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Abstract

Non-syndromic mitral valve prolapse (MVP) is a common degenerative cardiac valvulopathy of 

unknown aetiology that predisposes to mitral regurgitation, heart failure and sudden death1. 

Previous family and pathophysiological studies suggest a complex pattern of inheritance2–5. We 

performed a meta-analysis of two genome-wide association studies in 1,442 cases and 2,439 

controls. We identified and replicated in 1,422 cases and 6,779 controls six loci and provide 

functional evidence for candidate genes. We highlight LMCD1 encoding a transcription factor6, 

for which morpholino knockdown in zebrafish results in atrioventricular (AV) valve regurgitation. 

A similar zebrafish phenotype was obtained for tensin1 (TNS1), a focal adhesion protein involved 

in cytoskeleton organization. We also show the expression of tensin1 during valve morphogenesis 

and describe enlarged posterior mitral leaflets in Tns1−/− mice. This study identifies the first risk 

loci for MVP and suggests new mechanisms involved in mitral valve regurgitation, the most 

common indication for mitral valve repair7.

The prevalence of non-syndromic MVP has been estimated as 2.4% in the general 

population8. Family aggregation9,10, presence in rare connective tissue syndromes11 as well 

as the identification of four linked loci2–5 indicate genetic heterogeneity for MVP. 

Additional factors such as age- and sex-dependent penetrance, with possible association 

with myocardial structural and functional abnormalities, suggest additional genetic 

complexity12. We conducted an initial discovery meta-analysis on two independent French 

genome-wide association studies (GWAS) including 1,412 MVP cases and 2,439 controls 

(Supplementary Table 1), all of European ancestry, for ~4.8 million genotyped or imputed 

common (MAF > 0.1) single nucleotide polymorphisms (SNPs) (Supplementary Figure 1). 

Three loci showed genome-wide (GW) significant associations with MVP (P < 5×10−8) 

(Table 1). The strongest association (rs12465515; OR=1.33, P=1.08×10−8) was observed on 

Chr2q35 in a ~424 Kb gene-desert region where the nearest genes are TNP1, IGFBP5 and 

IGFBP2 (upstream) and DIRC3 and TNS1 (downstream) (Table 1). The two other GW-

significant loci were at Chr17p13 (lead SNP rs216205, OR=1.35, P=3.02 × 10−8) in an 

intron of SMG6 and at Chr22q12 near MN1 and PITPNB (rs11705555 OR=1.34, P=4.47 × 

10−8) (Table 1). We followed-up 23 loci with evidence of a suggestive association 

(P<1×10−5) in a first replication panel that included European Americans and European 

Spanish cases and controls (Set 1 and Set 2, Supplementary Figure 1).

We genotyped or imputed a total of 47 SNPs (23 loci). An intermediate meta-analysis 

including the discovery and the follow-up Sets 1 and 2 (Ncases= 2,312 and Ncontrols=8,296) 

identified a subset of 24 SNPs (15 loci) with significant associations with MVP (P<0.01), 

which were genotyped or imputed in two additional case-control studies from Canada and 

France (Sets 3 and Set 4, Supplementary Figure 1). In the global meta-analysis that included 

2,864 cases and 9,218 controls, three additional loci associate with MVP at the genomic 

level (Table 1, Supplementary Table 2). The overall strongest association was observed on 

Chr3p13 for rs171408 that maps in an intron of LMCD1 (OR=1.32, P =1.29 × 10−11, Table 

1). Two additional signals were identified on Chr21q22 near CBR1 and SETD4 

(rs62229266, OR=1.22, P=1.18×10−8) and on Chr14q24 near SIPA1L1 and PCNX 
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(rs17767392, OR=1.23, P =2.27×10−8) (Table 1). We also confirmed the three GW-

significant signals identified in the discovery samples with lead SNPs rs12465515 near 

IGFB55 and TNS1 (OR= 1.25, P =3.11×10−11), rs11705555 near PITPNB and MN1 

(OR=1.23, P=1.39×10−8) and rs216205 in SMG6 (OR=1.24, P=1.46×10−8). Overall, we 

observed consistency in the direction of effects as well as nominal significant association in 

the follow-up meta-analysis and did not detect significant heterogeneity (P>0.05) among 

case control studies (Table 1).

