T. P. Fehlner, Exploring the interactions of d-block elements with boron. A case for electronically unsaturated metallaborane clusters, Journal of the Chemical Society, Dalton Transactions, issue.10, pp.1525-1531, 1998.
DOI : 10.1039/a800924d

T. P. Fehlner, Systematic Metallaborane Chemistry, Organometallics, vol.19, issue.14, pp.2643-2651, 2000.
DOI : 10.1021/om000355r

A. S. Weller, M. Shang, and T. P. Fehlner, ). Control of Reaction Pathway by Choice of Monoboron Reagent and Oxidation State of Metal Center, Organometallics, vol.18, issue.1, pp.53-64, 1999.
DOI : 10.1021/om980743h

D. K. Roy, S. K. Bose, K. Geetharani, K. K. Chakrahari, S. M. Mobin et al., Synthesis and Structural Characterization of New Divanada- and Diniobaboranes Containing Chalcogen Atoms, Chemistry - A European Journal, vol.26, issue.32, pp.9983-9991, 2012.
DOI : 10.1002/chem.201200189

S. K. Bose, K. Geetharani, B. Varghese, S. M. Mobin, and S. Ghosh, Metallaboranes of the early transition metals: Direct synthesis and characterization of 380 [(? 5 ? C 5 Me 5 )Ta 2 BnHm] (n = 4, m = 10, [(? 5 ? C 5 Me 5 ), pp.14-9058, 2008.

B. , L. Guennic, H. Jiao, S. Kahlal, J. Saillard et al., Synthesis and characterization of hypoelectronic rhenaboranes . analysis of the geometric and electronic structures of species following neither borane nor metal cluster electroncounting paradigms, J. Am. Chem. Soc, vol.390, issue.126, pp.3203-3217, 2004.

R. B. King, Oblate Deltahedra in Dimetallaboranes:?? Geometry and Chemical Bonding, Inorganic Chemistry, vol.45, issue.20, pp.8211-8216, 2006.
DOI : 10.1021/ic060922o

K. Wade, The structural significance of the number of skele- 400 tal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds, Chem. Commun, pp.792-793, 1971.

D. M. Mingos, A general theory for cluster and ring com- 405 pounds of the main group and transition elements, Nature Phys

D. M. Mingos, Polyhedral skeletal electron pair approach, Accounts of Chemical Research, vol.17, issue.9, pp.311-319, 1984.
DOI : 10.1021/ar00105a003

A. Lupan and R. B. King, Hypoelectronic Dirhenaboranes Having Eight to Twelve Vertices: Internal Versus Surface Rhenium???Rhenium Bonding, Inorganic Chemistry, vol.51, issue.14, pp.7609-7616, 2012.
DOI : 10.1021/ic300458w

R. B. King, Some Examples of Unusual Skeletal Bonding Topologies in Metallaboranes Containing Two or Three Early Transition Metal Vertices, Inorganic Chemistry, vol.40, issue.12, pp.2699-2704, 1320.
DOI : 10.1021/ic001320m

T. P. Fehlner, J. Halet, and J. Saillard, Molecular Clusters: A Bridge to Solid State Chemistry, 2007.
DOI : 10.1017/CBO9780511628887

URL : https://hal.archives-ouvertes.fr/hal-00354899

R. B. King, Geometry and chemical bonding in polyhedral boranes , metallaboranes, and dimetallaboranes: From closo to isocloso to oblatocloso polyhedra, J. Organomet. Chem, vol.694, 2009.

