 E 6

 

 

Table 3:  

 

x GDC A exponent n

0 6.85E 2 4.715E 12 1.94

0.10 6.15E 2 3.043E 13 1.88

0.20 8.20E 3 1.043E 13 1.79
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Fig. 1.  
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Fig. 6.  
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Fig. 7.  
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Fig. 9. 
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