Many patients in the general population with MVP show few clinical symptoms, if any1. 

Nonetheless, a substantial subset of patients are at risk of heart failure and cardiac death, and 

MVP is the most common cause of isolated mitral regurgitation requiring surgical repair7. 

To investigate if the confirmed MVP risks alleles could be more prevalent among the more 

severely affected patients who required valve repair or replacement, we analysed the 1,680 

French patients who underwent surgical intervention and compared them to 3,259 French 

controls (Supplementary Table 3). We did not find a stronger effect of any MVP risk alleles, 

except a slight increase in the frequency of the risk allele of rs11705555 at the 

PITPNB/MN1 locus (OR=1.31, 95%CI (1.19–1.44), P=1.88 × 10−8). Overall, our findings 

support that MVP is under significant genetic control with susceptibility loci of relatively 

homogeneous effect sizes (OR from 1.22 to 1.33).

MVP-associated loci implicate four intergenic (IGFBP5/TNS1, SETD4/CBR1, PITBNB/

MN1, and PCNX/SIPA1L1) and two intronic (LMCD1 and SMG6) regions. From an initial 

list of 53 genes (±500Kb to ±1Mb of the lead SNP), we identified candidate genes at each 

locus based on proximity to sentinel SNP, expression level in the heart, presence of eQTL 

signal in publically available databases (GTEX), proximity to previously identified GWAS 

signals for cardiovascular traits and a biological link with mitral valve or general cardiac 

development (Supplementary Table 5 and Supplementary Methods for full details of gene 

prioritization strategy per locus).

We then investigated the expression pattern of candidate genes during valve development in 

mouse embryos by immunohistochemistry (IHC) at three time points that represent: i) 

completion of endothelial-to-mesenchymal transformation (EMT; E13.5), ii) valve sculpting 

and elongation (E17.5) and iii) achievement of the mature adult form (9 months old). 

Functional antibodies were only available for Tns1 and Igfbp5 on Chr2 and Pitpnb on 

Chr22. We also prioritized candidate genes in the MVP risk loci using morpholino 

knockdown (KD) based on the presence of clear zebrafish orthologs which, after filtering 

(Supplementary note), limited our analysis to eight genes at three loci: igfbp2a, igfbp2b, 

igfbp5a, igfbp5b, and tns1 located at the chr2q35 locus; lmcd1 at the chr3p13 locus and 

smg6 and sgsm2 at the chr17p13 locus.

On Chr2q35, rs12465515 lies within a large intergenic region with TNS1 and IGFBP5 

identified as the best two candidate genes (Supplementary Table 4). TNS1 maps 750 kb 

downstream from the association signal at the chr2q35 locus (Figure 2A). Tensin1, coded by 

TNS1, localizes to focal adhesions and interacts with actin, as does Filamin A, whose genetic 

variants can cause a rare X-linked form of MVP13. Tensin1 interacts with cytoplasmic tails 

of integrins to anchor stress fibers and plays an important role in metastatic capacities of 
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cancer cells 14. On the other hand, IGFBP5, encoding insulin-like growth factor-binding 

protein 5 (IGFBP5), is known to modulate muscle differentiation and mediate high glucose-

induced pro-fibrotic effects in cardiac fibroblasts15. IGFBP5 was also demonstrated to 

modulate migration and adhesion of cancer cells and could potentially be at play in valve 

development and valvular interstitial cell integrity.

Only faint nonspecific staining was observed for Igfbp5 in valves of developing and adult 

mice (Supplementary Figure 2). In contrast, murine IHC data showed a sustained expression 

for Tensin1 during valve morphogenesis, being stronger along the atrialis aspect of the 

forming leaflet (Figure 3A). We also found that Tensin1 expression is maintained during 

adulthood and localized in the endothelial and valvular interstitial cells (Figure 3A). 