R. B. King and S. Ghosh, Chemical bonding in oblatonido ditanta- 425 laboranes and related compounds, Theor. Chem. Acc, vol.131, issue.2

B. S. Krishnamoorthy, A. Thakur, K. K. Chakrahari, S. K. Bose, P. Hamon et al., Theoretical and Experimental Investigations on Hypoelectronic Heterodimetallaboranes of Group 6 Transition Metals, Inorganic Chemistry, vol.51, issue.19, pp.10375-1038310, 1021.
DOI : 10.1021/ic301571e

URL : https://hal.archives-ouvertes.fr/hal-00753612

K. Geetharani, B. S. Krishnamoorthy, S. Kahlal, S. M. Mobin, J. Halet et al., ] (X = Cl, Br, and I), Cp * TaX) 2 B 5 H 11 ] (X = Cl, Br, andI), pp.10176-10184, 2012.
DOI : 10.1021/ic300848f

J. Halet and J. Saillard, 31 -theoretical treatment of ligated clusters containing transition metals Comprehensive Inorganic Chemistry II: From Ele- 440 ments to Applications, pp.2013-2022, 2013.

B. S. Krishnamoorthy, S. Kahlal, B. L. Guennic, J. Saillard, S. Ghosh et al., Molecular transition-metal boron compounds. Any interest?, Solid State Sciences, vol.14, issue.11-12, pp.1617-1623, 2012.
DOI : 10.1016/j.solidstatesciences.2012.03.026

URL : https://hal.archives-ouvertes.fr/hal-00858830

R. F. Bader, Atoms in Molecules -A Quantum Theory, 1990.

R. F. Bader and M. E. Stephens, Spatial localization of the electronic pair and number distributions in molecules, Journal of the American Chemical Society, vol.97, issue.26, pp.7391-7399, 1975.
DOI : 10.1021/ja00859a001

R. Ponec, Electron pairing and chemical bonds. chemical structure, valences and structural similarities from the anal- 455 ysis of the fermi holes, Journal of Mathematical Chemistry, vol.21, issue.3, pp.323-333, 1997.
DOI : 10.1023/A:1019186806180

R. Ponec, R. Ponec, and M. Kohout, molecular structure from the analysis of pair densities and related quantities Domain-averaged fermihole analysis for solids, J. Math. Chem. J. Chem. Phys, vol.23, issue.13721, pp.85-103, 1998.

J. Cioslowsky and S. T. Mixon, Covalent bond orders in the topological theory of atoms in molecules, Journal of the American Chemical Society, vol.113, issue.11, p.113
DOI : 10.1021/ja00011a014

M. Kohout, A measure of electron localizability, International Journal of Quantum Chemistry, vol.36, issue.1, pp.651-658, 2004.
DOI : 10.1002/qua.10768

M. Kohout, Bonding indicators from electron pair density functionals, Faraday Discuss., vol.14, pp.43-54, 2007.
DOI : 10.1039/B605951C

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, 1988.
DOI : 10.1103/PhysRevA.38.3098

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, pp.1200-1211, 1980.
DOI : 10.1139/p80-159

J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, vol.33, 1986.

M. Kohout, A. Savin, and H. Preuss, Contribution to the electron distribution analysis. I. Shell structure of atoms, The Journal of Chemical Physics, vol.95, issue.3, pp.1928-1942, 1991.
DOI : 10.1063/1.460989

P. Macchi and A. Sironi, Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities., Coordination Chemistry Reviews, vol.238, issue.239, pp.238-239
DOI : 10.1016/S0010-8545(02)00252-7

E. Espinosa, I. Alkorta, J. Elguero, and E. Molins, From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X???H???F???Y systems, The Journal of Chemical Physics, vol.117, issue.12, p.510, 2002.
DOI : 10.1063/1.1501133

J. G. Angyán, M. Loos, I. Mayer, R. Ponec, and C. Gatti, Covalent Bond Orders and Atomic Valence Indices in the Topological Theory of Atoms in Molecules, Do the structural changes defined by the electron density topology necessarily affect the picture of the bonding?, pp.5244-5248, 1021.
DOI : 10.1021/j100071a013

A. M. Pendás, M. Kohout, M. A. Blanco, and E. Francisco, Modern charge-density analysis, 2012.