Hematoxylin and eosin (H&E) histological staining in 9-month old Tensin1−/− mice showed 

enlarged posterior mitral leaflets compared to wild-type littermates (Figure 3B). In addition, 

valves from tns1−/− mouse showed evidence of myxomatous degeneration, indicated by 

increased proteoglycan content and loss of normal matrix stratification as indicate the 

accumulation of proteoglycan in the valves (Figure 3C). Preliminary echographic 

exploration of Tns1−/− mice (n=2) showed slight leaflet displacement (0.4 mm) compared to 

wildtype (0.1 mm) consistent with larger leaflets but no mitral regurgitation (Supplementary 

Figure 3), indicating subtle anomalies of the mitral valve that deserve future confirmation. In 

zebrafish experiments, a significant increase in AV regurgitation incidence was observed in 

tns1 knockdown for both morpholinos (3- and 1.1-fold increase, respectively; P=0.02 and 

P=0.01) (Supplementary Video 2) but not in simultaneous knockdown of both igfbp2 and 

igfbp5 isoforms (Figure 2C). In situ hybridization identified high tns1 expression throughout 

the developing heart, and knockdown diminished the aggregation of endothelial cells at the 

developing valve (Supplementary Figure 4). Further, although notch1b expression remained 

normally localized to the developing valve, the distribution of the valve development marker 

bmp4 was highly disorganized (Supplementary Figure 5). Together, these results support 

Tensin 1 as the best candidate at the Chr2q35 locus for MVP pathogenesis.

The association signal at the Chr3p13 is intronic to LMCD1. Also named Dyxin, LMCD1 is 

a member of the LIM domain family of zinc finger proteins that act as co-regulators of 

transcription. It is highly expressed in mouse cardiac tissue and was demonstrated to be a 

direct repressor of GATA6, an important regulator of cardiac development6. Somatic 

mutations in LMCD1 were described as potential oncogenic events in hepatocellular 

carcinoma metastasis by promoting cell migration16. The zebrafish knockdown of lmcd1 

results in significantly increased AV regurgitation for both morpholinos (4.7 and 1.2 fold 

increase in AV regurgitation; P=0.001 and P=0.009) (Figure 4C, Supplementary Video 3). 

In addition, morphological analysis of the developing myocardium revealed lmcd1 

morphants exhibited a moderate reduction in cardiac looping (Supplementary Video 3). 

However, although lmcd1 is expressed throughout the heart, after lmcd1 knockdown, 

expression patterns of valve development markers notch1b and bmp4 displayed no 

abnormalities (Supplementary Figure 5) and no mis-localization of endothelial cell 

aggregation was observed (Supplementary Figure 4). Further investigation will be required 

to determine if the AV regurgitation is due to a primary valve defect or a more general 

defect in cardiac development. Previous in vitro and in vivo studies showed that Lmcd1/
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Dyxin augment calcineurin17. Calcineurin signalling is required for AV endocardium EMT 

and subsequent valve morphogenesis in zebrafish18. rs355134, a highly correlated variant to 

the top SNP rs171408 (r2=0.84 according to 1000 genomes data), is located in a predicted 

myocyte enhancer factor 2A (MEF2A) binding site, a key transcription factor in cardiac 

development19. We have previously shown that Mef2C regulated matrix production in 

mouse valves20. Our data extend the role of LMCD1 to valve development, and the putative 

implication of LMCD1 in matrix production regulated by MEF2A deserves future 

investigation.

Amongst the remaining MVP loci, we detected expression for Pitpnb, candidate gene on 

Chr22q12, in valve endothelial and interstitial cells within the mouse mitral leaflets at each 

of the time points investigated (Supplementary Figure 6). At the Chr17p13 locus, 

knockdown of candidate genes included smg6 and sgsm2, neither of which led to a valvular 

phenotype in the zebrafish (Supplementary Figure 7). Additional candidate genes need to be 

explored at this locus, which has been associated with aortic root size21 and coronary heart 

disease19.

Despite the widespread prevalence, the molecular basis of MVP has largely been elusive. 

The first molecular pathways implicated in MVP arose from the observation of the disease 

in patients with Marfan or Ehlers-Danlos syndromes, findings that highlight the importance 

of extracellular matrix composition22, the TGF-beta growth factor pathway12,23 and valve 

cell proliferation and differentiation24. Several structural mechanisms have also been 

proposed, such as enlargement and flattening of the mitral annulus25 that can impose 

additional stresses on genetically susceptible valves and chordae26. This first GWAS of non-

syndromic MVP reveals several susceptibility loci supporting the concept that genetic 

variants affecting the expression of proteins during valve development can progressively 

affect mitral valve function into adult life, as was recently shown for Filamin-A27. In 

particular, we provide genetic and functional evidence that TNS1 and LMCD1 both 

implicated in cell proliferation and migration are contributing to mitral valve degeneration 

possibly during valve development, thus revealing new pathways as possible innovative 

therapeutic targets.

Online methods

Leducq Transatlantic MITRAL Network

The majority of patients were recruited as a major project of the Leducq Mitral Network, a 

transatlantic consortium investigating the physiopathology of mitral valve disease with basic 

and clinical investigators from 10 clinical and research centres. Six centres recruited MVP 

patients, MVP-Nantes and MVP-France for the initial GWAS effort, MVP-USA, 

Framingham Heart Study (FHS) and PROlapso Mitral en cEntros eSpAñoles (PROMESA) 

at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) for initial replication 

and HEGP-Surgical Cases with QCCMRC data-sets in the last replication stage. Cases were 

compared with controls (Framingham Heart Study, PROMESA-CNIC and QCCMRC) or 

general population (D.E.S.I.R for initial GWAS and one replication stage), SU.VI.MAX 

(GWAS) (Supplementary Figure 1).
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Cases recruitment criteria

We used consensus inclusion criteria of adult (≥ 18 years) patients with idiopathic MVP if 

they presented displacement into the left atrium of any part of the mitral valve leaflet(s) ≥ 2 

mm beyond a line connecting the annular hinge points on the parasternal long-axis view of 

the left ventricle by two-dimensional (2D) echocardiography1,2. We also included patients 

with previous surgery for pure severe MR due to MVP supported by an operative report and 

written confirmation of the diagnosis by the surgeon (MVP-France, MVP-Nantes and 

Surgery Cases). All cases were validated by a local, experienced team of cardiologists on the 

basis of clinical and echocardiography records. Recruitments excluded patients with MVP 

associated with other heart disease (coronary artery disease with papillary muscle disruption, 

hypertrophic cardiomyopathy or rheumatic disease) or known syndromes (e.g. Marfan and 

Ehlers-Danlos). Local ethics committees approved all studies and all patients and controls 

provided written informed consent. Recruitment procedures of DNA collection are detailed 

per cohort in Supplementary Note.

Analytical methods

GWAS genotyping and quality control—Genotyping of the discovery cohorts was 

independently performed by different genetic platforms that included standard quality 

control measures of genotyping and data acquisition from diverse high-density genotyping 

arrays (Supplementary Table 1). We excluded participants with genotype call rate < 97% 

and individual heterozygosity (IHe) level < 10,000 (determined as outlier limit after visual 

inspection). We excluded SNPs with a minor allele frequency (MAF) <0.1, call rate <95%, 

monomorphic, and with an exact Hardy Weinberg Equilibrium (HWE) p < 0.0001 in 

controls and p < 10−7 in demographically homogenous cases to exclude SNPs that show 

very large deviations.

Imputation—To complement directly genotyped SNPs we performed large-scale 

imputation in the four discovery cohorts. First, genotyped SNPs in cases and controls were 

phased using the SHAPE-IT (v1) program3. Then, the imputation of 4.8 million common 

SNPs (MAF>0.1 in 1000G Europeans, proper-info > 0.4) was carried out using IMPUTE 

v24 in ~7 Mb chunks. The reference panel used was Phase I integrated variant set release 

(v3), in NCBI build 37 (hg19). We used similar procedures to impute non-genotyped SNPs 

in the replication cohort FHS using MACH software (0.3 r2_hat)5.

Direct genotyping in the replication sets—MGH cases from the follow-up Set1 and 

all cases and controls of Set2 were genotyped at the Massachusetts General Hospital PNGU 

Core Lab using the Sequenom iPLEX Gold® application and MassARRAY® system. 

Follow-up Sets 3 and 4 were genotyped at the LGC genomics company using the KASP® 

genotyping chemistry. We excluded 9 individuals that failed genotyping for all SNPs, and 

SNPs with call rate <0.90. No SNP deviated from HWE (P>0.05).

Demographic analyses—The ancestry of participants was assessed using a multi-

dimensional scaling technique implemented in PLINK6. SNPs were selected for short-range 

linkage disequilibrium (LD) independence (r2 > 0.2). Multi-dimensional scaling method was 

applied on the Identity-By-State matrix and we excluded outliers on the first two 
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components (Supplementary Figure 8) using an expectation-maximization (EM)-fitted 

Gaussian mixture clustering method implemented in the R package M-CLUST, assuming 

one cluster and noise (Supplementary Note).

Statistical Analyses

Genome-wide and replication association with MVP status—We applied a logistic 

regression (additive model) as implemented in SNPTEST4 to test the association with MVP 

in the GWAS discovery adjusted for the five first principal components as covariates. We 

also used SNPTEST and/or logistic regression on allele dosage in replication sets when 

cases and/or controls were imputed for genotypes (FHS in Set 1 and D.E.S.I.R. 2 in Set 4, 

Supplementary Figure 1) and took into account for relatedness among (FHS). For directly 

genotyped cases control studies (Set 2 and Set 3) we used logistic regression as implemented 

in PLINK.

For the GWAS meta-analysis, we applied the inverse normal strategy7. Because the number 

of controls greatly exceeds the number of cases in all studies, we used the effective sample 

size as advised in the METAL software 8:W= 4/(1/Ncases+1/Ncontrols).

Regional association plots for Chr2q35, Chr3p13 and Chr17p13 were created using Locus 

Zoom9.

Protein detection in mouse embryos and adult hearts

Standard histological and immunochemical procedures were used as previously described10. 

For all immunohistochemistry (IHC) experiments, 5-min antigen retrieval was performed 

with VectaStain and Pressure Cooker (Cuisinart). Antibodies used for immunological 

experiments were: Tensin1 (Novus), MF20 (Developmental Hybridoma Banks). Primary 

antibodies were used for IHC at a 1:100 dilution, Hoescht 33342 (nuclear stain) was used at 

a 1:10,000 dilution. Appropriate secondary antibodies were used for detection.

Histology and expression studies were performed on adult (9-month) wild-type (Tensin1+/+) 

and knockout (Tensin1−/−) hearts. For Histology: Adult (9-month) hearts were processed for 

hematoxylin and eosin stainings and immunohistochemistry (IHC) as previously 

described 11. For all analyses male mice were used and N=3 for each genotype. Antibodies 

used for IHC were: Hyaluronan Binding Protein (HABP) to stain proteoglycans (1:100) 

(Callbiochem), collagen I (1:100) (MDbio), and Hoescht to stain nuclei (1:10,000) 

(Invitrogen).

Zebrafish experiments

Zebrafish experiments were performed in accordance with approved Institutional Animal 

Care and Use Committee (IACUC) protocols. TuAB zebrafish strains were reared according 

to standard techniques. Minimal effective doses of antisense morpholino oligonucleotides 

were injected at the single cell stage and compared to non-targeting morpholino injected 

controls. Nucleotides sequences are indicated in Supplementary Table 6. Embryos were 

scored for presence of AV regurgitation at 72 hours post-fertilization (hpf) using high speed 

videography. Semiquantitative PCR was used to demonstrate morpholino knockdown 
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efficacy (Supplementary Figure 9). In situ hybridizations for tissue specific expression of 

lmcd1, tns1, bmp4, and notch1b were performed as described12. In order to visualize the 

localization of the developing cardiac cushions, flk-EGFP reporter fish were microinjected 

with anti-tns1 or anti-lmcd1 morpholinos. After manual excision of the heart at 72hpf, hearts 

were counterstained with rhodamine labelled phalloidin and mounted using Vectashield. 

Confocal micrographs were acquired on a Zeiss 510 LSM with a 20X air lens. Final Images 

represent 2D projections of a z-series (ImageJ).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quantile-quantile (A) and manhattan (B) plots representing the association of 4.8 
million SNPs at the GWAS meta-analysis
Red line indicates genome-wide significant threshold (P < 5 × 10−8) and blue line the p-

value thershold used for follow-up (P < 10−5).
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Figure 2. Cardiac regurgitation in zebrafish morpholino knockdown for candidate genes on 
Chr2q35
a) Genomic context of the association signal observed in the GWAS meta-analysis. The 

regional association plot was generated using locus zoom and displays surrounding genes, 

with TNS1, IGFBP2 and IGFBP5 identified as best potential candidates at this locus. b) 
Mitral regurgitation observed at 72 hours post fertilization (hpf) in zebrafish embryos 
after morpholino mediated knockdown. All results are presented as fold change compared 

to clutchmate controls. n=number of biological replicates per morpholino. (*) indicates 

p<0.05. c) 2-dimensional projections of z-series image stacks taken on excised control 
(CN) and tns1 knockdown zebrafish hearts. Green denotes EGFP expression, a marker of 

endothelium under the control of the flk promoter. Red staining indicates the distribution of 

F-actin, which is highly expressed in the functional myocardium. Scale bar represents 50μm. 

d) anti-bmp-4 probe labels the valve and surrounding myocardium in CN and tns1 
knockdown embryos. Scale bar represents 50μm. e) Brightfield micrographs displaying 
gross morphology of 72hpf zebrafish morphants. Scale bar represents 1mm. Body axis 

length of morpholino-injected fish is slightly reduced compared to wild-types.
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Figure 3. Murine Tensin 1 expression during developing valves and knockout phenotype at 9 
months
A) Tensin1 expression in the mouse developing heart. IHC was performed for Tensin1 

(red) at E13.5 (complete epithelial mesenchymal transformation), E17.5 (valve sculpting and 

elongation) and 9 months of age. MF20 (green) labels myocytes, Hoescht (Blue) labels 

nuclei. (B) Tensin1 knockout mice exhibit enlarged mitral leaflets. Hematoxylin and 

Eosin (H&E) histological staining was performed on Wild-type (Tensin+/+) and Tensin 

knockout (Tensin1−/−) mice. Scale bars are denoted. (C) Tensin1 knockout mice exhibit 
myxomatous mitral leaflets. Immunohistochemistry (IHC) for collagen (red), 

proteoglycans (green) show failure of normal matrix stratification and expansion of 

proteoglycan expression in the tensin1−/− mitral leaflets indicative of a myxomatous 

phenotype. AL= Anterior Leaflet, PL= Posterior Leaflet, LV=Left Ventricle, 

IVS=interventricular septum. Scale bars are denoted.
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Figure 4. Cardiac regurgitation in zebrafish morpholino knockdown for Lmcd1 on Chr3p13
a) Genomic context of the association signal observed in the GWAS meta-analysis. The 

regional association plot was generated using locus zoom and displays surrounding genes, 

with LMCD1 identified as best potential candidate as the signal is intronic to LMCD1. b) 
Mitral regurgitation observed at 72 hours post fertilization (hpf) in zebrafish embryos 
after morpholino mediated knockdown. All results are presented as fold change compared 

to clutchmate controls. n=number of biological replicates per morpholino. (*) indicates 

p<0.05.
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c) 2-dimensional projections of z-series image stacks taken on excised 72hpf control 
(CN) and lmcd1 knockdown zebrafish hearts. Green denotes EGFP expression, a marker 

of endothelium under the control of the flk promoter. Red staining indicates the distribution 

of F-actin, which is highly expressed in the functional myocardium. Scale bar represents 

50μm. d) Brightfield micrographs displaying gross morphology of 72hpf embryos 
following lmcd1 knockdown. Scale bar represents 1mm. CN=control morpholino injected 

embryos. No detectable morphological difference is observed between morpholino-injected 

fish and wild-types.
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